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The generation of bounded trajectories complying with operational constraints in the complex dynamic

environment surrounding Phobos is not an easy task. The vicinity of Phobos is dominated by the gravity field of

Mars; consequently, orbiting on a Keplerian orbit about this moon is not feasible. The quasi-satellite orbit (QSO) is a

means to orbit Phobos in the sense of relative motion. In particular, the three-dimensional QSO (3D QSO) has been

recently suggested as an approach for bettermeetingmission objectives, such as global mapping. However, the linear

stability of QSOs concluded in the simplified three-body model cannot sufficiently ensure a stability domain for

operations. In this context, this paper investigates the strategy for designing bounded orbits with desired stability

properties and characteristics for observation. Families of periodic 3D QSOs are first computed in the circular-

restricted three-body problem. The sensitivity of the QSOs to the initial epoch and operational errors is analyzed,

revealing effective stability levels and region that can guide trajectory and operation design. The stability levels are

then validated by a dispersion analysis in the full dynamics. Furthermore, being guided by effective stability, a

preliminary attempt to maintain low-altitude and high-inclination QSOs in the full dynamics has proven successful.

I. Introduction

T HEMartian moons, Phobos and Deimos, are of scientific inter-

est because of their unknown origin and formation. They could

possibly be captured asteroids or be accreted from postimpact debris

disc [1,2]. If either moon was a captured carbon- or water-rich

asteroid, that may lead to an explanation for the delivery of water

to the terrestrial planet zone [3]. Information of Martian moons can

lead to further understanding of the early solar system. The Soviet

probes Phobos-1 and Phobos-2 have been sent to explore Phobos in

the late 1980s [4]. Over the last two decades, Phobos sample-return

mission concepts, such as the Phobos-Grant, PHOOTPRINT, and

Martian Moons eXploration (MMX), have been intensively studied

by space agencies [5–7]. In particular, the MMX mission will be

launched in 2024, and scheduled to return samples from Phobos in

2029 [7]. A sample-return mission involves a series of proximity

operations around the target, such as global mapping, approaching,

descents, and ascents, which generally require science orbits of

good observation characteristics and stable (or easily maintainable)

“home” orbits. However, due to the dominant gravity field ofMars in

the vicinity of Phobos, the sphere of influence of this moon is below
its surface. That makes orbiting on a Keplerian orbit around Phobos
infeasible. Early in themission study for Phobos-1 and Phobos-2, the
quasi-satellite orbit (QSO) was proposed as a means to orbit around

Phobos in the sense of relative motion [8]. The QSO is a result of the
three-body dynamics. It appears centered on the secondary body and
revolves in the retrograde direction. Dynamics of the planar 1:1 QSO
has been intensively studied (e.g., Refs. [9–11]). In addition, the
three-dimensional QSO (3D QSO) going significantly away from
the orbital plane of Phobos had been previously identified as con-
venient locations for maximizing the scientific return of a Phobos
explorationmission [6,12]. To be specific, 3DQSOs are favorable for
globalmapping and identifying physical parameters, such as libration
amplitude and high-degree gravitational terms, of the target [13,14].
On the other hand, stability ofQSO should be deeply understood in

order to ensuremission success, given the complexity of the dynamic
environment and errors in operations. The QSO generally exhibits
linear stability. However, prestudies for the MMX mission and
EQUULEUS mission [15] (i.e., employing an Earth–moon near-
rectilinear halo orbit as the science orbit to observe meteor impacts
on the moon) showed that, when it comes to real operations, it can be

more challenging to maintain the QSO in the vicinity of Phobos than
to maintain the Earth–Moon halo orbit, which is linearly unstable
(private communication with Japan Aerospace Exploration Agency
project teams inOctober 2017). This counterintuitive resultmotivates
a further investigation to bridge the gap between the understanding of
orbital stability and operational robustness. The strategy to maintain
an orbit is generally to target a baseline bounded orbit, and deter-
mined through trial and error. However, if the baseline orbit cannot
stay bounded in the presence of modeling and operational errors
before the next control, the orbit maintenance operation is likely to
fail. Therefore, the degree of orbital stability should be identified.
Ikeda et al. [16] and Wiesel [17] have examined the sensitivity of

planar QSOs around Phobos to injection errors. This paper further
analyzes QSO stability in the spatial problem covering the 3D QSO.
In particular, a methodology to classify QSOs into stability classes,
which serves for mission and operation planning, is presented.
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The paper is organized as follows. Section II presents the commonly
used dynamic models and tools with appropriate modifications, con-
cerning computation of resonant periodic orbits and examination of
orbital stability. Section III presents the solutionmap and linear-stability
region of 3D QSOs. Section IV further examines orbital stability
through sensitivity analyses of the initial epoch and operational errors.
In particular, the so-called J2-Elliptic dynamicmodel is used to examine
the sensitivity to the initial epoch in a simple way. Effective stability
levels are determined according to the results. In Sec. V, the effective
stability of QSOs concluded in low- andmid- fidelitymodels is verified
in the full dynamic model. To be specific, trials for maintaining hyper-
stable QSOs are conducted, and long-term orbital behaviors are exam-
ined by large-scale Monte Carlo simulations.

II. Background

A. Circular Restricted Three-Body Problem

The circular restricted three-body problem (CR3BP) assumes that
twoprimary bodiesm1 andm2 aremoving in a circular orbit about their
barycenter. The third body is massless compared to the two primaries.
The synodic frame (i.e., the origin at the barycenter of the primaries, the
z axis aligned with the direction of the angular velocity of the primary
system, the x axis in the direction from the primary to the secondary,
and the y axis completing the right-handed coordinate system) is
chosen to describe the motion of the third body. For convenience,
the system is normalized by setting the length unit,LU, to the distance
between the two primaries, the mass unit to the combined mass of the
two primaries, and the time unit, TU, to the value such that the angular
velocity is unity. Let μ denote the ratio of themass of the secondarym2

to the total mass. The normalized dimensionless synodic system is
depicted in Fig. 1. In this system, the equations of motion of the third
body are expressed as

�x − 2 _y � ∂U∕∂x �y� 2 _x � ∂U∕∂y �z � ∂U∕∂z (1)

where U denotes the pseudogravitational potential expressed as

U � �x2 � y2�∕2� �1 − μ�∕r1 � μ∕r2 (2)

where

r1�
������������������������������������
�x�μ�2�y2�z2

q
; r2�

�������������������������������������������
�x−1�μ�2�y2�z2

q
(3)

To describe the simplified Mars–Phobos system, LU �
9377.2 km, TU � 4387.775 s, and μ � 1.65778 × 10−8 are used
in this work.

B. Symmetric Periodic Orbits

Inspection of Eq. (1) shows two symmetries of the system where
solutions are symmetric about the x-z plane and the x axis, respec-
tively. The two symmetries can be expressed as

�x;y;z; _x; _y; _z; �x; �y; �z;t�T ↔ �x;−y;z;− _x; _y;−_z; �x;− �y; �z;−t�T
�x;y;z; _x; _y; _z; �x; �y; �z;t�T ↔ �x;−y;−z;− _x; _y; _z; �x;− �y;−�z;−t�T (4)

If a trajectory perpendicularly crosses the x-z plane or the x axis
twice, the trajectory afterward will mirror the trajectory before the last
crossing, and thus goback to state at the first crossing,which results in a
closed periodic orbit. This property can be used to construct periodic
orbits. The periodic orbit that has two perpendicular crossings of the
x-z plane is referred to as a plane-symmetric orbit, the one that has two
perpendicular crossings of the x axis is referred to as an axi-symmetric
orbit, and the one that has both perpendicular crossings of the x-z plane
and x axis is referred to as a doubly symmetric orbit [18–20]. The
present work is focused on the plane-symmetric orbit.

