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A NEW METHOD FOR MEASURING
THE SPLITTING OF INVARIANT MANIFOLDS

DAVID SAUZIN

ABSTRACT. We study the so-called Generalized Arnold Model (a weakly
hyperbolic near-integrable Hamiltonian system), with d + 1 degrees of
freedom (d > 2), in the case where the perturbative term does not affect
a fixed invariant d-dimensional torus. This torus is thus independent of
the two perturbation parameters which are denoted € (¢ > 0) and p.

We describe its stable and unstable manifolds by solutions of the
Hamilton-Jacobi equation for which we obtain a large enough domain
of analyticity. The splitting of the manifolds is measured by the partial
derivatives of the difference AS of the solutions, for which we obtain
upper bounds which are exponentially small with respect to €.

A crucial tool of the method is a characteristic vector field, which is
defined on a part of the configuration space, which acts by zero on the
function AS and which has constant coefficients in well-chosen coordi-
nates.

It is in the case where |u| is bounded by some positive power of €
that the most precise results are obtained. In a particular case with
three degrees of freedom, the method leads also to lower bounds for the

splitting.
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SPLITTING OF INVARIANT MANIFOLDS 3
1. PRESENTATION OF THE PROBLEM

1.1. Introduction. The present paper is devoted to the exposition of a
new method for studying the phenomenon of “exponentially small split-
ting”. It is strongly related to a joint work with J. Cresson, P. Lochak
and J.-P. Marco [CLMS] and benefited from discussions with A. Delshams.
Some of the results obtained here were announced at the international work-
shop Ezponentially small splitting, diffusion and celestial mechanics (Aus-
sois, June 1998).

We are interested in the stable and unstable manifolds of a partially hyper-
bolic invariant torus (a “whiskered torus”) of a near-integrable Hamiltonian
system. We restrict our attention to systems for which the invariant torus
is given right from the beginning: it is not affected by changes of the per-
turbation parameters, thus we can refrain from resorting to KAM theory to
find an invariant torus; in our opinion this helps to isolate the mechanism
which produces exponential smallness.

We shall illustrate the method on the case of the following Hamiltonian

function:

1 1
H. . (q,0,0, 1) =w.d + gaIZ + 5192 +e(cosqg—1) + peF(q, )  (1.1)

with d + 1 degrees of freedom (d > 2), the conjugate variables being:
(p,I) e R xR and (q,¢) € T x T¢, with T = R/2xZ,

and the various parameters being: a vector w € R%, a real diagonal ma-
trix @ = diag(az,... ,aq) (the notation a? means ZajIJz), two small real
parameters € > 0 and p, and a function F real-analytic on T x T¢.

Let d(pdq + Idy) be the usual symplectic two-form. The corresponding
Hamiltonian system is integrable for y = 0, since it decouples then as the
product of a simple pendulum and d independent rotators. We shall refer
to that situation as to the “unperturbed” one.

Let us use the notation
Tp,={¢e€C/2nZ; |Sm¢|<h} for h>0.
We shall require two assumptions on F':
(A1) for all p € T¢, F(0,¢) =0 and 9,F(0,¢) = 0;

(A2) there exists hy > 0 such that F' extends analytically to (C/27Z) x ']I‘;im.
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The first hypothesis amounts to saying that F vanishes at order 2 on

{q¢=0}. As a result, the d-dimensional torus
T ={(0,¢,0,0), ¢ €T
is invariant by the Hamiltonian vector field

g=p $j = wj+a;l; (1.2)
P = esing — pedyF Ij = —pedy, F '
independently of the parameters € and p. The restriction of its flow to 7T is
quasiperiodic with w as frequency-vector. We shall see that 7 is partially
hyperbolic:! it admits (d + 1)-dimensional stable and unstable manifolds,
denoted by W, and W_, .
which are positively asymptotic to 7, and the second one the union of all

the first one being the union of all the orbits

the orbits which are negatively asymptotic to 7. These manifolds depend
analytically on p and coincide for 4 = 0. In general there is no reason
why they should coincide for nonzero p, but it turns out that they are
exponentially close one to the other with respect to € as € tends to zero.
This is the exponentially small phenomenon that we want to study. In the
sequel we shall omit the indices €, when referring to the manifolds W+
and W~. Their intersection consists of orbits, which are called homoclinic
(or biasymptotic) orbits; we shall see that this intersection is not empty.

In the particular case of an even perturbation, i.e. when

V(g,p) €T x T, F(—g,~¢) = F(q,),

one checks easily that the symmetry (q,¢,p,I) — (27 — ¢, —¢,p,I) sends
any orbit onto an orbit and reverses the time-parametrisation on it, thus
this symmetry exchanges W+ and W~. In that situation, one obtains a
homoclinic orbit by considering the intersection of W* with the (d + 1)-
plane {g=m, ¢ =0}.

Note also that the assumptions (A1) and (A2) are met if for instance F
is of the form

F(q, ) = (1 — cosq)m(p)

where the function m is analytic on T;im.

!The reader is referred to [Br89), [Gr74] and [Tre94] for results on partially hyperbolic

tori.
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1.2. Historical remarks. The Hamiltonian function (1.1) was introduced
in [Loc90] (see also [Loc92]) in connection with the problem of Arnold diffu-
sion (the associated Hamiltonian system is sometimes referred to as the “gen-
eralized Arnold model”). It was designed to embody the main features of
a near-integrable Hamiltonian in the vicinity of a simple resonance; indeed,
if w is non-resonant, the integrable Hamiltonian which is obtained when &
vanishes displays a simple resonance at (p,I) = (0,0). In fact, only the
case where the perturbation has the special form F'(g, p) = (1 — cos q)m(y)
was considered in [Loc90], but the emphasis was already put on the impor-
tance of including arbitrarily high harmonics in the perturbation and the
Poincaré-Melnikov approximation of the splitting was discussed (see below).

In [Gal94], among other things a “rotator-pendulum model” is studied,
which corresponds to the case of a perturbation F' depending on (g, ¢) as
an even trigonometric polynomial, but without the assumption (A1). The
existence of an invariant hyperbolic torus is proved and “quasiflat” upper
bounds are obtained for the splitting of its whiskers by direct perturbative
methods (cancellations are exhibited in the perturbation series).

The case where a = 0 is considered in [Sim694] and then in [DGJS97];
it may be called the isochronous or linear case. In that case we can forget
about the variables I; and consider the Hamiltonian vector field associated
to (1.1) as a quasi-periodic perturbation of a a simple pendulum. More
precisely, if & = 0, one can associate to the hamiltonian vector field (1.2) a

reduced vector field

g=p
p =esing — pedyF (g, ) (1.3)
Pj = wj

(the original vector field was invariant under the translations (g, ¢,p,I) —
(¢,%,p, I + constant), and (1.3) is indeed its reduction under that group of
transformations), or a non-autonomous quasi-periodic second-order differ-
ential equation
g = esing — pedgF(g,wit, ... ,wqt).

Every solution of (1.2) projects onto a solution of (1.3). Note that the
invariant tori which we are interested in project onto normally hyperbolic
invariant tori for (1.3). However, even if assumptions (A1) and (A2) are

satisfied, not all the homoclinic orbits of the reduced vector field are the
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projection of some homoclinic orbit of the original system. But it is legiti-
mate in that case to concentrate on the reduced system and to consider (1.2)
as an auxiliary system, a mere way of putting (1.3) into Hamiltonian form.

In [Sim694] a general Averaging Theorem is proved and applied, among

other things, to a specific example which can be written in the form (1.1)

withd =2, =0, w = (1, 1+2‘/5), p="t""and-9,F even trigonometric
polynomial in ¢ which does not depend on q. The splitting of the invariant
manifolds is studied (for the reduced system) and shown to be exponen-
tially small. After a change of variables (one step of averaging), a Poincaré-
Melnikov approximation is derived and bounded from above and from below;
numerical evidence are then produced which indicate that the size of the
whole splitting is correctly predicted by that first-order approximation.

The model which is studied in [DGJS97] corresponds to d = 2, a = 0,
w = (1, %5), p=¢€P (p>3/2), and F(q,p) = m(p) cos g where the func-
tion m is analytic in a “strip” T,, x T,, but cannot be analytically continued
to a larger strip because of some hypothesis on its high harmonics. The torus
{g=0,p=0,p € T?} is invariant for the corresponding system (1.2), and
the splitting of its invariant manifolds is shown to be correctly predicted by
the Poincaré-Melnikov approximation whose asymptotics is precisely com-
puted (see Section 4 below).

In [RW98] strong results are stated for the anisochronous case, with an
even perturbation, but unfortunately an error has been discovered in that
article (a correction is expected).

The reader is referred to [CLMS] for further bibliographical notes.

1.3. The method. It is not so easy to compare the existing methods and
results, in particular because each author has his own way of parametrising
the invariant manifolds and then of measuring the distance between them.
As for us, we shall use particular solutions of the Hamilton-Jacobi equation
in order to describe these manifolds, as in the article [Sau95] which was itself

inspired by [Poin93].

