Le q-analogue du groupe fondamental

Sauvage

(cas local)

J.P. Ramis

(† J. Sauloy, C. Zhang)

Paris, le 20 mai 2008
- INTRODUCTION -

Le problème de départ est celui de la classification des équations linéaires aux q-différences (posé et partiellement résolu par G.D. Birkhoff).

On peut voir les choses en termes :
- d'équations d'ordre n ;
- de systèmes d'ordre 1 et de rang n ;
- de modules [aux q-différences].

Nous commençons par le point de vue des systèmes :

\[|q| > 1 \quad ; \quad \sigma_q f(z) = f(qz) \]

\[\sigma_q X = A X \]

\[A \in \text{GL}_n(\mathbb{R}) ; \]

\[\mathbb{R} \text{ is a "field of functions";} \]

\[\mathbb{R} = \mathbb{C}(z) \quad (\text{global case}) \]

\[(K =) \quad \mathbb{R} = \mathbb{C}[[z^\pm 1]] = \mathbb{C}(\mathbb{E}(z^\pm 1)) \quad (\text{local}) \]

\[(\hat{K} =) \quad \mathbb{R} = \mathbb{C}[[z]] [z^\pm 1] = \mathbb{C}((z)) \quad (\text{formal}) \]
Relation d'équivalence (transformation de jauge):

\[X = PY ; \quad P \in \text{GL}_n(k) \]

\[(k, \sigma_\theta): \text{corp aux } \sigma_\theta \text{-différences} \]

\[g_X = g_P g_Y = AX = APY \]

\[g_Y = (g_P)^{-1} APY = BY \]

\[B = (g_P)^{-1} AP \]

Opération de \(\text{GL}_n(k) \) sur \(\text{GL}_n(k) \).

Orbites:

\[k = \mathbb{C}(z) ; \quad \text{singularités: } \{0, \infty\} \]

Pour \(f(z) = \frac{z}{z-3} \):

\[k^* = \mathbb{C}^* \]

\[L = M(\mathbb{C}^*)' \]

\[L^6 = \text{corps des fonctions elliptiques} \]

Sur \(\text{Eq} = \mathbb{C}^*/\mathbb{Q}^2 \) (condensée)

Courbe elliptique
Catégorie des équations aux q-différences (systèmes) :

Cas local : $K = K = C(\mathbb{F}_q)$.

Catégorie $\mathcal{E}_q^{(0)}$ (systèmes aux q-différences) :

Objets :

systèmes aux q-différences :

$g_q X = AX, \quad (A \in \text{GL}_n(K))$.

Morphismes :

de A vers $B, \quad A \in \text{GL}_n(K), \quad B \in \text{GL}_p(K), \quad F \in M_{p,n}(K)$ telle que

$(g_q F)A = BF$

$F(\text{nl de } A) = \text{nl de } B$

$X \mapsto FX$

$\mathcal{E}_q^{(0)}$ est une catégorie abélienne

Catégorie des modules de longueur finie

sur l'anneau euclidien non-commutatif

$D_q, K = K[\sigma_q, \sigma_q^{-1}]$ (algèbre d'œie)

(K^n, Φ_A), avec $\Phi_A(X) = A^{-1}g_q X$.

\mathcal{E} est une catégorie tensorielle

$(A_1 \otimes A_2, F_1 \otimes F_2, C \otimes C^\vee \cong C^{\vee} \otimes C)$

Unité :

$1 = (1) \in \text{GL}_1(K) = K^*$

$g \cdot x = x$

$\text{Hom}(1, A) = \text{Espace des solutions de } A \text{ dans } K$

$\text{Espace des poids fixes de } \mathcal{E}_A \text{ dans } K^n$

$\Gamma(A)$

F morphisme de A vers B

$\Gamma \left((\text{Hom}(A, B)) \right) = \text{Hom}(1, \text{Hom}(A, B))$

$\Gamma \left(\text{Hom}(A, B) \right) = \text{Hom} \left(\Gamma(A), B \right)$

$\text{Hom}(A, 1) \leftrightarrow A^\vee \cong A^{-1}$

Dual

$\text{Hom}(CA, B) = A^\vee \otimes B$
\(E^{(0)} \) est une catégorie Tannakienne

Étape suivante : foncteur fibre

À partir de maintenant on se limite aux objets de pente entière

(à ce général reste à crier, en utilisation un travail de van der Put-Reuten
clésification des fibres sur les courbes elliptiques d'Atiyah.