C. Bifurcations into Resonant Families

Computation of resonant orbits is based on bifurcations from a
generating periodic family (e.g., planar 1:1 periodic orbits) [19,21].
The monodromy matrix of a periodic orbit and its eigenvalues and
eigenvectors can indicate the resonant families around it. The mono-
dromy matrix is the state transition matrix (STM) of a periodic orbit
after one period. The 6 × 6 STM is the linear map from an initial state
to a later state. For details of computing the STM in the CR3BP,
readers are referred to Ref. [22]. In the Hamiltonian CR3BP system,
the monodromy matrix has three pairs of eigenvalues. Each pair
of eigenvalues has the relationship λi ⋅ λj � 1 [23]. If λi and λj
are complex conjugated eigenvalues, they can be represented by
λi � cos�θ� � i sin�θ� and λj � cos�θ� − i sin�θ� (where i is the

imaginary unit), respectively. Let ei and ej denote the eigenvectors
associated with λi and λj. An infinitesimal displacement in the span

fei; ejgwill rotate θ per period. To form a closed resonant orbit in the

vicinity of the reference orbit, the accumulated phase difference
should be 2kπ, where k is a positive integer. The number of revolu-
tions of the reference motion for the resonant orbit is

n � 2kπ

arccos�λi � 1∕λi∕2�
(5)

wheren is also a positive integer. If fei; ejg is constrained in the plane,
a family of horizontal resonant orbits of multiplicity n intersects with
the generating family. Similarly, if fei; ejg forms a span in the third

dimension (i.e., having z and _z components), the vertical family of
multiplicity n intersects with the generating family.
For the problem of interest, the generating family, planar 1:1 QSO

(referred to as the 2D QSO hereafter) is first computed. Finding 3D
QSOs is based on the vertical n∕k of 2D QSOs. For a given n∕k,
fitting integers forn and k can be chosen. The corresponding 3DQSO
has a resonance of �n − k�∶n, where n − k indicates the number of
vertical revolutions.

D. Differential Correction

References [22,24] have given steps of differential correction to
compute periodic solutions in the CR3BP, taking advantage of the
symmetry. The initial guess of the 3D solution in the vicinity of the
reference 2D QSO can be set to the 2D solution. Recall that there are
at least two perpendicular crossings of the x-z plane for the plane-
symmetric periodic orbits. Let �x0; 0; z0; 0; _y0; 0�T denote the initial
condition of the 3DQSO, where y0 � 0, _x0 � 0, and _z0 � 0 indicate
that the initial condition crosses the x-z plane perpendicularly; z0
represents the z amplitude, which is fixed to a small value for the first
near-planar 3D QSO to be recovered; and the initial guess for the set

(x0, _y0) of the first 3D QSO can be properly set to (x2D0 , _y2D0 ), which

represents the initial condition of the 2D QSO on the x axis.
The periodic orbit should perpendicularly cross the x-z plane once

again at half a period,T∕2, or themth crossing of the x-z plane, where
m � n∕2 for an evenn orm � �n� 1�∕2 for an odd n. (x0, _y0) of the
near-planar 3D QSO should be tuned such that � _xT∕2; _zT∕2� � �0; 0�
atT∕2. Integration of the orbit is terminated at themth plane crossing.
In this way, T is naturally updated. Let Φ denote the STM, which
maps the initial state to the state at the given epoch, andϕij denote the

element in the ith row and the jth column of Φ. The first-order
relationship between the free variables and the boundary values at
mth crossing is expressed asFig. 1 Dimensionless synodic frame.
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�
δ _xT∕2
δ_zT∕2

�
�

2
6664
φ41 −

�xφ21

_y
φ45 −

�xφ25

_y

φ61 −
�zφ21

_y
φ65 −

�zφ25

_y

3
7775

T∕2

�
δx0
δ _y0

�
(6)

Based on this relationship, an iterative differential correction is
performed to reduce _xT∕2 and _zT∕2 to a defined small value. The

initial condition, as well as the period of the desired resonant 3D
QSO, is then obtained.

E. Continuation of a Resonance Family

Once the solution of the resonant QSO with small z amplitude Az

(i.e., � z0 × LU) has been computed as explained in the previous
section, the 3D family consisting of this orbit can be recovered using
the pseudo-arclength continuation method [25]. High-Az orbits are
expected to obtain in this way. z0 is added to the set of free variables.
Equation (6) is extended into

"
δ _xT∕2

δ_zT∕2

#
�

2
6664
φ41−

�xφ21

_y
φ43−

�xφ23

_y
φ45−

�xφ25

_y

φ61−
�zφ21

_y
φ63−

�zφ23

_y
φ65−

�zφ25

_y

3
7775

T∕2

2
664
δx0

δz0

δ _y0

3
775 (7)

Let B represent the matrix on the right-hand side of Eq. (7). As the
neighborhood solution should keep � _xT∕2; _zT∕2� � �0; 0�, the direc-
tion of the continuation curve is along the null space of B. Let �is
denote the unit vector of this direction. The jth element of is is
expressed as

�isj � �Bj∕

��������������X3
i�1

B2
i

vuut (8)

whereBj is the determinant of thematrix obtained fromB by deleting

the jth column times �−1�j. �is is obtained from the last iteration of

solution correction. Let u represent the solution vector �x0; z0; _y0�T, ~u
represent the initial guess of u, and superscript i indicate the ith
solution. Given a small size of the pseudo-arclength, S, ~ui is com-
puted from

~ui � ui−1 � �ii−1s ⋅ S (9)

The solution ui should be tuned around the guess ~ui. However, as z0
has been added to the set of free variables, Eq. (7) becomes under-
determined. To amend this, a constraint of the pseudo-arclength is
introduced. Equation (7) is modified into

2
664
δ _xT∕2

δ_zT∕2

δS

3
775�

2
6666664

φ41−
�xφ21

_y
φ43−

�xφ23

_y
φ45−

�xφ25

_y

φ61−
�zφ21

_y
φ63−

�zφ23

_y
φ65−

�zφ25

_y

�is1 �is2 �is3

3
7777775

T∕2

2
664
δx0

δz0

δ _y0

3
775 (10)

Based on this relationship, the differential corrector can find the next
solution, which is a pseudo-arclength of S away. For more details of
correction and continuation, see Ref. [26].

F. Linear Stability

As the monodromy matrix M is essentially a linear mapping, the
linear stability of an orbit is described by the maximum modulus of
eigenvalues of M, kλkmax. On the other hand, for situations with
kλkmax > 1, this quantity increases exponentially with the number of
revolutions. Given that different resonant families experience differ-
ent numbers of revolutions, the stability index should be normalized

for a fair comparison between families. The normalized stability
index ν used in this work is expressed as

ν �
��������������
kλkmax

n
p

(11)

If ν � 1, the periodic orbit is linearly stable. If ν > 1, the orbit is
unstable.

G. Full Dynamic Model

The full dynamicmodel is used to produce realistic trajectories and
verify results obtained in lower-fidelity models. The full dynamic
model used in this work takes into account the ephemerides of the
Sun, Mars, and Phobos; the gravity field of Mars up to degree and
order 10; and the gravity field of Phobos up to degree and order 4. The
ephemerides and orientation ofMars and Phobos bodies are obtained
through the Jet Propulsion Laboratory (JPL) SPICE routine. The
solar radiation pressure is not included in this work, because of its
insignificant effect and the lack of information on the spacecraft.