1.3.1.  Let us consider the Hamiltonian system associated to (1.1), under
the assumptions (A1) and (A2) of p. 3. For u = 0, the stable and unstable
manifolds of the invariant torus 7 = {(0, ¢,0,0), ¢ € T¢} coincide and are

given by the separatrix of the pendulum; we find it convenient to write them
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as

Wimo = { @00 1) | g €] = 2m2n[,p € T p = 26/*sin 1,1 = 0},
Wh_o ={(@e.p,1)| q€0,4n],p € T p = 2:1/? sing,f =0},

distinguishing them quite arbitrarily only by their domain of definition. We
should give different names to the tori {0} x T¢ x {0} x {0} and {27} x
T< x {0} x {0} as well, but we shall not do it; from now on we shall consider
that the phase space is R x T% x R x R?, which we identify with the cotan-
gent bundle of the configuration space R x T¢ where the variables (g, ¢) live
(the cotangent bundle being endowed with its canonical exact symplectic
structure). Thus, above a point of the configuration space, covectors are
identified with vectors of R x R?. Each of the unperturbed invariant man-
ifolds is an exact Lagrangian graph, i.e. the graph of the differential of a
function defined on a part of R x T¢:

Wiso = G7(dS0) = { (¢,%,850(¢,0), 0 So(g: ) }

with So(q, ) = So(q) = 4"/ ?(cos £ — 1) considered as a function either on
] — 27, 27[xT? or on ]0,4n[xT¢. We shall represent the perturbed invariant
manifolds too as graphs over this space (at least parts of them which do not
lie too far from the torus 7, i.e. local or “semi-local” stable and unstable
manifolds):
W™ =Gr(dS™), Wt = Gr(dSt),

where S~ and St are functions on some parts of the configuration space,
which depend on (e, 1) and which will be uniquely determined (up to an

additive constant) as the solutions of the Hamilton-Jacobi equation

He,u(‘]a9078115(‘1’90),3905(%90)) =0 (1.4)
such that Gr(dS®) contains the torus 7. (The right-hand side of (1.4) must

vanish since 7 itself has zero energy.)

P p
W, wT

W " AN id W+ _-'”
ju=0 AN i |p=0 A
2w 0 2m ’

-2
‘\

L~}
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Proposition 1.1. For any qu €]0,2n[, there exists a positive constant ug
such that the Hamilton-Jacobi equation (1.4) admits a unique solution S~ =

S~ (q, p; €, p) real-analytic with respect to all its arguments for

q €] —qo0,q[; ¥ € T, & > 0, || < o,

and such that S[L:O coincides with Sy and S~ — Sy vanishes at order 2 on
{q = 0}; and a unique solution S*(q,p;e,p) real-analytic with respect to

all its arguments for
q 6]2’” - q0,27l' + qO[a pE Tda €> 07 Ip‘l < 1o,

and such that S|;:0 coincides with So and ST — Sy vanishes at order 2 on
{g=2r}.

Corollary 1.1. The invariant torus T admits stable and unstable manifolds
which are locally the graphs of the differentials of the previous functions S
and S~ (differentials with respect to the variables g and ¢):

WE = Gr(dS?).
Let us define the function
AS =St - S—) fOT q 6]271' - QO)QO[ (qo > 7r)7 p e Td) e >0, |N| < po-

The differential of AS is related to the distance between W~ and W : above
a point Q = (q,), the vector between (Q,dS™(Q)) and (Q,dSH(Q)) can be
identified with d(AS)(Q). The critical points of AS are thus projections of

homoclinic intersections.?

In fact, the Hessian matrix of AS at a critical point can be taken as a
measure of the splitting of the manifolds at the corresponding homoclinic
point. For that reason it is interesting to estimate the first and second-order

partial derivatives of the function AS (still with respect to the variables ¢

2We may call W~ = Gr(dS~) semi-local unstable manifold in opposition to the local
unstable manifold W, and to the global unstable manifold. The local manifold is defined
by the use of some small enough neighbourhood V of 7 (we can assume in particular that
V is contained in T (] — go, go[xT%)); it consists of all the points in V whose trajectories
are negatively asymptotic to 7. The global manifold is the union of the trajectories of
the points of W, i.e. {¢%(M); M € W, t € R} if we denote by ¢% the time-t map

of the Hamiltonian flow, whereas
W™ = { ¢} (M); M € Wy, t € R such that ¢} (M) € T"(] — go, go[xT%) }.

Analogously we may call W+ semi-local stable manifold. For that reason the homoclinic
points obtained as intersections of W™ and W7 may be called “primary” homoclinic

points.
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and ). The function AS itself is a difference of Lagrangian actions, which
contains an arbitrary additive constant (constant with respect to ¢ and ¢
but function of ¢ and u).

We stated the corollary apart just in order to emphasize the fact that,
since the invariant manifolds are represented by functions on the configura-
tion space, our problem is reduced to the study of the function AS.

The proposition and its corollary will be a consequence of Proposition 3.1
and Theorem 3.1 below (we shall even obtain information on the complex
extension of the domain of analyticity of S~ and S*: for instance S~ will
be proved to be analytic for complex g, ¢, ¢, u, with € belonging to some
sector and |u| small enough). Perhaps we should say that we expected the
invariant manifolds to be graphs because of their being close (for small |u|)
to Wlﬂﬁzﬂ which is a graph, and to be Lagrangian because of their being
asymptotic to 7 which is an isotropic submanifold of the phase space (see
Remark 5.1 on p. 62).

Note that in the isochronous case (o = 0), it is not true that all the
partial derivatives of AS necessarily vanish at a point corresponding to a
homoclinic orbit of the reduced system (1.3): the only condition is that 8,AS
should vanish at such a point, since only é?q.S’:t is needed for the description
of the stable or unstable manifold of the reduced system (but, due to the
conservation of the energy, there is a priori a relation between the other

partial derivatives of AS at such a point — see the next paragraph).

1.3.2. The geometrical tool of our method is a vector field of the con-
figuration space which acts by zero on the function AS. We call it the
characteristic vector field of the pair (S~,ST).

Proposition 1.2. Fiz any qy €|, 27| and consider the functions S~ and St
of Proposition 1.1. The vector field
D=lo,5 452 4 (w+ tav, (st +57)). 2
2 Jdq 2 Op
is defined and analytic for q €]2m — qo, o[, ¥ € T, € > 0, |u| < po, and the

function AS = ST — S~ satisfies
D.AS =0.

Proof. We present this property in Section 2.1 in a slightly more general
context, but it follows from the Hamilton-Jacobi equation by a straightfor-

ward computation — take the difference between equation (1.4) for S* and
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equation (1.4) for S™:

1 1
0=w.d,5" + 504(8<,,S+)2 + 5(8q3+)2 + e(cosqg — 1) + peF

1
0=w.0,5 + §a(3(p5_)2 + %(aqs—)2 + e(cos ¢ — 1) + peF.

O

Note that for u = 0 this vector field reduces to the characteristic vector

field of the unperturbed invariant manifold:
dSy 0 0
h= = 5 By

The invariance of the function AS under the flow of the vector field D
is a simple manifestation of the conservation of energy and of the exact
symplectic features of the problem that we have tried to take into account
as much as possible. This fact has important consequences for us, since our
goal is to study AS and we discover now that this function is determined
by its restriction to any global section of the configuration space which is
transversal to D, and such a section is a torus of dimension d. (All this
seems very related to the approach of [DG98], where a “splitting potential”
is introduced which is a also function on T¢, but we have not yet completely
elucidated the connection between that recent method and ours.) However
we do not want to fix once for all a particular section, since there is no
privileged choice — except maybe in the case of an even perturbation, where
D is conjugate to its opposite by the symmetry (g,¢) — (27 — g, ) and the
section { ¢ = 7 } may look more natural since (r,0) is a critical point of AS.

Proposition 1.2 (together with a detail from Theorem 3.1 about the de-
pendence of S* on ¢ and p) allows us to obtain very easily the following
geometrical result, which is a particular case of a theorem by L. H. Elias-
son ([Eli94], [DGI8]):

Corollary 1.2. There exist a positive constant pyy such that, for e > 0 and
lu| < pg, the Hamiltonian system associated to H, admits at least d + 1

distinct homoclinic orbits.

Proof. Let us choose ¢ €], 2n[ and pg so that Proposition 1.1 applies and
let us pick any g, €]2m—qo, go[. We shall use the notation & = { (g4, ), ¢ €
T¢ }: this set is a global section of the configuration space and is isomorphic
to the torus T¢.

The characteristic vector field D depends analytically on i and is transver-

sal to the section & for p = 0; thus it is still transversal to that section for u
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small enough, as long as the function %8q(S+ + 57) does not vanish on &.
Ome can ensure that to be case for |u| < g with a positive number p))
which does not depend on ¢, since Theorem 3.1 provides bounds for the
partial derivatives of e~1/2(S* — Sy) = O(u) which do not depend on ¢.
Now, for € > 0 and |p| < py, if we denote by x the restriction to & of
the function AS, we observe that any critical point of x is necessarily a
critical point of AS (because of the equation D.AS = 0, viewed as a rela-
tionship between the partial derivatives of AS). And x, being a real-analytic
function on a torus of dimension d, admits at least d + 1 critical points ac-
cording to a theorem by Ljusternik and Schnirelman [Bott82]. According to

Corollary 1.1, those critical points yield homoclinic orbits. O

The Ljusternik-Schnirelman Theorem was already used in [Eli94] to prove
the existence of homoclinic orbits, but in a more general context and in a
slightly different manner (see also [DG98]).

1.3.3. The analytical tool of our method is already present in [DGJS97]
and consists in a lemma (Lemma 2.1 on p. 19) from which we deduce that, in
order to obtain an exponentially small upper bound for AS and its deriva-
tives, it is sufficient to study the analytic continuation of the flow of D —
in fact to straighten it, i.e. to conjugate it to its unperturbed form Dyy=o-
The straightening of D will be achieved in Proposition 3.3. As a re-
sult there exist coordinates (v,8) of the configuration space, which depend
on (g, ) and differ from the coordinates (u, ¢) only by O(u), such that AS
can be written in these coordinates as a function x(v,8;¢, ) which is peri-
odic in the angles 6; and satisfies (9, + ¢~ '/2w.9)x = 0. Lemma 2.1 then
implies that its Fourier coeflicients satisfy, for 0 < p < £ and 0 < h < hy,

the inequalities
Ik (56, )| < comst 7| exp(—pe /2 |k.w| — hlk|)

for k € Z4\ {0}, v €R, £ > 0, s1 € [—po, o). The constant a(e, u) is nothing
but the mean value of yx, which does not depend on v.

In these inequalities, the traditional “small divisors” |k.w| do not appear
as divisors but as coefficients of —¢~1/2 in the argument of an exponential,
hence a difficulty which we call the problem of “small exponents” and which
we explain in Section 2.2, p. 20. In order to overcome it, we shall impose a

Diophantine condition on w.