\(A \rightarrow N(A) \) polygone de Newton

Pente : \(\mu_1 < \cdots < \mu_k ; \mu_1, \ldots, \mu_k \in \mathbb{Q} \)

Rang : \((n_1, \ldots, n_k) ; n_k \in \mathbb{N}^* \)

(multiples)

Module par inclinaison = une seule pente

Module torsion = somme directe d'inclinaisons

Module fraction = pure inclinaison de pente 0

\(A(\mathcal{O}) \) inversible

Sur catégorie \(E^{(0)} \subset \mathcal{E}^{(0)} \) : pur

\(E^{(0)} \subset \mathcal{E}^{(0)} \) : modules à pente ordonnées
Forme standard polynômale : compatible à Ø

Filtration par les pentes des Dq, k-modèles
(qui d'équivalent différentiel dans la catégorie
meromorphe, équivalent dans la catégorie
formelle) : fondantelle ⇒ F : A → B

Sans forme triangulaire supérieure.

Filtration → Graduation (objets, modules)

\[g_2 A = A_0, \quad g_2 M = M_0 = M A_0 \]
\[M = M A \]

\[A_0 = \begin{pmatrix}
 A_1 & \cdots & 0 \\
 \vdots & \ddots & \vdots \\
 0 & \cdots & A_n
\end{pmatrix} \]

\[M_0 = P_1 \oplus \cdots \oplus P_n; P_i \quad \text{qui de rang} \cdot \]

\[P_i : g_2 A \]

Fonctor : \[M \to g_2 M, \quad F \to g_2 F \]

\[M_0 \]

Il existe un isomorphisme unique

formel \[\hat{F} : A_0 \to A \quad (\hat{F} \in M_n(K)) \]
But : description de $\Xi^{(0)}$
catégorie locale ($k = K = C(\mathbb{C}^3)$) des
equations aux q-différences à pentes
entières.
C'est une catégorie Tannakiennne.

Forme Standard (Birkhoff - Gunther 1981)

$$A = \begin{pmatrix}
 z^{|\Lambda|} A_1 & V_{ij} \\
 0 & 0 \\
 0 & 0 & \cdots & 0 & \mathfrak{g}_k A_k \\
\end{pmatrix}
$$

$\mu_1 < \cdots < \mu_k$: pentes, $A_i \in \mathfrak{gl}_n \otimes \mathbb{C}$
(i = 1, \ldots, k)

$1 \leq i < j \leq k$: $V_{ij} \in \text{Mat}_{\mu_i \mu_j} (K)$

Tout élément de $\Xi^{(0)}$ est méromorphe
équivalent à un élément sous forme
standard (Birkhoff - Gunther, Zhang, Sturmf, Sundby).

Mieux : forme standard polygémienne

$\text{coefficient de } V_{ij} \in \Xi^{(0)} = C \otimes \mathfrak{g}_k$

$\mu \in \mathbb{C}^k$
\[F = \left(\begin{array}{c} \hat{F}_{ij} \\ \hat{F}_{ij} \end{array} \right) , \hat{F}_{ij} \in M_{n \times n}(\hat{K}) \]

\[\hat{K} = C((\mathbb{C})) \]

Notation : \[\hat{F} \in G_{A_0}(\hat{K}) \]

\[G_{A_0} : \text{groupe algébrique unipotent} \]

\[A : \text{algèbre de Lie} \]

\[\begin{pmatrix} 0 & \hat{F}_{ij} \\ \hat{F}_{ij} & 0 \end{pmatrix} \]