III. Families of 3D QSO and Their Linear Stability

2D QSOs are first computed for deriving resonant 3D QSOs.
The initial conditions and periods as a function of the x amplitude
(i.e.,Ax � �x0 − 1� μ� × LU) of 2DQSOs are shown in Fig. 2. The
period ranges from 4 to 7 h for 2D QSOs with Ax from 20 to 60 km.
Figure 3 shows the family of 2D QSOs in the Phobos-centered
rotating frame. The horizontal and verticaln∕k of the 2D-QSO family
are computed from Eq. (5), which are also shown in Fig. 3. Finding
3D QSOs is based on vertical n∕k. As the minimum vertical n∕k is
4.3, the multiplicity of a 3D QSO is at least 5.

A. Solution Map and Influence of Horizontal Bifurcations

Families of resonant 3D QSOs are computed using differential
correction and pseudo-arclength continuation (see Secs. II.D and
II.E). However, it is common that the process of continuation encoun-
ters a singularity where a pair of unity eigenvalues of themonodromy
matrix emerges. For the problem of interest, at the singularity point,

rank�B� < 2 and
������������������P

3
i�1 B

2
i

p
� 0 [see Eq. (8)]. In that case, if the

limit of Eq. (8) as
������������������P

3
i�1 B

2
i

p
approaches zero along the continuation

curve exists, there is still a solution for �is [26,27]. However, at that
point, �is usually exhibits a turn, giving rise to a secondary branch.
Observations of solution curves for the problem of interest show that
solutions of secondary branches do not extend to higher-Az regions as
desired.
Recalling the Lyapunov-halo bifurcation, the 3D halo orbit bifur-

cates from the planar Lyapunov orbit for a similar cause. However, in
that situation, because there are two solution directions in the spatial
and planar space, the continuation of planar Lyapunov solutions is not
interrupted by the bifurcation to the halo family. As for the problem of
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Fig. 2 Initial condition and periods of 2D QSO family.
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interest, there are three nontrivial elements in the solution, and thus

only one solution direction exists in the spatial space. Nevertheless, it

can be speculated that the solution curve of the primary branch recovers

on the other side of the singularity point. With this hypothesis, before

reaching the vicinity of the singularity point, �is is computed and a large

S is applied to obtain an initial guess [see Eq. (9)] along the presumed

extended primary branch on the other side of the singularity. Starting

from that initial guess, the differential corrector succeeded in reaching

the solution belonging to the primary branch on the other side.

The solution map of families of periodic 3D QSOs computed as

explained above is shown in Fig. 4. Note that, for conciseness, not all

resonance ratios are annotated. In addition, for simplicity _y0 is not

displayed in the figure, and therefore the intersection of solutions
projected on the Ax-Az map does not suggest the same orbit. The
figure shows that continuation of many primary branches is inter-
rupted by the turns into secondary branches in the low-Az region.
With the “singularity-skipping trick” described above, solutions with
high Az have been recovered.
Figure 5 shows examples of orbits with Ax � 30 km from primary

branches.The size of theorbit is represented in theAx × Ay × Az format,

where they-amplitudeAy is themaximumvalueon the�y axis.Figure6
shows orbits with Ax � 30 km from secondary branches. By compari-
son, orbits from primary branches are neater, and orbits from secondary
branches exhibit greater horizontal variations. The reason is that the
secondary branch is a result of the intersection of vertical and horizontal
bifurcations. That is also why secondary branches do not extend to the
high-Az region. These orbits with large horizontal variations are referred
to as the “swingQSO,” and identified as possible transfer orbits between
QSO in other works (e.g., Refs. [16,28]).

B. Linear-Stability Region

The linear-stability index of each 3DQSO is computed as given in
Sec. II.F. The linear stability of each orbit is indicated by the color
scale (see the digital version) in Fig. 4. The solution space around
states of periodic QSOs is filled by states of quasi-periodic QSO,
which are also bounded motions around Phobos. Through an explo-
ration of periodic families, the linear-stability region of bounded
orbits can be revealed. It can be seen in the figure that the highest
Az of stable orbits generally increases with Ax, except for two bulges
atAx � 28 km andAx � 41 km, whereAz of stable orbits extends to
54 and 75 km, respectively. The orbits chosen to display in Figs. 5 and
6 are from the linear-stability region.
The broad stability region revealed by the linear stability of many

periodic orbits seems to be favorable for mission operations. How-
ever, linear stability is only a necessary condition for orbital stability.
It does not sufficiently ensure a stability domain for operation. In
addition, the CR3BP is a simplified model not considering the effect
of the eccentricity of Phobos’ orbit and nonspherical gravity fields.
For guiding operations, effective stability levels of QSOs are char-
acterized in the following section.

IV. Sensitivity Analysis

The objective of this section is to evaluate the effective stability of
QSOs, in terms of the freedom of injection timing and robustness to
operational errors.Note that the effect ofmodeling errors of nonspheri-
cal gravity fields is not discussed in this paper. Current knowledge of
the gravity field ofMars is sufficiently accurate. The uncertainty of the
termsC20 andC22 of the gravity field of Phobos is 10% [29,30]. Errors
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Fig. 4 Solution and linear-stabilitymap of 3DQSO families found in the
CR3BP.
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of such an order are observed to hardly influence the QSO with Ax >
20 km concerned in this work. Regarding the altitude of interest, the
motion that comes close to Phobos is the most interesting in terms of
applications, while being at the same time tricky when it comes to risk
assessment. The following sensitivity analysis is focused on the QSO
of lowAx, namely, below 40 km. The block framed by the dashed lines
in Fig. 4 represents the QSOs of interest. Concerning the time interval,
critical operations such as maneuvers need to be executed with good
visibility conditions from the Earth. In addition, a sufficiently long
time (i.e., typically7 days) is neededby the orbit determination to reach
acceptable accuracy. For these reasons, orbit maintenance controls
cannot be implemented frequently. Therefore, a 7-day interval is used
to examine the behavior of perturbed QSOs in this section.

A. Residual Index

In what follows, the periodic orbit in the simplified model (i.e.,
CR3BP) is referred to as the nominal orbit. The orbit perturbed in the
same CR3BP or a different dynamic model is referred to as the truth
orbit. A residual index is defined to describe the deviation of the truth
orbit with respect to the nominal orbit. Observations based on
numerical simulations show that a divergent orbit generally deviates
quickly along the y direction in the rotating frame; and if the orbit
reaches a distance <15 km from the center of Phobos, it is about to
escape or impact on the target soon.
Regarding the first observation, y coordinates of the truth orbit and

the nominal orbit at y-z plane crossings are compared. The residual is
then normalized by the y coordinate of the nominal state for a fair
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Fig. 5 Stable 3D QSO found in primary branches at Ax � 30 km.
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comparison. The average of the residuals indicates the fluctuation
amplitude of the truth orbit with respect to the nominal orbit. Addi-
tionally, the final residual is also an important indicator. Regarding
the second observation, when the closest approach rmin < 15 km, the
residual is set to infinity to indicate a coming impact or escape. To
conclude, the residual index Res is expressed as

Res�

8><
>:
0.5

�P
N
i�1

���� �yi − yi
�yi

����
�
∕N� 0.5

���� �yN − yN
�yN

���� if rmin ≥ 15 km

∞ if rmin < 15 km

(12)

where �yi and yi are the y coordinates of the nominal and truth orbits at
the ith y-z plane crossing, respectively, and N is the minimum of the
numbers of plane crossings of the two orbits. Note that differences
between �yi and yi are obtained at corresponding crossings instead of
corresponding times. In this way, the in-track difference or phase
drift, which is less critical for operation, is neglected. The average and
final residual parts in the first equation are equally weighted by 0.5. It
is observed in many numerical simulations that orbits withRes < 0.2
are closely bounded around its nominal orbit; orbits with Res < 0.3
stay bounded around Phobos; and orbits with Res ≥ 0.3 are consid-
ered no longer bounded, which can diverge during the 7-day interval
or quickly afterward. The following sensitivity analyses adopt the
defined residual index.