1.3.4. An advantage of this method is the fact that it deals as much as

possible with functions on the configuration space which has dimension d+-1.
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For instance the straightening of the vector field D consists in finding a kind
of flow-box coordinates in that space; we need not study the Hamiltonian
flow in the (2d+ 2)-dimensional phase space outside the invariant manifolds.

We have restricted ourselves to the case where d > 2 (at least two fast
frequencies) although the present method would apply as well in the case
where d = 1. In fact, if there is only one fast frequency, the problem is
simpler because there are no “small exponents”, and for some technical
reasons it is easier to solve the Hamilton-Jacobi equation, but the results
would require a slightly different presentation in that case (and it would be
worthwhile to compare them with the results obtained in [DS92] or [DS97]

— this will be the subject of some other article).

1.4. General results. The proofs of the statements below are spread over

sections 2, 3, 5 and 6.

1.4.1. The first result claims that the invariant manifolds W~ and W+
are exponentially close one to the other: it provides an upper bound for

the partial derivatives of AS of order 1 or 2. We shall use the notation
k| = |ko| + -+ + |ka| if k € Z°.

Theorem 1.1. Consider the Hamiltonian system (1.1) with F satisfying
the assumptions (A1) and (A2) of p. 8 and w satisfying the Diophantine

condition
Vk € Z\ {0}, |kw| > y[k|'"" (1.5)

for some fized positive numbers vy and 7 (1 > d). Denote by AS the differ-
ence ST — S~ of the two functions determined in Proposition 1.1 and by w,
the number
_ 1 m\1
wy = (1+(r=1)"")((r = D)y h] 1%) .
For any w €]0,w,[ and for any closed subinterval [q1, 2] of |0, 27|, there

ezist positive numbers pg and C such that the inequalities
|d(AS)], d2(AS)] < Ceb|p| exp(-we™) (1.6)

hold for
qe [Q1aq2]’ pe Tda €> 07 B e [—,U:(),/,l,()]-

Of course the inequalities (1.6) mean that each of the first and second-
order derivatives with respect to the variables ¢ or ¢; of AS is bounded
by the right-hand side. Note that all the variables are required to be real
for that exponentially small bound to hold. To quote the words of [Loc90],
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we could say that “the most important feature in the formula (1.6) is the
exponent —1/27 of €”. Indeed, in the case where 7 = d, this exponent coin-
cides with the one which is involved in the lower bound for the exponentially
long time of stability for trajectories starting in the vicinity of a simply res-
onant surface (see [Loc93] for this version of Nekhorochev Theorem with
local exponents of stability).

In order of importance, the coefficient w inside the exponential of the
formula (1.6) comes after the exponent —1/27 of . We shall see how to let

it reach the value w, in order to obtain a smaller upper bound.

Remark 1.1. In view of Corollary 1.1, what we are interested in is really
d(AS) and d?(AS). But the function AS itself is exponentially close to a
constant: under the hypotheses of Theorem 1.1, there exists a real-analytic
function a(e, ) such that, for all w €]0,w,[ and for all closed subinter-

val g1, g2] of 0, 2x],

3:“’0)0 > O/ V(q, QD,&,IU/) € [Q1,Q2] X Td X R*+ X [_:U'Oa,u()]a

1 1
|AS(q, ;€ 1) — pale, p)| < Ce?|p| exp(—we™2r).

1.4.2. In order to go farther and to obtain a better information on the
asymptotics of AS with respect to ¢, it is natural to try to isolate the first-
order approximation AS; with respect to u of that function, which is usually

called the Poincaré-Melnikov approximation.

Definition 1.1. The Poincaré-Melnikov approzimation of AS is the func-
tion
AS1(g,p;€) = 0u(AS)(q, g3 €,0).

Thus we can write AS(g, ; e, u) = pASi(g, ;€) +O0(u?), and our goal is
to study that remainder “O(u?)”: is it smaller than the Poincaré-Melnikov
approximation itself? Of course, in order to provide a true answer to that
question, we would need to know how large AS; is exactly, and this turns
out to be a difficult problem. Proposition 1.3 below shows that AS; can be
expressed directly as an integral involving the perturbation function F' and
bounded from above by an exponentially small quantity depending on F,
but in the general situation we do not know how to obtain a lower bound
for AS; (the problem is more tractable when d = 2; see Section 4). We
shall thus content ourselves with proving that the remainder AS — pAS; is
smaller than a quantity which can be compared to the known upper bound

of ASi, although this is not completely satisfactory.
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Let us define the change of variable
g = go(u) = 4arctan e*.

The variable v is nothing but the time along the separatrix of the pendulum
and it will prove very useful in the sequel. In particular, it will be essential
to see it as a complex variable, and to try to obtain the largest possible
domains of analyticity with respect to it for all the functions defined on the
configuration space. We shall put a tilda over the symbol denoting such a
function in order to indicate that we have performed the change of variable
7= qo(u).

The function go(u) extends analytically to the universal covering of C \
(Z + inZ) with logarithmic singularities only, and it defines a (uniform)

analytic 2mi-periodic function? in

C=C\ ([%r, 3—;71] + 2inZ).
For 0 < § < m/2, we shall denote by Cj a subset of C which contains R:
Cs = {u e C| dist(u, [, 3’7”] +2inZ) > 6 ). (17)

Because of the assumptions (A1) and (A2), the function

F(u,0) = F(qo(u), ¢)
is analytic in C x Tzo and for all 6,0 > 0 (with § < 7/2 and o < hy), there
exists a number
A= A(4,0) >1
such that
V(u,9) € Cs x Thog, | F(u,p)] < Ae2%eul (1.8)

(we have used the notation T;, = {¢ € C/27Z; |Sm¢| < h}if h > 0). We
shall consider this function A(.,.) as a datum of the problem in the same
way as the function F itself; it is in fact a manner of measuring the size
of F, or the strength of the singularities of ¥ on the imaginary axis for the
variable © and on the boundary of TZO for the variable ¢. One may keep in
mind the typical example of a function like A(d,0) = const 6 "o~™, with

8The image of C by go is the vertical strip {g € C| — 7 < Req < 3w} except

for the points 0 and 27 which are obtained only at the limit when Reu tends to —oo

or +oo respectively (the singular points im/2 and 3¢7/2 correspond to Smg = 400 and
Q{mq = —oo respectively, and the left and right sides of the cut ]%, 3’7"[ correspond to

the vertical boundaries Re ¢ = —n and Re g = 37 respectively).
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n,m € N*, which would correspond to polar singularities (cf. the notion of
order of the perturbation along the separatriz in [DS97)).

Here is an example taken from [DGJS97]: if
Cos (1 . COS g

F — 1 — . .
(9,) = (1 —cosg) coshhg —cosp;  coshhg — cos g’

one chooses A(J,0) = const 52074 (observe that 1 — cosgg(u) = 2cosh™2u

has a second-order pole).

Proposition 1.3. The Poincaré-Melnikov approzimation can be expressed

in the variable v as
~ +o0
ASi(uypie) =€ [ Plaolu+ Qv+ 26w) de

—0o0

Assume that w satisfies the Diophantine condition (1.5) and use the notation
W, = (1 + (1 — 1)“1) ((T — 1)y hg_l g)l/T.

For any closed subinterval [q1,q2] of ]0,2x], there exist positive constants eg
and b such that, for (rg,r) € Nx N¢ with 1 <rp+|r] < 3,

1 _roHr|td—1

1(8)7°(8,)" ASy| < bA(e?,e2r)e™ 2 exp(—wy e~ 3) (1.9)

whenever
(2,¢) € [q1,92] x T and ¢ €0, €]

Of course, (0,,)" means (0,,)™ - - - (8y,)"¢ and |r| means 1 +- - -+r4. This
Proposition may be viewed as a refined version of the result which appears
already in [Loc90]. Observe that the analyticity width hq enters into the up-
per bound (1.9) through w,; in fact, if F' is a trigonometric polynomial (and
thus any hg is allowed), one can obtain a much smaller bound, with —1/2

in place of —1/27 as an exponent for ¢ inside the exponential.

Theorem 1.2. Under the hypotheses and notations of Theorem 1.1, for any
closed subinterval [q1, q2] of 10, 2x[ there exist positive constants ey and b such
that, for (ro,r) € N x N& with rq + |r| =1 or 2,

[(0g)™ (0p)" (AS — uAS1)(q, @5, 1)

< b|u|2A(€%,8%)26_mw exp(—ws 6_%) (1.10)
whenever
(9:¢) € [a1,42) X T, € €]0,e0], p € [—pole), po(e)],
with

po(e) = b1 A(err e ) e 5
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Remark 1.2. As for the case (rg,7) = (0,0), there exists a real-analytic
function a(e, p) such that AS — uAS; — p?a satisfies the same kind of an

inequality:

I(AS - MAsl)(q’ P, N) - /1‘20’(8, :U’)l
< bluf*A(e77, e37) e 5 oxp(—w. £77).

As we said before, what is not satisfactory is the fact that in general
AS7 does not admit a lower bound which would be of the same kind as the
upper bound (1.9) and thus comparable to the upper bound (1.10) for the
remainder AS — pAS;. But in some sense the problem is reduced to the
estimation of AS], because the method that we use is quite adaptable: if an
argument is given for obtaining a better upper bound of ASi, one can also
try to incorporate it to the method in order to bound the remainder. This
is done in Section 4 in a particular case with d = 2, where the coefficient w,
is replaced by an oscillating function of e.

In the inequalities (1.9) or (1.10) we focused on the exponent of ¢ and the
coeflicient inside the exponential, but we did not pay much attention to the
prefactor (the quantity in front of the exponential) which could be slightly

decreased easily.