Equations récursives :

\[\hat{F} = \hat{F}_A \]

\[\text{par } t \in \mathbb{R} ; 1 \leq i, j \leq k , \]

\[6 q F_{ij} z q F_{ij} z F_{ij} - \frac{p}{q} A : F_{ij} \]

\[\sum_{i < l < j} U_{ij} F_{lj} , \quad \forall U_{ij} \in C((\mathbb{C})) \]

Pour des solutions convergentes (i.e. \(\in K \)) en général. Il y a des solutions

mérormphes, \(i.e. \in M(\mathbb{C}^*) \)

= RESONNATIONS des \(\hat{K} \) formelles.
Remarque : $F_0 = \text{gr } F$; déf. polygones de Laurant.

Foncteur fibré c équir \mathbf{E}_1^\bullet.

$a \in \mathbb{C}^*$, $\hat{\mathbf{w}}_a : \mathbf{E}_1^\bullet \rightarrow$ catégorie des

C-E.V. de

dimension finie

Action sur les objets (A, MA) :

$$\hat{\mathbf{w}}_a (A) = \mathbb{C}^n$$

$A \in \text{GL}_n (K)$

Action sur les morphismes $(F : A \rightarrow B)$

$\hat{\mathbf{w}}_a (A) = \mathbb{C}^n$ \rightarrow \mathbb{C}^p

$F \rightarrow F_0 (a) : \mathbb{C}^n \rightarrow \mathbb{C}^p$

$F_0 (a)$ est bien défini (cf. Remarque)

$\hat{\mathbf{w}}_a (A)$ est nucléaire, fidèle, \otimes engendré

$\hat{\mathbf{w}}_a (A) \otimes \hat{\mathbf{w}}_a (B) \leq \hat{\mathbf{w}}_a (A \otimes B)$

Groupe de Galois de \mathbf{E}_1^\bullet en a :

$G_1^0 = \text{Aut} (\hat{\mathbf{w}}_a)$

Déf. $G_1^{(0)}$.

Problème : Décrire $G_1^{(0)}$.
- \textbf{Structure du groupe de Galois de } \xi_1^{(0)} = G_3^{(0)} \text{ semi-direct}\]
\[
G_1^{(0)} = \mathcal{G}_k \ltimes G_{p_4}^{(0)} \text{ torê theta}
\]
\[
G_{p_4}^{(0)} = T_1^{(0)} \times G_{f_4}^{(0)} \text{ : semi-simple}
\]
\[
G_f^{(0)} = G_{f_0}^{(0)} \times G_{f_0,\infty}^{(0)} \text{ uni-jeton}
\]
\[
G_{\mathcal{U}} \text{ : partie "sauvage" } q \text{-Stokes}
\]
\[
\text{Galois} = \text{Galois sauv.} \times \text{Galois fuchsien}
\]
\[
\text{Calculs : } G_f^{(0)} = \text{Hom}_\mathbb{C}(\mathbb{E}_q, \mathbb{C}^*) \ltimes \mathbb{C}^*
\]
\[
T_1^{(0)} \cong \mathbb{C}^*
\]
\[
\mathcal{G}_k \text{ : calcul à l'aide d'une algèbre de Lie libre}
\]
\[
+ \text{action de } G_f^{(0)} \text{ et } T_1^{(0)}
\]
- **CALCULS**
- **Groupe de Galois fonctionnel.**

Cas différentiel : catégories des germes d'équations différentielles monomorphes fonctionnelles (à près-singuliers réguliers).