B. Effect of Eccentricity and Nonspherical Gravity Fields

1. J2-Elliptic Model

Because of the eccentricity of Phobos’ orbit, the epoch of the initial
condition of the QSOwill influence the orbit behavior. Nevertheless,
the initial epoch t0 can be generalized by the initial true anomaly of
Phobos’ orbit, f0. To quickly examine orbit behaviors in various
situations without losing much accuracy, a model referred to as the
J2-Elliptic model and depending on f0 is developed. The J2-Elliptic
model is set up based on the work of Wiesel [17]. It is assumed in the
model that Phobos moves in the Mars J2-perturbed Keplerian orbit,
the equatorial planes of Mars and Phobos are aligned, and Phobos is
entirely tidally locked with its principal axis always pointing to
Mars’s center of mass. The coordinate system used in this work is
with the origin set at the center ofmass ofMars, theX axis fixed in the
inertial space and in the direction from Mars to Phobos at t0, the Z
axis normal to orbital plane of Phobos, and the Y axis completing the
right-handed coordinate system. The coordinate system of the J2-
Elliptic model is schematically depicted in Fig. 7. The position and
orientation of Phobos are computed based on the mean elements of
the J2-perturbed orbit, which are given in the Appendix.
The orbit of the spacecraft is integrated in this inertial frame. As the

orbit of Phobos is influencedbyMars’J2, the integrationof the trajectory

of spacecraft should also take into account this term. In addition, as the
nonspherical gravity field of Phobos barely influences its own orbit with
respect to Mars but can influence the motion of the spacecraft, it is also
included in this dynamicmodel.As the J2-Elliptic coordinate dependson
the initial phase of Phobos along its orbit, or f0, all initial configurations
can be easily covered by varying f0 from 0 to 360°.
Note that higher-degree terms ofMars’ gravity field, inclination of

Phobos’ orbit (1.08°) and the libration amplitude of Phobos (1.1°),
are neglected in the model. The perturbation induced from the small
libration on the QSO with Ax > 20 km is negligible. To justify the
neglect and examine the fidelity of the J2-Elliptic model, themodel is
compared with the full dynamic model (see Sec. II.G) by examining
profiles of propagated orbits and theRes (i.e., Eq. (12) with respect to
the nominal orbit. Res obtained in the J2-Elliptic model and the
full dynamic model are denoted by ResJE and ResFD, respectively.
Figure 8 shows four of the comparison cases and indicates the
corresponding ResJE and ResFD. It can be seen that the orbits in
the J2-Elliptic model closely follow that in the full dynamics in
various cases with small, medium, large, and escaping residuals.

2. Investigation in the J2-Elliptic Model

Initial conditions of periodic QSOs obtained in the CR3BP are
converted to the J2-Elliptic model for given f0 and propagated for
7 days. Note that no adjustment is applied to the converted initial
condition, as the objective of this analysis is to find which initial
conditions can always lead to bounded motions regardless of the
initial epoch. By varying f0 from 0 to 360°, Res are obtained as a
function of f0 for each orbit. In this work, the sampled f0 are evenly
spaced by 1°. The ratio of the f0 leading toRes < 0.3 for a 3DQSO is
regarded as the ratio of bounded motions. The left panel of Fig. 9
presents the ratio of bounded motions under varied f0 for each orbit
through the color scale.

C. Effect of Operational Errors

Operational errors include navigation and Δv execution errors.
To examine the orbital sensitivity to operational errors, the initial

Fig. 7 Schematic of the J2-Elliptic system.
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Fig. 8 Examples of comparing the J2-Elliptic model to the full dynamic model.
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condition of the periodic 3D QSO is perturbed by these errors,
and propagated in the CR3BP for 7 days. The assumed values for
the navigation and Δv execution uncertainties are summarized in
Table 1. The execution error depends on the magnitude of correction
Δv. A Δv root-sum-square (RSS) uncertainty of 2.4 cm∕s (i.e.,
1σ 1.4 cm∕s on each component) is used in the sensitivity analysis.
The preliminary result of orbit maintenance (i.e.,ΔvRSS uncertainty
is up to 1.6 cm∕s) presented in Sec. V.A shows that the assumed
quantity is reasonable and conservative. For each orbit, 1000 Monte
Carlo runs are performed with errors randomly generated according
to the given uncertainties. The ratio of caseswithRes < 0.3 (i.e., ratio
of bounded motions) for each orbit is obtained. The right panel of
Fig. 9 shows the ratio of bounded motions under random operational
errors.
By comparing the two plots in Fig. 9, it can be seen that the

eccentricity of Phobos’ orbit is more influential than the operational
error in perturbing the QSOs. An exception to this statement is the
secondary branch of the upper 7:9 family, where the operational error
is more influential.

D. Instability Caused by Unstable Resonance

The comparison of Fig. 9 and Fig. 4 exhibits an instability region
inside the linear-stability region expanding from Ax � 28 km on the
plane (labeled by the triangle marker) to higher Az and smaller Ax.
The planar instability region around Ax � 28 km is consistent with
results of Ikeda et al. [16] and Wiesel [17], who examined QSO
sensitivity to injection errors in the planar problem. Hénon [31],
Benest [10], and Lam and Whiffen [32] have noted that the stability
domain of a planar QSO is confined by the planar period-3 orbit (i.e.,
the planar resonant family that bifurcates at horizontal n∕k � 3). In
other words, at the intersection of QSO family with the period-3 orbit
family, the stability domain of the QSO decreases to zero, despite the
linear stability the QSO presents. Previous work [33] using Poincaré
maps to study stability domain of QSOs around Phobos reveals this
phenomenon. The horizontal n∕k shown in Fig. 3 indicates that the
intersection with period-3 orbit occurs at Ax � 15.5 km and Ax �
28.5 km. Whereas Fig. 4 implies that low-inclination QSOs are gen-
erally more stable than high-inclination QSOs, the sensitivity analysis
shows a contrasting phenomenon forQSOswithAx near 30 km,where
high-inclination QSO can be more stable. It is not recommended to
send the spacecraft to a planar QSO with Ax between 27 and 30 km in
early phases of the mission. For that Ax interval, 3D QSO with certain
inclinations can serve as more robust replacements.