1.4.3. We believe that our method can be applied to Hamiltonian systems
more general than (1.1). The first generalization that we envisage would
consist in taking a perturbation F' which depends on (g, ¢, p,I) (and also €
and p) and not only on (g, ¢), but which still satisfies assumptions analogous
to (Al) and (A2). The characteristic vector field would still be defined
according to Section 2.1, but the technical details (especially the proof of
the analyticity of S*) would need to be rewritten. One could also consider
the case where the invariant torus 7 depends on € and u, i.e. the case where
(A1) is no longer satisfied and some KAM-type result? is needed at the
beginning to find an invariant hyperbolic torus before to study its whiskers.
In fact, one would demand from such a KAM Theorem the largest possible
domain of analyticity for the parametrisation of the torus, and in order to go

4This kind of result usually requires non-degenerate torsion, ¢.e.cj #OQforj=1,...,d.
But [Loc98] shows how to deal with the case where a1 = - = am =0 (m < d) and F
depends only on (g,¢,p, Im+1,-..,14). The case where @ = 0 and F does not depend
on [ is the easiest one, since the normal hyperbolicity which is then present in the reduced

system (1.3) provides an invariant torus for (1.3) (without any KAM technique) which

can be lifted in an invariant torus for (1.2).
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on with the method, one would put the torus at the origin by a symplectic
change of coordinates (or one would exploit its isotropy and look for its
invariant manifolds as (non exact) Lagrangian graphs — the characteristic
vector field is still defined because the default of exactness is the same for
both manifolds [CLMS]). Finally it would be interesting to investigate more
general models, e.g. including a coupling term between the variables p and I

like for a general simple resonance [DGY8].

2. CHARACTERISTIC VECTOR FIELDS

2.1. Geometrical aspect. In all the Section 2.1 we suppose that M is a
differentiable manifold of dimension n (configuration space), T* M its cotan-
gent bundle (phase space) and H : T*M — R a Hamiltonian function.

Let # : T*M — M be the natural projection. The canonical exact
symplectic structure of T*M is induced by the Liouville form X, which is
defined as follows: for a € T*M, A a) = a o Tym where a is considered
as a linear map from T3 ()M to R and T, m denotes the linear tangent map
to m (from Ty (T* M) to Ty(q)M). A local system of coordinates (Q1, ... ,Qn)
of M induces a local system of coordinates (Q1,... ,Qn, Pi,... ,Py) of T*M
in which A takes the usual form PidQ1 + - - - + PrdQy.

The Hamiltonian vector field Xy associated to H is characterized by
the property dH = —ux,d). For a Lagrangian submanifold of T*M to be
invariant by Xpg, it is necessary and sufficient that some constant-energy
hypersurface contains it5.

If « is a one-form of M, we denote by im « its image in T*M (wiewing «

as a section of 7):
ima={a(z), te M} CT'M.

It is a submanifold of T*M and 7 induces a diffeomorphism between im «
and M, by which Ajjm o can be identified to « itself (this property character-
izes the Liouville form). Thus im « is Lagrangian if and only if « is closed,

and exact Lagrangian if and only « is exact®. We are particularly concerned

5 A submanifold W is said to be Lagrangian if the restriction to W of the symplectic
2-form d\ vanishes identically and if the dimension of W is n (maximal dimension for
the previous property): at each point of W, the tangent space is equal to its symplectic
orthogonal. And if H is constant on W, at each point of W the Hamiltonian vector field
belongs to the symplectic orthogonal of the tangent space to W, thus to the tangent space

itself, and conversely.
8A submanifold W is said to be exact Lagrangian if its dimension is » and if the

restriction to W of the Liouville form X is exact.
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with the latter case; what we have denoted Gr(dS) previously should be
written im dS' in this intrinsic formulation.

In the case where o is closed, im « is invariant by the Hamiltonian vector
field Xy if and only if H is constant on it, i.e. if and only if the function Hox
is constant on M: this is the Hamilton-Jacobi equation. In that situation
the characteristic vector field of im « is usually defined to be the vector field
of M which corresponds via 7 to the restriction of the Hamiltonian vector
field to im a. It may be written Tw o Xp o a.

We propose the following generalization of that construction:

Definition 2.1. Given any pair (g, 1) of 1-forms of M, we call charac-
teristic vector field of (ap, 1) the vector field of M obtained as

1
D:/ D.dt where Vt € [0,1], Dt:TﬂoXHO(a0+t(a1—ao)).
0

In the exact case, i.e. ag = dSy, oy = dSq, with Sy, S1 functions on the
configuration space, D will be called characteristic vector field of (Sp, S1) as

well.

Thus, if we consider a point x of the configuration space, the fiber T M
intersects the manifolds imag and imoy at the points ag(z) and a;(z),
this determines a “vertical” segment 3(z) between both manifolds above z:
E(z) = {ao(z) + t(er — ap)(z), ¢t € [0,1]}, and the characteristic vector
field at z is nothing but the projection onto the configuration space of the

Hamiltonian vector field averaged along %(x).

In a local system of coordinates (Q1,... ,Qn,) of M we can write
%) Lo
D=} Dizz, Di(@=] 5(a(@)d,
15520 9% o 9F

setting oy = (1 — t)ag + tay for ¢ € [0,1] and using the induced canoni-
cal system of coordinates (@, P) of T*M. If the Hamiltonian function is
quadratic in the momenta Py,... , P,, the vector field is merely the arith-
metic mean of Dy and D1, the ordinary characteristic vector fields associated
to ap and ay, hence the definition of D in Proposition 1.2 in the case of H, ,,
og =dS™, a; =dST.

Proposition 2.1. Let D be the characteristic vector field of a pair (ag, a1)

of 1-forms of M. Its action on the difference a1 — ay may be described as

<a;—ay,D>=Hoa; — Hoap.
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Proof. Fix z € M, denote by H, the restriction of H to T M and consider
the path a; = ag(z) + t(a1 — ap)(z) in Ty M:

1 1
(Hoa; — Hoap)(x) =/0 d(LZEa—tﬁdt=/o < dI‘L,;(oz,g),d—Ol—lt > dt.

dt

But if¢ € [0, 1], using the canonical isomorphism between the vector space T M

and its tangent space Ty, (T; M) at a; (as well as the dual isomorphism),
we can identify %ﬁ € To, (Ty M) with (o — ap)(z) € THM, and dH,(cy) €
Ty, (Ty M) with Dy(z) = Tp,w. Xpg(az) € Ty M (the last identification may

be checked in local coordinates). O

Corollary 2.1. If Sy and S1 are solutions of the Hamilton-Jacobi equation
associated to the same energy (i.e. if Gr(dSy) and Gr(dS;) are both contained
in the same constant-energy hypersurface), their characteristic vector field

acts by zero on their difference, i.e.
< d(S1—8y),D >=0
with the notations of the previous definition.

2.2. Analytical aspect. The linear homogeneous partial differential equa-
tion D.AS =< d(AS),D >= 0 obtained in Proposition 1.2 is thus a par-
ticular case of the previous corollary. According to the following lemma,
the knowledge of a large domain of analyticity for AS and for the flow of D
will be of importance to us: in the case where all but one of the coordinates
are angular variables and if new coordinates can be found in which D has
constant coefficients, complex extension is sufficient to ensure exponential
smallness with respect to large frequency-vectors.

We shall use the notations |., .[ and [., .] for open and closed segments

of the complex plane.

Lemma 2.1. Let x(v,01,...,60;) be a function 2m-periodic with respect to
the variables 6;, analytic in | — z'po,ipo[x'll“fim for some po,hg > 0. Suppose
that, for some Q € R%, it satisfies the partial differential equation

(821) + Q%) x =0.
Then the function x extends analytically to {|Smv| < po} x '11‘;110 and its
Fourier coefficients with respect to the angles 0; satisfy the following inequal-
ities, for all positive p < py and h < hy,
VEE€Z, Y eR, |xp(v)] < e MFI=PRAqup |y
[~ip,iplxTh
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with the notations xi(v) = (27r)—d/ x(v,0) e 0 do, k| = |ky|+ - + [kq|
—_ Td
ifk=(k1,... ,kq), and Tp, = {$p € C/21Z; |Smo| < h}.
A version of this lemma was already given in [DGJS97]; it is the quasiperi-

odic generalization of a lemma by Lazutkin [Laz84] on the Fourier coefficients

of a periodic function.

Proof. The function
(0) = x(0,0)

is analytic and 2w-periodic with respect to the variables 6;. Because of the

partial differential equation, we have

x(v,0) = ¥(6 — v(),
hence a relation between the Fourier coeflicients:

Xk(v) = U e R, (2.1)
Let us denote by B the supremum of |x| over [—ip,ip] X TZ. The Cauchy
inequalities

Vv € [—ip,ipl, |xx(v)| < Be ¥,
when specialized to v = +ip (according to the sign of k£.Q2), show that
Vk € Z¢, || < Behlkl=olkf

Thus the equation (2.1) implies that

Vk € Zd, Vo € C, |Xk('U)| < Be—h|k|—(p—|%‘mv|)|k.ﬂ|

and the Fourier series Y, xx(v) ¢ converges for |Smv| < p and | Sm ;| <
h. (]
In the situation described by the lemma, if moreover Q = ¢~ 1/2w, each

Fourier coefficient of x of nonzero index is thus exponentially small with
respect to € (as soon as w is non-resonant). It is natural to try to deduce from
that fact a result of exponential smallness for the whole oscillatory part of
the function y. But we are now faced with a difficulty which is typical of the
case d > 2 and which we could name the problem of small exponents: even
if w is non-resonant, the coefficient £ ~/2|k.w| which enters into the argument
of the exponential in the bound of |xx| may reach arbitrary small values as k
varies. Yet if we impose a Diophantine condition on w, there will be a balance
between the terms £~ /2|k.w| and h|k|: for the former to be small, the latter

must be large. We shall thus recover some exponential smallness for the
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oscillatory part of . This phenomenon was clearly identified in [Loc90]
or [Loc92], and then in [Sim694], [DGJIS97] and [RW9S].