On fixe le groupe fondamental

\[\pi_1(\mathbb{C}^*, l) \]

\[\cong \mathbb{Z} \]

Enveloppe proalgébrique de \(\pi_1(\mathbb{C}^*, l) \)

Groupe de Galois Tannakien

\[\text{Hom}^g(\mathbb{C}^*, \mathbb{C}^*) \otimes \mathbb{C} \]

Image de \(\pi_1 \): homomorphismes continues

\[\gamma \mapsto (\gamma \mapsto \gamma^n, 1) \]

\[n \in \mathbb{Z}, \quad \gamma^n \mapsto (\gamma \mapsto \gamma^n, n) \]

9-analogique : \(\text{Hom}^g(E_{9}, \mathbb{C}^*) \otimes \mathbb{C} \)

\(E_{9} = \mathbb{C}^*/q\mathbb{Z} \) (Courbe elliptique)

\(\mathbb{C}^*(\text{repr. } E_{9}) = \lim \) vers \(\mathbb{D} \)-modules de type fini.
Duel: groupe pialgèbrique.

q-analoge de $\Pi_1(C^*, x)$?

On cherche les homomorphismes continus de E dans $C^*_r(G)$, éléments d'éléments de G_f, x.

$q = e^{-2i\pi y}$ (Im $y > 0$), $C^* = U \times q$

$q^y = e^{-2i\pi y}$ pour $y \in \mathbb{R}$

$\gamma_1 = \left\{ q^y \mapsto u \right\}, \quad \gamma_2 = \left\{ q^y \mapsto e^{i\pi y} \right\}$

Lemme. Le sous-groupe des él. continus de G_f, x est engendré par γ_1 et γ_2.

(γ_1, γ_2) est Zariski-dense dans G_f, x (imprimitive avec un seul générateur)
- CALCUL DE LA PARTIE "SAUVAGE" -

Idée: analogie différentiel (Ramis)

Partie fondamentale: $\Pi_2^1(C^\times, d) \xrightarrow{\text{groupe transition}} \text{Hom}_q((C^\times, C^\times))$

T^{1}_e: tore exponentiel (part 1)

Partie "pre" : $f \times T^{1}_e$

T^{1}_e dual de $\frac{1}{x} C[x^n]$

limite inductive de n

(T^{1}_e dual de $\bigcup_{n \in \mathbb{N}} \frac{1}{x^n} C[x^n]$)

Action de "forme" T^{1}_e: triviale (en général non)

Groupe "pre" : $T^{1}_e(C^\times, 1) \times T^{1}_e \rightarrow \times T^{1}_e$

Groupe de Stokes trivial

R: "groupe de logarithme"

exp lieR \quad lieR: "algèbre de lie de logarithme"

lieR est engendrée par des symboles

lieR est engendrée par des symboles

$\Delta(q, 1)$, $q \in \frac{1}{2} C[x^n]$: points en T^{1}_e de S^1
\[\hat{\Delta}(q,p) \delta^{-1} = \langle q, r \rangle \hat{\Delta}(q,p) \]
\[\hat{\Delta}(q,p) \delta^{-1} = \hat{\Delta}(q, e^{2\pi i p}) \]

On cherche des q-analogues.

Dans le cas différentiel, on a deux notions de localisation :
- topologique
- algébrique

- localisation topologique sur \(S^1 \times \mathbb{R} \),

- localisation algébrique, groupes unipotents

- Eich : engendrant un "groupe fondamental"

Action adjointe d'un tore \(\to \) développement
en "série de Fourier" du résultat \(\to \) coefficient

\(G \to \text{lie } G \)
Mécanisme : Resomptions → Stokes, puis localisation topologique, puis algébrique.

"deux étrangetés" ELCOME Galois

PROBLÈMES :

1) Trouver "suffisamment" de dérivées étrangetés : \(\{ \} \times \text{action de la partie pure} \rightarrow \text{2 vrilles dense}

2) Trouver une famille libre de dérivées étrangetés :

"suffisamment moins que"

Cas différentiel OK (Th1-annulage).

Cas aux \(q \)-différences

\(q \)-resommation → analytique : \(q \)-Borel-Laplace

Rami et Zhang : plusieurs relations...

"algébrique" : Saalay

Ambiguities de \(q \)-resommation = \(q \)-Stokes

Fonctions elliptiques : \(q \)-contours!
Fonction $\Theta = \Theta_q$ (Jaqué)

$$\Theta_q(z) = \sum_{n \in \mathbb{Z}} q^{n(n+1)/2} z^n$$

zés en q-ypisèle $[-1; q]$.