E. Effective Stability Levels

Results of the sensitivity analyses in previous subsections can be
exploited for mission design purposes. For instance, the orbit with
Res < 0.2 stays bounded around its nominal orbit and thus can be
easily maintained by a correction maneuver. While the orbit with
0.2 < Res < 0.3 is bounded around the target, it may not be easily
pulled back to its nominal orbit by a single impulse after 7 days. To
serve the goal of selecting QSO for both long-term and temporary
orbiting, effective stability levels are defined according to Res

obtained from the sensitivity analyses. Let pρ
1 represent the ratio of

cases satisfying Res < ρ under varied f0, and pρ
2 the ratio of cases

satisfying Res < ρ under random operational errors. The product

Pρ � pρ
1 × pρ

2 suggests the theoretical probability that Res of the

truth orbit in the realistic dynamic environment is smaller than ρ. A
classification based on this statistical implications is suggested as
follows:
1) Hyperstable level: P0.2 > 99%. It suggests that the truth orbit

can be maintained by controlΔv at intervals of 7 days with <1% risk

of failure. Hence, the orbit is a candidate for long-term orbiting that
can be implemented by most missions.
2) Superstable level:P0.3 > 99%. It suggests that temporary orbit-

ing can be performed with <1% risk of collision or escape, which is
acceptable for most missions.
3) Stable level: 90% < P0.3 ≤ 99%. It suggests that the failure rate

of temporary-orbiting operations is between 1 and 10%, which is
acceptable for low-cost missions, such as nanospacecraft missions.
4) Weakly stable level: 75% < P0.3 ≤ 90%. It suggests that the

failure rate of temporary-orbiting operations is between 10 and 25%.
Orbits of this level may be adopted by missions recovered from
severe problems and not possessing much flexibility.
5) Unstable level: the rest of the QSO solutions. These orbits have a

probability of successful orbiting around Phobos < 75%. It is recom-
mended to avoid these orbits, unless, for instance, supplementary naviga-
tionoperationmethodsare established to enable sophisticatedorbit control.
The classification ofQSOs according to the defined effective stability
levels is depicted by the color scales in Fig. 10.

V. Explorations in the Full Dynamic Model

Toverify the effective stability levels concluded in themid- and low-
fidelity models and to demonstrate the practical application, investi-
gations in the full dynamic model (see Sec. II.G) are conducted in this
section. In particular, orbit maintenance trials are demonstrated, and
massive Monte Carlo runs for a long time span (i.e., 21 days) are
performed to examine the relation of those results with the long-term
stability of QSOs. In view of the results of this section, one can
determine up to which extent the effective stability levels reflect the
orbit behaviors in reality.

A. Orbit Maintenance

It can be inferred from the sensitivity analysis that orbit mainte-
nance of a low-altitude QSO is challenging. As the stability region is
confined by the period-3 family, a small perturbation can hence shift
the orbit into the instability region.Moreover, the orbit determination
campaign takes approximately 7 days to reach the baseline accuracy
listed in Table 1.Nevertheless, sensitivity analyses have also revealed
hyperstable orbits that can naturally stay around the nominal orbit
for at least 1 week. These orbits are considered maintainable with
sparsely placed Δv and are used in this analysis.
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Fig. 10 Effective stability levels (color scales) and results (markers) of
21-day dispersion simulations.

Table 1 Assumed 3-σ navigation and Δv execution errors
(centered at 0)

Navigation position, m
Navigation
velocity, m∕s Δv norm, % Δv direction, deg

150 0.09 5 0.1
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Table 2 gives information of three examined hyperstable
orbits: 22 km × 31 km (2D QSO), 29 km × 53 km × 21 km, and
29.7 km × 53 km × 17.6 km (both 3D QSO belonging to the 6:7
family). The initial condition of a nominal orbit is used to generate
baseline orbits in the full dynamicmodel. The correctionΔv is placed
at a point after 7 days when the propagated state is close to the
nominal initial condition converted in the full dynamic model at
the corresponding epoch. Each Δv is applied in order to make the
following leg be as close as possible to the corresponding baseline
leg. To be specific, a three-component Δv is resolved to minimize
differences between the corrected leg and the baseline leg at a series
of epochs, in a least-square sense. To compute Δv quickly and
robustly, the STM is integrated along with the orbit. The gradient
of differences with respect toΔv can be derived from the STM.Δv is
adjusted using the gradient-based differential correctionmethod. The
simulated orbit maintenance operation for this study starts at 2026-
02-01 16:00 UTC and continues for 30 legs (i.e., longer than
7 months). Note that both navigation errors and Δv execution errors
(see Table 1) are considered in the simulation.
Table 2 lists results of three orbitmaintenance trials for the selected

nominal QSOs. The Δv cost is around 40 cm∕s per week for the
maintenance of the planar orbit, and around 1 m∕s per 9 days for that
of the 3D orbits, which is considered acceptable for many missions.
Figure 11 shows the maintained orbit legs for the 29 km × 53 km ×
21 km QSO. The robustness of the orbit maintenance confirms the
effective stability of the candidate orbits under realistic dynamics. In
a realistic mission scenario, the spacecraft can always park on these
candidate orbits before and after a certain proximity operation.
For the maintenance trial of 29 km × 53 km × 21 km QSO, the

maximum inclination of maintained legs ranges from 38 to 45°.
Figure 12 presents the ground track of one leg. As is shown, the
maximum inclination is 40°, and the ground track intensively covers
the interesting Stickney crater (i.e., latitude between −20 and −22°
and longitude between −70 and −28°) [34]. The distance to the
surface of Phobos ranges from 19 to 47 km. These characteristics,
along with an affordable long-term maintenance cost, can greatly
benefit the science return of the mission.

B. Long-Term Stability

Sensitivity analyses in Sec. IV are performed in simplified and
midfidelity models with propagation intervals limited to 7 days. It is
interesting to verify long-term behaviors of QSOs in full dynamics

and confirm up to which extent they correspond to the effective
stability levels implied by the sensitivity analyses.

1. Monte Carlo Simulations

For this purpose, Monte Carlo simulations are performed in
full dynamicswith a time span of 21 days, which is a tradeoff between
the observation of the long-term trends and computational time.
Furthermore, different from what has been presented previously
in this paper, a least-squares fitting of the truth trajectory (i.e., in
the full dynamics) to the nominal orbit (i.e., computed in CR3BP)
over a time span of 2 days, has been applied to the initial conditions.
Finally, note that the sensitivity analysis of the initial phase of Phobos
f0 has revealed bad case values (i.e., the f0 resulting in maximum
Res) for some orbits. The corresponding worst-case dates have been
chosen for the Monte Carlo simulations in order to analyze the most
conservative scenario.
Batches of 50 × 103 random draws of the navigation errors in

Table 1 have been used to perturb the adjusted initial states of selected
3D QSOs. During the 21-day interval, if the dispersed trajectory
reaches a radius of 15 km with respect to the center of mass of
Phobos, it is considered to be a colliding trajectory and not integrated
further. In the same way, when the distance of propagated state from
Phobos exceeds 500 km, the trajectory is considered as an escape
trajectory. At the end of each simulation, statistics of boundedmotion
(i.e., excluding the collision and escape cases) corresponding to a
given initial condition are obtained.

2. Results

For the sake of briefness, only representative results of the Monte
Carlo simulations have been chosen and listed in Table 3. Columns
2–4 show the information of the nominal periodic QSO. Columns
5–7 present results from the sensitivity analyses in Sec. IV as a
reference. Here, the stability levels from hyperstable to unstable levels
are indexed from 1 to 5 (see Sec. IV.E for the correspondence). The f0
column indicates the bad f0 where the simulations start. The results

Fig. 11 The maintained 29 km × 53 km × 21 km QSO from 2026-02-01 12:00 to 2026-10-10 14:19 UTC.

