L’ESO publie les clichés de certains des astéroïdes les plus proéminents de notre Système Solaire

Grâce au Very Large Telescope de l’Observatoire Européen Austral (VLT de l’ESO) installé au Chili, des astronomes ont acquis les images de 42 des objets les plus proéminents de la ceinture d’astéroïdes située entre Mars et Jupiter. Cet échantillon d’astéroïdes est le plus étendu et le mieux résolu dont nous disposions à ce jour. Les observations révèlent une grande diversité de formes particulières, s’étendant de la sphère classique à l’os de chien, et permettent aux astronomes de retracer l’origine géographique des astéroïdes au sein de notre Système Solaire.

L’acquisition, au moyen des télescopes terrestres, des images détaillées de ces 42 objets constitue une formidable avancée dans l’étude des astéroïdes, et contribue à répondre à la question de la Vie, de l’Univers, et du Tout.

Le faible nombre d’observations détaillées d’astéroïdes dont nous disposions jusqu’alors nous empêchait d’accéder à leurs caractéristiques principales que sont leur forme 3D ou leur densité. Entre 2017 et 2019, Vernazza et son équipe impliquant des chercheurs et ingénieurs de l’IMCCE ont entrepris de combler cette brèche en menant une étude approfondie des principaux corps de la ceinture d’astéroïdes.

Ces découvertes ont été permises par l’extrême sensibilité de l’instrument SPHERE (Spectro-Polarimetric High-contrast Exoplanet Research) installé sur le VLT de l’ESO. « Le gain en performance de SPHERE, combiné à notre connaissance restreinte de la forme des plus gros astéroïdes peuplant la ceinture principale, nous ont permis d’effectuer de substantiels progrès dans ce domaine » ajoute Laurent Jorda du Laboratoire d’Astrophysique de Marseille, co-auteur de l’étude.

Les astronomes seront en mesure d’acquérir les images détaillées d’un plus grand nombre d’astéroïdes lorsque l’ELT (Extremely Large Telescope), actuellement en cours de construction au Chili, entrera en service à la fin de cette décennie. « Les observations des astéroïdes de la ceinture principale au moyen de l’ELT nous permettront d’étudier des objets de diamètres inférieurs, compris entre 35 et 80 kilomètres selon leur localisation spatiale, ainsi que des cratères de dimensions comprises entre 10 et 25 kilomètres » conclut Vernazza. « Disposer d’un instrument tel que SPHERE sur l’ELT nous permettrait même d’imager un semblable échantillon d’objets au sein de la Ceinture de Kuiper. En d’autres termes, nous serons en mesure de caractériser l’histoire géologique d’un échantillon plus étendu de petits corps depuis la surface de la Terre. »

Chercheurs et ingénieurs de l’IMCCE impliqués dans l’étude : F. Vachier, M. Birlan, N. Rambaux, J. Berthier, F. Colas

Lien vers le communiqué de Presse de l'ESO : https://www.eso.org/public/france/news/eso2114/

All archives