$6q \Theta_q = z \Theta_q$

$\Theta_q, c(z) = \Theta_q(z/c)$ (c e \mathbb{C}^*)

zés en q-ypisèle $[-c; q]$

$6q \Theta_q, c = z \Theta_q, c$

Rénumération "algébrique". On introduit la matrice diagonale $T_c, A_0 \in \text{Mat}(\mathbb{M}(\mathbb{C}^*))$.

diagonale par blocs, bloc : Θ_q, z_i, I_{z_i}

(coeff de $U_{i,j}$) $\in \sum_{\mu \leq d < \mu_j} \mathbb{C}^{z_i}$

$$\mathbf{A}' U = \text{def.} \ T_c, A_0 [\mathbf{A} U] = (A'_i, U_{i,j})$$

Transformation de jauge "interdite".

Il existe $F' \in \mathcal{G}(\mathbb{O}(\mathbb{C}^*))$ unique tel que

$F'[N] = \mathbf{A}' U$.

avec des conditions sur c :

"On a une loi de q^k : "fuchs""
Pour tout \(i \neq j \),\(q^2 e^{\text{Sp}(A_i)} \cap q^2 e^{\text{Sp}(A_j)} = \emptyset \)

\(\Rightarrow \) Sem-eau-fini de Eq de valeurs interdites pour \(\delta \).

\(q \)-direction de \(q \)-somme interdites

(\(q \)-direction de \(\delta \))-stables) : \(\Sigma A_0 \subset \text{Eq} \).

Si \(\varepsilon \in \text{Eq} \), \(\varepsilon \) : \(q \)-direction de \(q \)-somme

\[F_{\varepsilon} = \Theta_{\varepsilon} \]

\(F_{\varepsilon} \) a des pôles uniquement sur \([-q, q]\)

avec des multiplicités \(\leq p_{\varepsilon} \).

\(\text{Def. : } F = F_{\hat{A}} \) est la \(q \)-somme de \(F_{\hat{A}} \) dans la direction \(\varepsilon \):

\[F = \Sigma \varepsilon F_{\hat{A}} \]

Si \(\varepsilon, \delta \in \text{Eq} - \Sigma A_0 \):

\[\Sigma \varepsilon, \delta F_{\hat{A}} = (\Sigma \varepsilon F_{\hat{A}})^{-1} \Sigma \varepsilon F_{\hat{A}} \]

\(\text{Stokes : automorphisme méromorphe de l'objet } A_0 \) (Stokes Théorème)
Rez. Les Stokes sont galvaniques.

(a mon avis faux pour des resonnations plus générales)

Fonction fibre en $a \in A^*$: $\hat{\omega}^{(0)}_a$.
On pose $T_0 \in \Sigma(A) \cup \{ -\infty \}$

$\Rightarrow \quad S_{T_0}, \; \hat{F}_A^{(1)}(a) \in GL^+(A)$

"The" par le foncteur \mathcal{G}_2.

\Rightarrow Famille de "Lie-like" automorphismes

du foncteur fibre $\hat{\omega}^{(0)}_a$:

$L_S^{(a)}(A) = \log S_{T_0}, \; \hat{F}_A^{(1)}(a)$

(les Stokes sont importants)

On considere maintenant les Stokes

comme des fonctions de la q-direction

de resonnation: T_0 fixe, T variable.

Fonction méromorphe sur E_a p&i.eacute;lu $\subset \Sigma(A)$.