Fig. 12 The ground track of a maintained leg for the 29 km × 53 km ×
21 km QSO.

Table 2 Parameters of nominal 3D QSOs and results
of station keeping

Item Trial 1 Trial 2 Trial 3

Nominal amplitude, km 22 × 31 29 × 53 × 21 29.7 × 53 × 17.6

Average control interval, day 7.2 8.4 8.6

Average control Δv, cm∕s 37.5 93.7 93.4

ΔvRSS uncertainty, cm∕s 0.6 1.5 1.6
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show that the agreement between the guess provided by the effective
levels and the actual percentage of bounded cases in full dynamics for a
long time span is remarkable, especially for the so-called hyperstable
(or level 1) trajectories. For a graphical representation of the compari-
son, markers for the particular initial conditions examined via Monte
Carlo simulations are added to Fig. 10. The dark blue markers indicate
that>99% of the perturbed trajectories survived the 21-day integration
(i.e., without reaching the escape or the collision condition) in the full
dynamics. The cyan markers indicate >90%, the orange between 75
and90%, and the red<75%. It can be seen that all the hyperstable initial
conditions lead to 90%bounded cases (labeled by blue or cyanmarks),
and most of them lead to 99% or higher, except for the one near the
turning point of the lower 4:5 branch (i.e., sample No. 7 listed in
Table 3). Although being classified as hyperstable, this state lies on the
boundary between the stability and instability regions. States like this
are more likely to become divergent after a long period than thosewell
inside the stability region. Another visible disagreement between the
effective stability and realistic behavior appears on the lower segment
of the lower 6:7 branch. The sensitivity result in Sec. IV.B indicates an
instability in this segment due to the eccentricity of Phobos’ orbit.
However, simulations in the present section suggest that the adjustment
of the initial condition can, up to some extent, cope with the perturba-
tion due to the eccentricity.
A variety of long-term stable motions in the solution space of 3D

QSOs are revealed, which are believed to represent a step forward
toward the use of these trajectories for Phobos observation. Some
promising QSO trajectories with Ax around 30 km and reaching high
inclinations are as follows: the lower branch of the 6:7, 13:15, and
27:31 families, with Az up to 18 km; the upper branch of the 5:6
family with Az from 12 to 20 km; and the upper branch of the 6:7
family with Az from 16 to 21 km.

VI. Conclusions

This paper has analyzed the stability ofQSOs aroundPhobos in the
spatial problem, with the objective of providing a guideline for the
trajectory and operation design of Phobos missions. Families of

resonant 3DQSOs have been computed in theCR3BP. To be specific,
continuation and singularity skipping techniques have led to recov-
eries of high-inclination QSO families. The obtained families of
periodic orbits allow for a comprehensive assessment of the stability
region. The linear stability concluded in the CR3BP, however, cannot
sufficiently indicate a stability domain for operations. Therefore,
orbital sensitivity to the initial epoch and operational errors has been
analyzed. In particular, the orbital robustness to the initial epoch is
revealed via an examination in the J2-Elliptic model, which is a close
approximation to the full dynamic model. Effective stability levels
(i.e., hyperstable, superstable, stable, weakly stable, and unstable)
have been defined according to results of these analyses, revealing the
practical stability region, which is confined by the intersection with
the period-3 family. As one result of this, at the x amplitude around
28 km, 3DQSOswith certain inclinations enjoy greater stability than
low-inclination and planar QSOs. For operations performed near this
x amplitude, employing 3D QSO means not only to enhance global
mapping, but also to secure operations.
Moreover, orbit maintenance trials in realistic dynamics employ-

ing low-altitude 2D and 3D QSO orbits inside the hyperstability
region as the baseline orbits have been proven successful. The control
frequency and Δv cost (around 1 m∕s per 9 days) are considered
acceptable for real operations. In addition, long-term stability of
hyperstable orbits has also been verified in realistic dynamics by
means of massive Monte Carlo simulations. These results have
confirmed the practical applicability of the effective stability levels
revealed in this work.

Appendix: Elements of the J2-Elliptic Model

Themean semimajor axis �a andmeanmotion �n of the J2-perturbed
orbit of Phobos are computed from (for details, see [35])

�a � a

0
@1 −

3 �R2
marJ2

�������������
1 − e2

p

2p2

1
A (A1)

Table 3 Sample of the results of the 21-day dispersion analyses

No. Amplitude, km Resonance ratio Period, days % Res < 0.2 for all f0

% Res < 0.2 under
operational errors Stability level f0, deg % Bounded motion

1 21.8 × 30.7 × 0.1 7:9 1.66 100 100 1 0 100

2 24.7 × 36.8 × 0.1 4:5 1.03 100 100 1 0 99.1

3 32.7 × 55.7 × 6 27:31 7.91 100 100 1 206 100

4 30.6 × 51 × 9.4 6:7 1.74 100 100 1 315 100

5 30.1 × 51 × 12.9 6:7 1.74 100 100 1 0 100

6 26.9 × 46.5 × 15.3 5:6 1.42 100 100 1 189 99.9

7 23.5 × 42.5 × 16.6 4:5 1.09 100 100 1 218 79.8

8 29.7 × 53 × 17.6 6:7 1.76 100 100 1 206 100

9 31 × 56.8 × 18.5 27:31 8.00 100 100 1 0 100

10 26 × 46.5 × 19.3 5:6 1.43 100 100 1 189 99.7

11 25.9 × 46.5 × 20.3 5:6 1.44 100 100 1 74 94.5

12 29 × 53 × 21 6:7 1.76 100 100 1 86 99.9

13 32.9 × 56 × 26.8 13:15 3.89 100 100 1 258 99.4

14 29.4 × 56.1 × 25.1 2:15 3.88 100 100 2 149 91.7

15 21.6 × 32.7 × 7.5 7:9 1.72 100 97.4 3 0 100

16 30.7 × 57.7 × 23 27:31 8.05 93.6 100 3 0 36.5

17 30.3 × 57.4 × 24.6 27:31 8.06 93.6 100 3 160 77.2

18 26.5 × 41.7 × 5 9:11 2.44 90.0 91.8 4 46 99.0

19 25.7 × 41.3 × 15.8 9:11 2.51 87.5 100 4 63 91.3

20 25.7 × 41.3 × 15.8 9:11 2.51 87.5 100 4 195 84.5

21 23.5 × 40.5 × 14.7 4:5 1.08 83.6 100 4 241 26.5

22 25.6 × 46.5 × 21.3 5:6 1.44 79.2 99.7 4 74 83.7

23 24.2 × 38 × 9 4:5 1.06 70.1 84.5 5 178 94.3

24 31.6 × 61 × 22 27:31 8.03 72.8 98.9 5 269 22.5

25 28 × 53.4 × 25.2 6:7 1.78 62.5 100 5 229 52.1
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�n � n

0
@1� 3 �R2

marJ2
�������������
1 − e2

p

2p2

1
A (A2)

The osculating semimajor axis a � 9378 km, eccentricity

e � 0.0151, and Mars reference radius �Rmar � 3396 km and J2 �
0.00195661 are used in this work. �a � 9374.4 km is resolved. The
mean anomaly,M, true anomaly, f, and the orbital radius of Phobos,
Rmp, are computed from

M0 � True2Mean�f0; e�; M � �nt�M0 (A3)

f � Mean2True�M; e�; Rmp �
�a�1 − e2�
1� e cos f

(A4)

where True2Mean() and Mean2True() represent the numerical rou-
tines to solve for the mean and true anomalies, respectively. The drift
rate of periapsis due to Mars J2 is computed from

_ω � 3n �R2
marJ2

2p2
(A5)

Let

u � _ωt� f − f0 (A6)

For computing Phobos’ gravitational force acting on the spacecraft,
the rotation matrix from the inertial frame to Phobos body-fixed
frame is expressed as

Rotine−pho �
2
4− cos�u� − sin�u� 0

sin�u� − cos�u� 0

0 0 1

3
5 (A7)

Phobos position with respect to Mars is expressed as Rmp �
�Rmp cos�u�; Rmp sin�u�; 0�T.