Corollary 2.2. Let x(v,0,¢) be analytic for (v,8) €] — ipo,ipo[x’ll‘;fo and
e > 0. Suppose that there ezists w € R¢ satisfying the Diophantine condition

V€ Z9\ {0}, [kw| > y[b["T

for some fized positive numbers v and T (T > d), and such that x is a

solution of the partial differential equation

( 5 € w.%)x = 0.

For all positive p < py and h < hqg, we shall use the notations

B(p,h,e) = sup x(v,0,)] and v =(1+(r=1)"")((r-1)m)"/".
(v0)€l—in,iplxT}

The function x extends analytically to {|Smuv| < pg } X ']I“;ZL0 x {e > 0}, its

mean value on the torus a(e) = (2m)~¢ [ x(v,0,¢) df does not depend on

the variable v and

i) for all § €]0, po[, o €0, %[, £ >0, (v,6) e Rx T¢,
[x(,0,€) = a(e)] < <5 B(po = &, ho — 7€) exp(-w(8,) e )

where w(d,0) = v (py — 5)%(h0 - 20)Tr;1 and ¢ > 0 depends only on the
dimension d;

i) there exists a positive number €y which depends only on py and hy such
that, for 8,09 €]0,10] and € €)0,&¢), (v,0) € R x T¢,

Ix(v,6,€) — a(€)] < c'e™3 B(pg — 8o, ho — ove ™ ,€) exp(—w, e 7)
1 r—1
where w, = vpJhy™ and ¢ > 0 depends only on d, 1,7, po, ho.
Remark 2.1. Unfortunately this result is not optimal. We focused on the
exponent —1/27 of £ and the coefficient w, inside the exponential, but we
do not know how to improve them under general hypotheses — in Section 4
we shall see how to replace w, by something larger in a particular situation
with d = 2. On the other hand the prefactor ¢/ e~ B (...) could be slightly

decreased by an appropriate modification of the proof below.

Proof. The fact that the function a(e) does not depend on v is an obvious

consequence of the partial differential equation.




22 DAVID SAUZIN

i) Let p=pg— 8, h = hg— o and hy = hg— 20. For each £ > 0, we obtain

from Lemma 2.1 the following bounds for the Fourier coefficients of x:

VEeZ W eR, |xk(v,e)] < Blp,h,e) e kl=peT 2 k]

< B(p, h, ) el g=hilkl=ype=1/2[k|! ="

(we have used the Diophantine condition in the second inequality). On one

hand, one checks easily that
Yo,y >0, y4+yzyl™" > 1/3:%,
so, if k € Z4\ {0},
halk| + pe2|k.w| > w(s, o) e 2.

On the other hand,
~alkl _ _ d(7) . &
Z e 1+ coth (2)<ad
kezd\{0}
with a positive constant ¢ depending only on the dimension d.
Thus, f v € R, § € T¢ and ¢ > 0,
x(v,0,6) —ale)| =] Y xx(v,e) ™’

keZd\{0}
C 1
< —3B(p, h, &) exp(~w(6,0) 7 77).

it) With the choice (4,0) = (606%,00851?), we get

1 1
w(d,0)e"2 > wee o — 0<e<eg

where g9 depends only on pg, ho and ¢” depends only on v, pg, hy (because
w(d,0) = wy + O(8,0)). Tt is thus sufficient to take ¢/ = cec". O

Remark 2.2. There is no necessity of confining the variables v and 8 to the
real domain: we could have worked in a set of the form {|Smuv| < p' } x TZ,
with o' < p and A’ < h, but then the coefficients w(d, o) and w, would have
been smaller, whereas we were interested in the largest possible coefficients
(even if they were not optimal). On the other hand we could have replaced
£~3 in front of the upper bound in #) by a smaller term, but we prefered

a simpler result.
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3. EXPONENTIAL CLOSENESS OF THE INVARIANT MANIFOLDS

3.1. Hamilton-Jacobi algorithm. Let us return to our Hamiltonian (1.1).
The notations will be slightly simplified by a rescaling of time and variables

1/2 and the action-like variables p and T di-

(the time ¢ being multiplied by €
vided by the same factor): it is equivalent to study the Hamiltonian system

generated by

1 1
H, .(q,0,p,I) = 2w.] + iaIQ + §p2 +cosqg—1+ uF(q,p) (3.1)

with a large frequency-vector zw, where

zZ = 5_1/2.

The unperturbed solution of the Hamilton-Jacobi equation is now

S0(a, %) = Solg) = 4(cos I - 1).

After having determined and studied particular solutions of the Hamilton-
Jacobi equation for the system (3.1), we shall have to multiply them by e!/2
in order to come back to the original system (1.1). Still, we shall use the
same notation S* before and after this rescaling.

Our first task is to prove Proposition 1.1. To begin with we shall see how
the Taylor expansions of S~ and St with respect to u are determined: we
shall work with formal series in u whose coeflicients are functions of (g, ¢)

but also on €, but the dependence on ¢ will be understood.

Proposition 3.1. Fiz w € R? and suppose that the function F satisfies the
assumptions (A1) and (A2) of p. 8. For all z > 0, there exists a unique
sequence S7,85 ,... of real-analytic functions of (q,y) defined for q close
to 0 and @ € T¢, vanishing at order 2 on {q=0}, and such that
S = So(q) + > _ u"S; (a,)
n>1

satisfies formally the Hamilton-Jacobi equation H, ,(q, @, 045,0,5) = 0. In
fact, these functions extend to ]| —2m,2n[xT? and depend analytically on z =
e1/2,

For all z > 0, there exists o unique sequence Sf, S;', ... of real-analytic
functions of (q, ) defined for q close to 2r and ¢ € T%, vanishing at order 2
on {q =27}, and such that

ST =Su(g) + > u"S(a,)

n>1
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satisfies formally the Hamilton-Jacobi equation. In fact, these functions

eztend to )0,4w[xT? and depend analytically on z = e~ /2.

Proof. Of course the two parts of the proposition are analogous, and we
shall content ourselves with the proof of the first one. Let us denote by B~

the space of all analytic functions vanishing at order 2 at ¢ = 0:

B~ = {U(q, ) analytic for q close to 0 and ¢ € T¢,
with U(0,¢) = aqU(O’ ) =0},

and use the notation Dy = %ﬂg‘% + zw.%. Let us call
T=Y p"S;1(09)
n>0
the formal expansion that we are looking for: Sy + uT is solution of the

Hamilton-Jacobi equation if and only if
1
DoT = ~F(q,¢) = 5u[c(8,T)* + (8,T)?).

We observe that F belongs to B~. Thus, expanding the equation in powers
of u, we can determine inductively the functions S ; and conclude the

proof by applying a simple lemma (whose proof is left to the reader):

Lemma 3.1. The operator Dy induces an automorphism of B~. The change
of variable w = tan { gives to it the form Dy = w% + zw.% and allows to

ezpress its inverse B~ = (DolB_)_1 as

(B-U)(w, ) = — /0 T U(wel o+ 2Cw) d.

Note that, if U depends analytically on z for z > 0, this is also the case
of E~U: indeed if z is allowed to move in a sector which contains R**, we

still can change the half-line of integration [0, —oo into [0, —2~1

ool in order
to keep z( real and the new formula will provide the analytic continuation

of E~U with respect to z. O
Here are the induction formulas that we obtain:

Sy =-EF

1
Sr;rl = _gE_( Z [aawsn1+l-8tp5nz+l + 8(1‘5'n1+15q‘5'nz+1])) n > 1.

ni+neo=n—1

They define what we call the Hamilton-Jacobi algorithm.
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Definition 3.1. The vector field (or differential operator) of the configura-
tion space

®~ "dg 9q Oy
will be called the unperturbed characteristic vector field. Note that it reduces
to

~ 0 0

Dy = — —
0 8U+zw(9(p

after the change of variable

g = qo(u) = 4arctan e®.

Proof of Proposition 1.8 of p. 15. 1t follows from the proof of Proposition 3.1
that S] = —E~F and similarly S}t = —E*F, which means
+oo

S (u, ) = S (qo(u), ) = A Fu+¢, ¢+ 2(w)d(

when one uses the variable u. The difference is the familiar Poincaré-
Melnikov integral, as announced in Proposition 1.3. Let us prove the in-
equalities (1.9) for the function AS) (u,p;e) = Sf — Sy

This function is obviously analytic in { | Smu| < § } X ']I‘;im x R*". Using
the function A to measure the size of F' according to the formula (1.8)
of p. 14, we obtain easily the following bounds: if (rg,r) € N x N¢ with
ro + |r| <3,

[(8,)7°(8,)T ASy| < 24A(5/2,0/2)6 00"l
in {|Smu| < % —- 4§} x TZO_U x R* (3.2)

where (8,)" = (0, )™ -+ (8p,)™, |r| = r1 + -+ + rq. Since Do.(AS;) = 0,
we can apply Corollary 2.2 to the function AS; or to its partial derivatives
(because Dy has constant coefficients); if we assume 1 < 7+ |r|, there is no
mean value to substract in the results of exponential smallness we get: the

first part of the corollary yields

1

1(84)70(8,)" AS1| < 24¢A(6/2,0/2)6~ 0 =4I| exp(—we )
in Rx T x R*", (3.3)

A=
=

with w = (1 + (7 = 1)™H((r - 1)y) (ho — 20)%, and the second

part (with §y = og = 2) yields

(-9

TQ+]7'|+d

(80)™ (8,)" AS1| < 24 A(e?r, 27 )e 2 exp(—wy £777),
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for (u,) € R x T? and z = ¢71/2 > 0 large enough, with w, = 1+ (r-
1)1 ((r — 1)yhi 7 (%) *. This allows to end the proof of Proposition 1.3,
since the inverse change of variable ¢ — u has its derivatives bounded in
any closed subinterval [qi, g2 of ]0,27[. We just have to multiply by £!/2
because of the rescaling from (3.1) to (1.1). O

Remark 3.1. Link with parametric resurgence and Gevrey proper-
ties. In [Sau95] the operator Dy was studied in the case where d = 1 which
is much simpler, and it was shown that its inversion led to divergent series
in the parameter e. More precisely the obtained series were expanded in

1/2 —1/2_ Here we can at least show

powers of €'/“ and were resurgent in z = ¢
that Gevrey properties take place in the variable z = 21/7 = ¢=1/27 ip the
sense that formel Borel transforms with respect to z will be convergent.
Since this remark is a little far from our topic, we shall only give a state-
ment without proving it. We recall that the formal Borel transform with
respect to z is defined by the formula:
NN ey = S N
x@) =Y xMz™" w %)= x Ol
N N
in our situation the index N will run through 7N* and £3(€) will converge to
a regular holomorphic germ in the variable {7, which means that (¢) will be
analytic with ramification at the origin. Thus we may consider that £ € C,,
the Riemann surface of the logarithm. For simplicity we shall consider the

case where the variable u moves only inside disks.