Th. et Ref. $\Delta^{(a)}(A) = \text{Res}_{T = \infty} L_S d\mu(A)$.

q-deux équations $\in \mathfrak{sl}(A)$

algèbre de lie
La transition algébrique en utilisant l'action adjointe du tore délicat \(\mathbb{T}^1 \) et \(\mathbb{C}^* \):

\[
\begin{pmatrix}
1 \\
0 \\
0 \\
1 + \mu_2
\end{pmatrix}
\]

\[\mathbf{A}_c = \bigoplus \mathbf{A}_c^g \quad \mathbf{8} \quad \mathbf{8}_1^{\mathbf{8}} \quad \mathbf{S} = \mu_1 - \mu_2 \]

\[\Delta_c \text{ a des \textit{tends} only si } \mu_1 - \mu_2 = \mathbf{8} \]

\[\mathbf{A} \rightarrow \mathcal{F}(\mathbf{A}) = (\mathbf{A}_0, (\mathbf{A}_c, \mathbf{8}_1^{\mathbf{8}}), \mathbf{2}_c^{\mathbf{2}}) \]

est un \(\mathbf{2} \)-foncteur exact et pleinement fidèle.

\[\text{Théorème (th. de densité)}\]

(i) le sous-groupe "engendré" par les \(\Delta_c \) de \(\mathcal{G}_q \) est Zariski-dense dans le groupe de Galois \(\mathcal{G}_q \).

(ii) La sous-algèbre engendrée par les \(\Delta_c^{\mathbf{8}} \) est Zariski-dense dans \(\mathcal{G}_q \).
LIBÉRATION DES 9-DÉRIVÉES ÉTRANGÈRES

Le problème est de trouver quelles sont les familles $(\Delta^\alpha_\mathbb{A}^i_\mathbb{A})$ effectivement réalisées pour \mathbb{A}_0, donné.

Ceci est naturel pour certaines applications, la notion de problème inverse paraissant.

La réponse est simple au premier niveau δ_0:

- $\Delta^\alpha_\mathbb{I}^\mathbb{A}(\mathbb{A})$ est trivial pour les directions \mathbb{A}_0, dont réunions: \mathbb{A}_0.

- C'est la seule condition \Rightarrow liberté.

- C'est exactement plus dur pour \mathbb{A}_0 géodésique.

Action adjointe de $G_{\mathbb{A}_0}$ sur \mathbb{A}_0 :

espaces propres: $\mathbb{A}_0^{}$,

$(6,\mathbb{A})^{}(\mathbb{A}_0^{}):

\begin{align*}
\{ & M \text{ normal en dehors de } (p^\mathbb{A}_0, x^\mathbb{A}_0, y^\mathbb{A}_0, z^\mathbb{A}_0) : \\
& \alpha \in \mathbb{A}_0, \beta \in \mathbb{A}_0^{}, \text{ mod. } q \in \mathbb{Z} \\
& \Rightarrow (y^\mathbb{A}_0 - x^\mathbb{A}_0) = q \beta \}
\end{align*}$

Proposition. On a

$\mathbb{A} = \mathbb{A}_0^{}$ mod. $\mathbb{A}_0^{}(\mathbb{A}) \Rightarrow (S)(S')(\mathbb{A}_0') - \Delta^\alpha_\mathbb{A}_0(\mathbb{A}_0^{})(\mathbb{A}) \subset \mathbb{A}_0^{}(\mathbb{A}_0^{})(\mathbb{A})$.
\[\tau \in G^{(0)} \wedge \tau \Delta_z \varphi = \sum <(\delta, \varphi), \tau> \Delta_z(\varphi, \tau) \]

"Série de Fourier"

Les \(\Delta_z(\varphi, \tau) \) sont des dérivées galvaniques

On considère les \(\Delta_z(\varphi, \tau) \)

\[\text{Lemme. Soit } A_0 \text{ donné.} \]

Si \(A \) tel que \(g(A) = A_0 \), la connaissance des \(\Delta_z^n(A) \) est celle des \(\Delta_z^n(\varphi, \tau)(A) \)

\[\Rightarrow \text{ densité et liberté avec les } q \text{-déformées } \Delta_z(\varphi, \tau) \]

\[\text{Objet } A \leftrightarrow \text{ représentations de } \]

\[\text{définie } \]

\[g(A) = A_0 \quad \text{et } G_f \rightarrow GL_n(C) (A_0) \]

\[\text{compatibles} \]

\[\text{Objets d'ambientes simples } \quad \text{et "infinités"} \]