Acknowledgments

This research was supported by Centre National d’Etudes Spatiales
(CNES) Research Action (Reference No.: R-S18/BS-0005-039).
The authors would like to acknowledge the members of the Martian
Moons eXploration project teams at CNES and Japan Aerospace
Exploration Agency (JAXA). In particular, many thanks to Laurence
Lorda, Hitoshi Ikeda, and Nicola Baresi for their inputs. The first
author wishes to thank Yasuhiro Kawakatsu (JAXA) for his recom-
mendation for the author to participate in this project. She alsowants to
thank Philippe Robutel, Florent Deleflie (IMCCE), and Siegfried Eggl
(JPL) for the useful discussion.

References

[1] Hunten, D. M., “Capture of Phobos and Deimos by Photoatmospheric
Drag,” Icarus, Vol. 37, No. 1, 1979, pp. 113–123.
https://doi.org/10.1016/0019-1035(79)90119-2

[2] Rosenblatt, P., Charnoz, S., Dunseath, K. M., Terao-Dunseath, M.,
Trinh, A., Hyodo, R., Genda, H., and Toupin, S., “Accretion of Phobos
and Deimos in an Extended Debris Disc Stirred by Transient Moons,”
Nature Geoscience, Vol. 9, No. 8, 2016, pp. 581–583.
https://doi.org/10.1038/ngeo2742

[3] Fujimoto, M., “MMX (Phobos/Deimos Sample Return),” 16th Meeting

of the NASA Small Bodies Assessment Group, NASA Small Bodies
Assessment Group, 2017.

[4] Sagdeev, R. Z., and Zakharov, A. V., “Brief History of the Phobos
Mission,” Nature, Vol. 341, No. 6243, 1989, pp. 581–585.
https://doi.org/10.1038/341581a0

[5] Marov, M., Avduevsky, V., Akim, E., Eneev, T., Kremnev, R., Kulikov,
S., Pichkhadze, K., Popov, G., and Rogovsky, G., “Phobos-Grunt:
Russian Sample ReturnMission,”Advances in Space Research, Vol. 33,
No. 12, 2004, pp. 2276–2280.
https://doi.org/10.1016/S0273-1177(03)00515-5

[6] Cacciatore, F., and Martín, J., “Mission Analysis and Trajectory GNC
for Phobos Proximity Phase of Phootprint Mission,” Advances in the

Astronautical Sciences, Vol. 153, 2015, pp. 1321–1340.
[7] Kawakatsu, Y., “Mission Design of Martian Moons Exploration

(MMX),” 69th International Astronautical Congress, International

Astronautical Federation Paper 47632, 2018.
[8] Kogan, Y., “Distant Satellite Orbits in the Restricted Circular Three-

Body Problem,” Cosmic Research (Translation of Kosmicheskie Issle-

dovaniya), Vol. 26, June 1989, pp. 705–710.
[9] Hénon,M., “Numerical Exploration of the Restricted Problem. V. Hill’s

Case: Periodic Orbits and Their Stability,”Astronomy and Astrophysics,
Vol. 1, Feb. 1969, pp. 223–238.

[10] Benest, D., “Effects of the Mass Ratio on the Existence of Retrograde
Satellites in the PCR3BP,” Astronomy and Astrophysics, Vol. 45, No. 2,
Dec. 1975, pp. 353–363.

https://doi.org/10.1017/CBO9781107415324.004
[11] Sidorenko, V. V., Neishtadt, A. I., Artemyev, A. V., and Zelenyi, L. M.,

“Quasi-Satellite Orbits in the General Context of Dynamics in the 1:1
MeanMotionResonance: PerturbativeTreatment,”CelestialMechanics

and Dynamical Astronomy, Vol. 120, No. 2, 2014, p. 131–162.
https://doi.org/10.1007/s10569-014-9565-4

[12] Canalias, E., Lorda, L., and Laurent-Varin, J., “Design of Realistic
Trajectories for the Exploration of Phobos,” 2018 Space FlightMechan-

ics Meeting, AIAA Paper 2018-0716, 2018.
https://doi.org/10.2514/6.2018-0716

[13] Laurent-Varin, J., “Preliminary Gravity Study for MMX Mission,”
CNES TR DYNVOL-NT-ORB/MOD-0738-CNES, Toulouse, France,
Nov. 2017.

[14] Chen, H., Rambaux, N., Lainey, V., and Hestroffer, D., “Mothercraft-
CubeSat Radio Measurement for Phobos Survey,” 5th IAA Conference

on University Satellites Missions and CubeSat Workshop, GAUSS and
International Academy of Astronautics Paper IAA-AAS-CU-20-05-09,

2020.
[15] Campagnola, S., Hernando-Ayuso, J., Kakihara, K., Kawabata, Y.,

Chikazawa, T., Funase, R., Ozaki, N., Baresi, N., Hashimoto, T.,
Kawakatsu,Y., Ikenaga, T.,Oguri, K., andOshima,K., “MissionAnalysis

for the EM-1 CubeSats EQUULEUS and OMOTENASHI,” IEEE Aero-

space and Electronic SystemsMagazine, Vol. 34, No. 4, 2019, pp. 38–44.

https://doi.org/10.1109/MAES.2019.2916291
[16] Ikeda, H., Mitani, S., Mimasu, Y., Ono, G., Nigo, K., and Kwakatsu, Y.,

“Orbital Operations Strategy in the Vicinity of Phobos,” International
Symposium on Space Flight Dynamics, 2017.

[17] Wiesel, W. E., “Stable Orbits About the Martian Moons,” Journal of

Guidance, Control, and Dynamics, Vol. 16, No. 3, 1993, pp. 434–440.
https://doi.org/10.2514/3.21028

[18] Hénon, M., “Vertical Stability of Periodic Orbits in the Restricted
Problem: II. Hill’s Case,” Celestial Mechanics, Vol. 8, No. 2, 1973,

pp. 269–272.
https://doi.org/10.1007/BF01231427

[19] Robin, I. A., and Markellos, V. V., “Numerical Determination of Three-
Dimensional Periodic Orbits Generated from Vertical Self-Resonant Sat-
ellite Orbits,” Celestial Mechanics, Vol. 21, No. 4, 1980, pp. 395–434.
https://doi.org/10.1007/BF01231276

[20] Markellos, V. V., “Bifurcation of Planar to Three-Dimensional Periodic
Orbits in the General Three-Body Problem,” Celestial Mechanics,
Vol. 25, No. 1, 1981, pp. 3–31.

https://doi.org/10.1007/BF01301803
[21] Lara, M., Russell, R. P., and Villac, B. F., “Classification of the Distant

Stability Regions at Europa,” Journal of Guidance, Control, and

Dynamics, Vol. 30, No. 2, 2007, pp. 409–418.

https://doi.org/10.2514/1.22372
[22] Connor Howell, K., “Three-Dimensional, Periodic, ‘Halo’ Orbits,”

Celestial Mechanics, Vol. 32, No. 1, 1984, pp. 53–71.

https://doi.org/10.1007/BF01358403
[23] Koon, W. S., Lo, M. W., Marsden, J. E., and Ross, S. D., Dynamical

Systems, the Three-Body Problem and Space Mission Design, Marsden
Books, 2011, pp. 174–175.