Proposition 3.2. Let pg, ho > 0 and denote by D, the open disk of centre 0
and radius py. Suppose that a function (u,p) is analytic in Dy, X 'I[‘;i10 and
extends continuously to the closure of that domain, and suppose that w € R%

satisfies the diophantine condition
vk € Z4\ {0}, |kw| > y[k"T.

The partial differential equation Doy = 1 admits a unique formal solution
of the type
x =Y x"(u,p)27",

n>1
and its formal Borel transform with respect to & = zV/7 converges and defines

a function X(u,v,€) analytic in

€ ={(u,p,&) €Dpy x Th, X Co; €] < W(u,p)}

T—1

with W (u, @) = ’)’%(,00 - |u|)%(h0 —max; | Sme;|) T .
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In fact the formal Fourier coefficients x(u; 2) of x have a Borel transform
with respect to z which is convergent and can be expressed as —ﬁwk (u—
%), and this leads to parametric resurgence (with respect to z) e.g. if
the data 1 are meromorphic functions, but the associated Fourier series
may be divergent (because the singularities in the {-plane may accumu-
late the origin). Omne could present things using the apparatus of accelero-
summation [Eca93]: the deceleration operator from z to z = zr yields entire
functions xx(u,¢) as individual Fourier coefficients and restores the conver-
gence of the whole Fourier series. Moreover this operator should allow to
express these Borel transforms with respect to z, xx(u,£), as integrals in-
volving the Borel transforms of the x; with respect to z and some kernel.
This could lead to a better knowledge of the analytic continuation of ¥ with
respect to &.

Thinking of the Hamilton-Jacobi equation and its particular solutions S~
and ST, we suspect the existence of a formal solution (formal power se-
ries in €/2) to which both S~ and St are Gevrey asymptotic (Gevrey-1
in the variable z = ¢~1/27) and which must be considered as resurgent in
the variable z = ¢~'/2 (even if the Borel transform with respect to z does
not converge as a Fourier series). This could shed another light on their ex-
ponential proximity. (Notice that a relationship between Gevrey properties

and exponential smallness was recently studied in [Pop99].)

3.2. Analyticity of the solutions. Let us now define complex domains
in the u-plane, D s and D:l & in which the Taylor expansions with respect
to p of the solutions §~ or St will be proved to converge. For u; € R and

0 < § < w/2, we consider all the open sectors

{u: —u1 +§eiﬂ; 5 >07 IBE] _ﬂlaﬂl[}

for ;) €]0,7/2], and select among them the largest one which is contained

+
u1,0

23 is determined by the equation

in Cs: we call D' . this sector; if uy > —J, its vertex is —u1 and its aperture

g cos B = & + uq sin By,
but if 4y < —4, it is the open half-plane {Reu > —u;} and 81 = w/2.
Similarly, D 5 is the largest of the sectors
{u=u—¢e¥ 6>0, €)=, Ml}, i el0,n/2,
which is contained in Cy; it is the opposite sector:

D, {—u; uED:[ha}.

u1,6
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We define also a complex domain for the variable z: for A8 €]0,7/2],

with moreover A < arctan 7ur L u1 >0,

Susasi={z=E8eP£>0,6€] -/ +AB B/ — AJ[},

where the half-aperture f5; €]0,7/2| of the sectors D,, s and D:'l 5 1s sup-
posed to be strictly larger than Ag; this will be the case if § is small enough
with respect to u; and AS.

Theorem 3.1. For all u; € R and AB €]0,n/2[ with AB < arctan 57— if
uy > 0, and for all small enough 4,0 > 0, there exist positive numbers
and { By } such that the series of Proposition 3.1 expressed in the variable u
5 = Bo(w) + Y WSk s 5 2)
n>1
converges to a function S'i(u, ©; z, ) analytic with respect to all its argu-
ments for

+
%1,0?

u€D pe Tzo—a’ z = 5_1/2 € 2u1,6,Aﬂa |,U'| < p1,

satisfying in the closure of that domain the inequalities
18(5* — 8o — uS5)| < By |ul* e~ +2ew),

where O stands for one of the operators (8,)7(d,)" with (ro,7) € N x N¢,
ro+|r] < 2.
More precisely, if § < o, one can take uy = b7 A(6/2,0/2) 71 § 0%t and
By=|b A(6/2,0/2)? 67 2-sup{lnolg=2d=1  4f |r| =0,
b A(8/2,0/2)% 620 2d-Ir] if |r|>1,
where the positive number by depends only on w1 and AB, and the function A

measures the size of F' according to the formula (1.8).
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Of course, (0,)" means (0p, )" -+ (0p,)"¢ and |r| = r1+- - -+r4. The proof of
this theorem is delayed to Section 5, because it involves some technicalities
although it is not difficult: appropriate Banach spaces are defined and the
ordinary fixed-point Theorem is applied. The key-point lies in Lemma 5.2
which asserts the boundedness of the inverse the operator Dy (this inverse
is ET or E~, depending on whether one studies the stable or the unstable
manifold, with the notation of Lemma 3.1; in other words the “homological”
equation — or rather the linearized equation —, which is Doy = % in
the variables (u,¢), can be solved by ¥ = E*¢ where E* is a bounded
operator of the suitable Banach space: no small divisor appears because of

the presence of the variable u beside the angular variables ;).

Proof of Proposition 1.1 of p. 8 and of its corollary. Proposition 1.1 is
indeed a consequence of what has been done up to now: if we consider S~
for instance, by letting § and w; vary we see that the variable u can reach
(provided that |u| is kept small enough) any compact subset of
D™= U D, s={veC| Reu<Oor|Smu| <n/2}
6>0,u1€R
whose image by ¢p is { -7 < Req < 2r } \ {0}; the 2wi-periodicity in u
of §~ and its exponential decrease for Reu tending to —oo ensure that it
defines a function S~ analytic for ¢ belonging to any compact subset of
{—m < Req < 2n} provided that |p| is small enough. We would obtain
any compact subset of { —27 < Req < 7 } simply by repeating the previous
work with the change of variable ¢ = —27+4 arctane™ instead of ¢ = go(u).
Now, the manifold W~ = Gr(dS™) is Lagrangian and contained in the
zero-energy level of the Hamiltonian H, , (since S~ satisfies the Hamilton-
Jacobi equation), it is thus invariant by the Hamiltonian flow. This manifold
contains the torus 7 because dS~ vanishes for ¢ = 0 — it is in fact its unsta-
ble manifold; more information on the dynamics on it is given in Section 5.
O

3.3. Exponentially small upper bounds. Theorems 1.1 and 1.2 will de-
rive from the following result. We use here the variable 4 and we recall that
the solutions of the Hamilton-Jacobi equation for the system (3.1) must be

multiplied by €'/2 in order to yield solutions corresponding to (1.1).

Theorem 3.2. Consider the Hamiltonian system (8.1) with F satisfying
the assumptions (A1) and (A2) of p. 3, and w satisfying the Diophantine
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condition
VE € 29\ {0}, |kw| > ylk|'T (34)

for some fized positive numbers v and T (1 > d). Denote by AS the differ-
ence ST — §~ of the two functions determined above.

For all uy > 0 and for all small enough §,0 > 0, there exist a real-
analytic function a(e, p) and positive numbers pg, { Cs } such that, if we use

the notation

-

w= 1+ - - (3-8 (ho—20)F,  (35)
the inequalities

10((A8 — pAAS) (u, 03672, 1) — p2ale, 1))| < Co lul? exp(-we= )
(3.6)
hold for
u € [—uo,ug], €M% >0, p€[—po,po)
and 0 = (0,)™(0,)" with ro + |r] < 2.
If 26 < o, one can take pg = by ' A(6/4,0/4)"16%0% and

Cy=|bg A(6/4,0/4)? §35—3d-1 if ro+|r| =0,
bo A(5/4,0/4)2 672 T0g=3d=1Irl  if o 4 |r| =1 or &
where the positive number by depends only on ug and the function A measures
the size of F' according to the formula (1.8).

Theorem 8.2 implies Theorem 1.1. The number w defined by (3.5) can be
made arbitrarily close to w, by an appropriate choice of § and ¢. Then the
inequalities (3.6) and (3.3) together with the assumption |u] < uo produce
bounds for the partial derivatives of the function AS‘, which transiate into
the bounds (1.6) for the partial derivatives of AS since the change of variable
g + u has its derivatives bounded in [go(—wuo), go(uo)]- O

Theorem 8.2 implies Theorem 1.2. Fix any ug > 0 and choose b, oya, such
that, for all ,d,0 > 0 satisfying 20 < ¢ < omax, the inequalities (3.6) hold
for u € [—ug,ug], ¢ € T¢ and u € [—po, o], with the numbers pg and Cj
which are indicated at the end of Theorem 3.2. Let us specialize the result
to the case where § = 4¢3+ and o = 86%, for € small enough (in order to
ensure 20 < 0 < Opax)- As noticed earlier (at the end of the proof of the

last statement of Corollary 2.2), we have in that case

_1 _L
WE 2T > wy€ 2r — const,
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hence the result in the variables (u, ). We transfer it to the variables (g, ¢)

by the same argument as above. O
Proof of Theorem 3.2.

a) Let us call D the characteristic vector field of (S, S57). Since the
dependence on the action-like variables in our Hamiltonian (3.1) is so simple
(it is quadratic), we find

D.(AS) =0 with D = 1(9(1(5”r + .S’*)2 + (2w + 1oz(?(p(S+ + S_)).i

2 O0q 2 Oy
(so, in our case, D is the characteristic vector field associated to the La-
grangian manifold gr(%d(SJr + 87)), i.e. the projection onto the configu-
ration space of the Hamiltonian vector field restricted to this “averaged”
manifold which is in generally not invariant!).

The components of D are real-analytic in the intersection of the domains
of analyticity of S~ and S, and for u = 0 we find the unperturbed charac-
teristic field Dy again. In the same manner that we had at our disposal the
coordinates (u, @) in the configuration space to straighten Dy, i.e. to conju-
gate it to a vector field Dy with constant coefficients, we shall “straighten” D.

Let us start by writing it in the coordinates (u, ¢):

D.(AS) =0,
f = L dy-25 5+ g9 Lot + 8.2
D= (= ) ?0u(St +87) 5 + (aw + 5a0,(5" + § )).890. (3.7)

‘We shall henceforth use the notation

—pt -
Du2’6 — Duz,tf ﬁ D’LLQ,(;‘
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Proposition 3.3. For all up > 0, for all Ap €]0,arctan %[ and for all
small enough 8,0 > 0, there exist positive numbers pg and { My }, and there

ezists a real-analytic change of coordinates

(u, ) = (0,0) + pUU(v,0;2,18) & (v,0) = (u,0) + pV(u,@; 2, )

satisfying the following properties:
— it conjugates D and 2% + zw,%;

— the mapping Id +p U induces a bijection between the domain
= d
v E Du2,§, 0 e Tho—-a’

and its image for |p| < pa, z € By, snp; for those values of (v,0,z,u),
the components U; of U are analytic with respect to all their arguments and
satisfy

|oU;| < M3,
where O stands for one of the operators (8,)7(0g)" with (ro,r) € N x N¢,
ro+|r] <2

— the mapping Id +uV induces a bijection between the domain
= =d
U € Du2,5a pEc Tho—a

and its image for |u| < po, 2 € Ty, 5np; for those values of (u,p,z,p1),
the components V; of V are analytic with respect to all their arguments and
satisfy

|0V)] < Mo,
where O stands for one of the operators (8,)™(0,)" with (ro,r) € N x N¢,
ro+|r| < 2.

More precisely, if 26 < o, one can take
pe = by A(8/4,0/4)716%6%  and My = byA(6/4,0/4)6 " oI,

where the positive number by depends only on ug and AB, and the function A

measures the size of F according to the formula (1.8).

The proof of Proposition 8.3 is delayed to Section 6, but we can already
notice that it claims only the existence of global flow-box coordinates for D
in some complex neighbourhood of 27 — g2, 2] X T¢, for 7 < g < 27 and
|| small enough. This is not surprising, at least in the real domain, since
there exist global transversal sections to D as we have already noticed earlier
(p. 10). At a technical level, only the Banach fixed-point Theorem is needed,
the key-point lying in Lemma 6.2 which provides a bounded inverse to the
right for Dy.
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b) Let us see now how we can deduce Theorem 3.2 from what has been

done up to now. The idea is simply to apply Corollary 2.2 to the function
x(v,0;€, 1) = AS o (Id +pU) — pAS;

and to its partial derivatives, and then to transfer the exponentially small
bounds which we shall obtain from the real part of the (v, 6)-domain to the
real part of the (u,¢)-domain. We shall end up with exponentially small

bounds for
(AS — pAS) (u, 0572, p) = x 0 (Id+pV) + p[AS) o (Id+uV) — AG]

and its derivatives (but only for real values of £ and 4 since we want realness
to be preserved by the transfer). We only need to write carefully each step
of the process in order to keep track of the dependence of the bounds on §
and o.

We thus suppose that the hypotheses of Theorem 3.2 are fulfilled and that

we are given ug > 0. We define
T T .
Uy = %, Ug = m, Af = inf{ arctan 21’:—0,,8(111, £),B(u2, §) 1,

where we have used the notation B(u;,d) for the half-aperture of the sec-

- +
tors Dui’ s and Dui’ 5> and

00 = 2ho, 8o = Linf{og, T cos AB —ugsin AS}.

These definitions are quite arbitrary. In particular they are meant to ensure
that, if 0 <6 < %, By, 572,085 Zug,6,08 and Ty 50,ap are well-defined sectors

which contain R*t and
[—’ip, Z'p] - Du2,57 p= % —26.

c) Let 6 and o be positive numbers such that § < 7, and small enough
for Theorem 3.1 to apply with (u1,AB,46/2,0/2) and for Proposition 3.3 to
apply with (u2,AB,6,0). Let p = § — 2§ and define w according to the
formula (3.5).

— Proposition 3.3 provides an analytic vectorial function & whose compo-

nents are bounded by some M = M (ug, AB,4,0) in Dy, 5 xTzO_a X Dy 6,08 X

D,,, where po = ps(ug, A, §,0) is some positive number and D,,, denotes

the closed disk of centre 0 and radius pg. If (2, u) € RY X [—psg, po], the image

= —d . . . —d
of Dy, s X Ty, _, by Id +-pl is contained in wat L 5 iag X Thy—(o—|up)s

where By = B(ug,d). In particular, if

g

I/J'| < H3 = lnf{ 12, %’ SM }a
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o . . . T —d . -
this image is contained in Dy, 5/9 X Thy—o/o (since ug = Ve and § < I, we

have sin 85 > ¢T§ and ug + ﬁ <wug + % = u1). We can summarize by

Id+uld: & =Duys x Thy_g = E1=Duy 52 X Tho 52

if we forget about the parameters (e, ) and focus on the variables.

— The definition of an analytic function
x = ASo (Id4uld) — pAS; (3.8)

is allowed by Theorem 3.1 which shows that AS is analytic in £ x 1 ,8/2,08 %

D,,, and bounded in the closure of that domain for some py = p;(u1, AB,5/2,0/2):

AS: & — R |AS — pASy| < 2e®™B|uf? in ;.

Thus the function y is bounded in EoRT x [—pa, ppa] where pyg = inf{ ug, p1 }-
The identity

x = (AS — pASy) o (Id +pld) + p[AS) o (Id +ulh) — AS] (3.9)
shows that |x| is bounded by C’|u|? in that domain, where
C'=2e"™B4+ M sup |d(ASY)].

= =d
Du1,(§/2XTh0—0/2

We retain

x: & = R, |X| < C’l/l,|2 in gg.
~ Since D.(AS) = 0 and Dy.(AS;) = 0, the function x defined by the

formula (3.8) satisfies the partial differential equation

0 0
(% —I—zw.%)x =0

and so do all its partial derivatives. Since [—ip,ip] C D, 5, Corollary 2.2

applies and we find

Ix — p2a| < co™4C"|u|? exp(—w s“%) in Rx T x R X [— g, 4]

where a is an analytic function of z = £1/2 and u only which is defined by
the formula
wtale, ) = (@m0 [ x(0,6:2,0)db.

— In order to come back to the variables (u, ) we apply Proposition 3.3
again, but with (ug,AB,d,00): we get an analytic vectorial function V
whose components are bounded by M’ = M(ug, AB,8p,00) in Dyy s, X
T;ilo—-do X Bug,s0,08 X Dy, for some phy = g (ug, AB, 80, 09). We choose

po = inf{ pg, p3 }.
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Since realness is preserved by our change of variables (for real parameters),

we have

Id4+uV: [—ug,up] x T — R x T¢

and the identity
AS — pAS) = x o (Id+uV) + p[AS; o (Id +uV) — AS] (3.10)

yields the inequality

|IAS — nAS; — p?a) < (ca‘dC' exp(—w 6_%) + M’ sup |d(A5‘1)[> Mk

RxT4d

in [—ug,up] x T¢ x R*t x [—#0, 0] And it is clear that bounds of the
type (3.6) may be obtained too, since at each step of the process we could
bound the appropriate partial derivatives too.

d) Let us now suppose that 2§ < ¢ < 1 and compute explicit values
that the numbers py and Cp may assume. We shall denote by A the num-
ber A(6/4,0/4) (which is larger than 1).

According to the above chain of reasoning, we can take
) § o .
po = inf{ pg, oM o P ke 2
According to Proposition 3.3, we can take
p2 = pa(uz, AB,8,0) = by LA %08, M = M(ug, AB,6,0) = byAs o4,

where the number by depends only on ug, and ph = ug(ug, AB, 8o, 00) de-

pending only on ugy. According to Theorem 3.1, we can take
w1 = (w1, AB,6/2,0/2) = bl_lA"léad+1, b1 depending only on ug.

Hence the choice p9 = by 1 41626 with a number by which depends only ug.

Let us number from 0 to d the coordinates in C x (C/27Z)¢ and denote
by 0; the operator of partial differentiation with respect to the i-th variable;
0 will denote a differential operator 9;°97* - -- 8 with ro+ri+---+rg < 2.
According to Proposition 3.3, the components of U satisfy

|0U;| < Mp = b AS™17 00~ in €5 x RY x [—puo, o), ji=0,1,....,d

(the above number M coincides with Miy). And according to Theorem 3.1,
the function ¥ = AS — pAS’l satisfies
|6\II| < 262“1B3|:u’|2 in El x RY x [—,LL(),/,L()],
with
By = | by A26727sup{lio}o—2d-1 i |r| =,
by A26—2g—2d-Ir| if |r] > 1.
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The formula (3.9) can be rewritten as
X=x1+x2 x1=Fo(ld4+uld), x2=p’® U
with )
P = /0 d(ASy) o (1d +puz ) dz.