[24] Russell, R. P., “Global Search for Planar and Three-Dimensional Peri-
odic Orbits near Europa,” Advances in the Astronautical Sciences,
Vol. 54, No. 2, 2006, pp. 199–226.
https://doi.org/10.1007/BF03256483

[25] Doedel, E. J., Paffenroth, R. C., Keller, H. B., Dichmann, D. J., Galán-
Vioque, J., and Vanderbauwhede, A., “Computation of Periodic
Solutions of Conservative Systems with Application to the 3-Body

Problem,” International Journal of Bifurcation and Chaos, Vol. 13,
No. 6, 2003, pp. 1353–1381.

https://doi.org/10.1142/S0218127403007291
[26] Chen, H., Canalias, E., Hestroffer, D., and Hou, X., “Stability Analysis

of Three-Dimensional Quasi-Satellite Orbits Around Phobos,” 69th

CHEN ETAL. 11

https://doi.org/10.1016/0019-1035(79)90119-2
https://doi.org/10.1016/0019-1035(79)90119-2
https://doi.org/10.1016/0019-1035(79)90119-2
https://doi.org/10.1038/ngeo2742
https://doi.org/10.1038/ngeo2742
https://doi.org/10.1038/ngeo2742
https://doi.org/10.1038/341581a0
https://doi.org/10.1038/341581a0
https://doi.org/10.1038/341581a0
https://doi.org/10.1016/S0273-1177(03)00515-5
https://doi.org/10.1016/S0273-1177(03)00515-5
https://doi.org/10.1016/S0273-1177(03)00515-5
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1007/s10569-014-9565-4
https://doi.org/10.1007/s10569-014-9565-4
https://doi.org/10.1007/s10569-014-9565-4
https://doi.org/10.2514/6.2018-0716
https://doi.org/10.2514/6.2018-0716
https://doi.org/10.2514/6.2018-0716
https://doi.org/10.2514/6.2018-0716
https://doi.org/10.1109/MAES.2019.2916291
https://doi.org/10.1109/MAES.2019.2916291
https://doi.org/10.1109/MAES.2019.2916291
https://doi.org/10.1109/MAES.2019.2916291
https://doi.org/10.1109/MAES.2019.2916291
https://doi.org/10.2514/3.21028
https://doi.org/10.2514/3.21028
https://doi.org/10.2514/3.21028
https://doi.org/10.2514/3.21028
https://doi.org/10.1007/BF01231427
https://doi.org/10.1007/BF01231427
https://doi.org/10.1007/BF01231427
https://doi.org/10.1007/BF01231276
https://doi.org/10.1007/BF01231276
https://doi.org/10.1007/BF01231276
https://doi.org/10.1007/BF01301803
https://doi.org/10.1007/BF01301803
https://doi.org/10.1007/BF01301803
https://doi.org/10.2514/1.22372
https://doi.org/10.2514/1.22372
https://doi.org/10.2514/1.22372
https://doi.org/10.2514/1.22372
https://doi.org/10.1007/BF01358403
https://doi.org/10.1007/BF01358403
https://doi.org/10.1007/BF01358403
https://doi.org/10.1007/BF03256483
https://doi.org/10.1007/BF03256483
https://doi.org/10.1007/BF03256483
https://doi.org/10.1142/S0218127403007291
https://doi.org/10.1142/S0218127403007291
https://doi.org/10.1142/S0218127403007291


International Astronautical Congress, International Astronautical Fed-
eration Paper 46646, 2018.

[27] Simo,C., “On theAnalytical andNumericalApproximation of Invariant
Manifolds,” Modern Methods in Celestial Mechanics, edited by D.
Benest, and C. Froeschle, Editions Frontieres, Gif-sur-Yvette, France,
1990, pp. 285–329.

[28] Pushparaj, N., Baresi, N., Ichinomiya, K., and Kawakatsu, Y., “Multi-
Revolutional Periodic Orbit Transfers in the Ellipsoidal Gravity Field of
Phobos,” International Symposiumon Space Technology and Science, Japan
Soc. for Aeronautical and Space Sciences Paper 2019-d-022, 2019.

[29] LeMaistre, S., Rosenblatt, P.,Rambaux,N.,Castillo-Rogez, J.C.,Dehant,
V., and Marty, J. C., “Phobos Interior from Librations Determination
Using Doppler and Star Tracker Measurements,” Planetary and Space

Science, Vol. 85, Sept. 2013, pp. 106–122.
https://doi.org/10.1016/j.pss.2013.06.015

[30] Rambaux, N., Castillo-Rogez, J. C., Le Maistre, S., and Rosenblatt, P.,
“Rotational Motion of Phobos,” Astronomy and Astrophysics, Vol. 548,
Dec. 2012, p. A14.
https://doi.org/10.1051/0004-6361/201219710

[31] Hénon, M., “Numerical Exploration of the Restricted Problem. VI.
Hill’s Case: Non-Periodic Orbits,” Astronomy and Astrophysics, Vol. 9,

Nov. 1970, pp. 24–36.

https://doi.org/10.1017/CBO9781107415324.004
[32] Lam, T., and Whiffen, G. J., “Exploration of Distant Retrograde Orbits

Around Europa,” AAS/AIAA Space Flight Mechanics Meeting, Ameri-

can Astronautical Soc. Paper 05-110, 2005.
[33] Chen, H., Canalias, E., Hestroffer, D., and Hou, X., “Sensitivity Analy-

sis and Stationkeeping of Three-Dimensional Quasi-Satellite Orbits

around Phobos,” 32nd International Symposium on Space Technology

and Science, Japan Soc. for Aeronautical and Space Sciences Paper

2019-d-063, 2019.
[34] Asphaug, E., and Melosh, H., “The Stickney Impact of Phobos: A

Dynamical Model,” Icarus, Vol. 101, No. 1, 1993, pp. 144–164.

https://doi.org/10.1006/icar.1993.1012
[35] Kozai, Y., “The Motion of a Close Earth Satellite,” Astronomical

Journal, Vol. 64, Nov. 1959, pp. 367–377.

https://doi.org/10.1086/107957

12 CHEN ETAL.

https://doi.org/10.1016/j.pss.2013.06.015
https://doi.org/10.1016/j.pss.2013.06.015
https://doi.org/10.1016/j.pss.2013.06.015
https://doi.org/10.1016/j.pss.2013.06.015
https://doi.org/10.1016/j.pss.2013.06.015
https://doi.org/10.1016/j.pss.2013.06.015
https://doi.org/10.1016/j.pss.2013.06.015
https://doi.org/10.1051/0004-6361/201219710
https://doi.org/10.1051/0004-6361/201219710
https://doi.org/10.1051/0004-6361/201219710
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1006/icar.1993.1012
https://doi.org/10.1006/icar.1993.1012
https://doi.org/10.1006/icar.1993.1012
https://doi.org/10.1006/icar.1993.1012
https://doi.org/10.1006/icar.1993.1012
https://doi.org/10.1086/107957
https://doi.org/10.1086/107957
https://doi.org/10.1086/107957