The following lemma (whose proof is left to the reader) will help us to

compute numbers C such that
|0x| < Chlp|? in £ x RT x D,.

Lemma 3.2. Let & and &, be subsets of Cx (C/2nZ)%, and number from 0
to d the coordinates in that space. Let U be a function analytic in & and U
an analytic vectorial function such that the image of € by Id+uld is con-
tained in €;. Suppose that U and the components of U satisfy the inequalities

|0¥| < By in €&,
0U;| < My in €,  j=0,1,...,d,
for & = Op°0 - 9 with ro + 11+ -+ + 14 < 2. Then the function ¥ o
(Id +pU) satisfies the inequalities
[0(T o (Id+ul))| < Cp in €,
with Crg = By,
Co; = Ba; + (d + 1)|uu| M, Slllp{ By },

Cajak = Bajak + (d + 1)l (Mé)j Slllp{ Baa } + Mo, Slllp{ Bajal }+
Maya, sub{ Ba,}) + (d-+ 1)*|u*Ms, Mo, sup{ Ba,, }.

We apply the lemma to x1 = ¥ o (Id+uld) and to &, = d(AS;) o
(Id+pzU) (bounds for the functions 89;(AS;) in € = &; are given by
the formula (3.2)). Using the assumption |u| < byt A~1626¢, we obtain

Ch = | by A2673g724-1 if ro +|r| =0,
by A25-2-r0g=2d=1=lrl if pg 4 |p| =1 or 2.

By Corollary 2.2, we deduce that

18(x — p2a)| < co™4Ch|u|? exp(—we™2) in R x T¢ x R* x [— w0, 120],
and the formula (3.10) can be rewritten as

AS - A8 —pPa=xT+x5 xi=(x—uPa)o(Id+pV), x5=p20*V
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with .
o* = / d(AS) o (1d+pz V) da.
0

We apply again Lemma 3.2, but with ¢; = ¢ =R x T¢ and V (or zV) in
place of U (its partial derivatives are bounded by a number which depends
only on up, and we use the bounds for the functions aaj(ASI) in &; which
are given by the formula (3.3)). We end up with inequalities |9(AS —pAS; —
p2a)| < Calu|? exp(—w E_%), where we can take for the numbers Cjy the

values which were announced in Theorem 3.2. 3

Remark 3.2. Proposition 3.3 allows to present things slightly differently and
to obtain an interesting intermediary result without any Diophantine con-
dition on w.

Let €3 =]go(—uz2), go(u2)[x T? be the part of the configuration space which
corresponds to the real part of the domain (v,8) € Dy, 5 x']l‘;ilo_g. The change

of coordinates Id +p U induces a mapping f according to the formula

(’U,,(p) = (Id+1u‘u)('070) < (QO(U),(P) = f(QO(’U)’H))

which is a diffeomorphism between €5 and some domain €;. We may con-

sider f as a change of coordinates as well, its reciprocal will be denoted g:

(0,9) = f(Q,0) & (Q,0) = g(q, ).

According to the classical construction f admits an exact symplectic lift

defined as
T*Cz — T*Q:l

o/
B = 21(B) = (Tyon(p)9)-By
where 7 denotes the projection T*€y — €s.

f
Tre, —2 . Tre,

|

C T— ¢

Not only ®/ is a lift of f (i.e. mo®F = fon) which preserves the Liouville
form A, but its action on exact Lagrangian graphs is easily described: if §

is a function on €;,

gr(dS) = ®/ (gr(de)) with T =Sof.
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!
T*¢, o T*¢,

o v

m|  Ggr(dZ) — gr(dS) |«

e N
2 ¢
Nf,/s

Thus we have two reciprocal transformations ® and ®9, that we can

¢

1

consider as an exact symplectic change of coordinates in 7*¢;, under which
W™ = Gr(dS™) and Wt = Gr(dS*) become the exact Lagrangian graphs

associated to new generating functions defined on €5:
W* = &/ (Gr(dx*)) with F=5%o .

The interest of all this is the possibility of applying Lemma 2.1 to the func-
tion AY = X+ — %~ (or rather to the functions (AL — uAS))), since f was
chosen precisely in order to yield Dg.AY = 0.

Of course all these transformations depend on € and u, but we notice
that, since f = Id +O(u), the function y = AX — yAS; (which is the same
as in the formula (3.8) up to the change of variable Q = go(v)) is O(u?).

Using the same inequalities as above we end up with the following result:

Theorem 3.3. Let Q2 €], 2n[ and let §,0 be small enough positive num-
bers. Let p = § — 20, h = hy — o and € =2 — Qq, Q2[xT%. There
ezist a subdomain €y of |0,2n[xT¢, an ezact symplectic diffeomorphism ®
between T*Cy and T*E€; and functions £~ and ©T on &€, (which depend
analytically on (e, 1)) such that

WE = o(Gr(dst)), BT -5~ =pAS; +y,

where the Fourier coefficients xg of the partial derivatives 8y of the func-
tion x satisfy
Qs e )| < Chluf? emre Mtk
for
keZ?, Qelan—Q2Qal >0, pe[—p,u)
and 0 = (0g)™(0p)" with ro + |r| < 2.
If 26 < o, one can take puy = by A(6/4,0/4)"16%0% and
Cé = | by A(6/4, 0'/4)25_30_%_1 if mo+ |'f‘l =0,
by A(6/4,0/4)267 200211l 4t g ir| =1 or 2
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where the positive number by depends only on Q.

4. RESULTS FOR THE THREE-DEGREE-OF-FREEDOM CASE (d = 2)

In this section we restrict ourselves to a very specific case in order to
benefit from some arithmetic results contained in [DGJS97] and to adapt
them to our situation. Our goal here is to obtain in the upper bound of
the splitting an exponential term of the same kind as in [DGJS97], which
will be optimal in some cases. We shall be concerned not only by the func-
tion AS and its partial derivatives, but also by its Hessian matrix: we saw in
Proposition 1.2 and its corollary that AS is determined by its restriction to
any section { g = ¢, } of the configuration space and that it admits critical
points. In fact the Hessian (i.e. the determinant of the Hessian matrix) of
such a restriction AS),_,, at a critical point provides a symplectic measure
of the splitting along the corresponding homoclinic orbit [CLMS], whereas
the gradient of AS only measures the distance of the invariant manifolds
above a given point of the configuration space. We shall see cases where
lower bounds are available for the gradient of AS and the Hessian of its

restrictions.
4.1. Statement of the results.
Notations. In this section, T=d =2 and w = (1,I") with T = # We
denote by {z } the distance of a real number z to Z:
VeeR, {z} = dist(z,Z) € [0,1/2],

and for any p,h >0 we define a continuous (4logT')-periodic function w,

on R by the formula

VX R, wpn(X) = Cpyoosh({ XTI_O% }1ogT),

where

Cop =5 VAT\/Aph, X,, = 210g(¥).

Theorem 4.1. Consider the Hamiltonian system (1.1) with F satisfying
the assumptions (A1) and (A2) of p. 3, the difference AS of the solutions of
the Hamilton-Jacobi equation associated to the stable and unstable manifolds

and its Poincaré-Melnikov approzimation AS;. We shall use the notation

Wy = ’wﬂ./2’h0.
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Under the above hypotheses and notations, for any closed subinterval (g1, go]

of 10, 2| there exist positive constants €y and b such that the inequalities
ro+|r|—
1(89)70(8,)" AS1| < bA(EM4, /e~ = exp(—w, (loge) e 14)  (4.1)

and

|(0g)™ ()" (AS — pAS1)(q, @5 €, 1)

< b|u|2A(al/4,al/4)25_r e exp(—w,(loge) e /%) (4.2)

hold for

(@) € [q1,92] x T?, & €]0,e0), € [~pole), mole)],
with ro + |r| = 1 or 2 and po(e) = b~ A(e1/4, /%) e,

The improvement with respect to Proposition 1.3 and Theorem 1.2 con-
sists in the replacement of the fixed coefficient previously denoted by wi,
by a new coefficient w,(loge) which oscillates between two positive values
(the new coefficient being never smaller than the fixed value it assumed in
Section 1.4). Moreover the upper bound (4.2) may be compared to a lower

bound of AS; which is available when F satisfies further assumptions:
Theorem 4.2 ([DGJS97)). Suppose that K,a > 0 and

F(q,¢) = m(p1,92)(1 — cosq)

with an analytic function m whose Fourier coefficients satisfy:
-VE €72 |my| < Keholkl
-VneNy  myuml| > ae‘h"'k(")', if we denote by k™ = (=Fp, Fr_1)
the Fourier numbers which correspond to the Fibonacci sequence Fo =
1,Fi=1,F,=Fn1+Fna forn>2.
Then there exists a positive constant b such that

ro+iri—1

max{ 1(8,)™0(8,)" AS1 (g, ;)] } > b1 exp(—wi(loge) e 1/4)
peT?
(4.3)
for € > 0 small enough and ro + |r| =1 or 2.
Note that the left-hand side in the inequality (4.3) does not depend on the
variable g because of the invariance of AS; under Dy. The first hypothesis

on the Fourier coefficients of m could be replaced by the condition A(d, o) =

const 6202 which is slightly weaker.
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Thus the size of the Poincaré-Melnikov approximation is always bounded
as indicated by the inequality (4.1) of Theorem 4.1, and under the assump-
tions of Theorem 4.2 it is not “abnormally small” (i.e. it is not exponentially
small with an exponent which would be smaller than —1/4 or with a coef-
ficient which would be larger than w,(loge)): in that case one can take
A(e'/4,e1/*) = conste™! and the inequalities (4.2) and (4.3) indicate as a
range of values of y for which yAS; is the dominant part of AS an interval
{peR; |u| < const €7/2} at least.

Theorem 4.1 constitutes a generalization of one of the results of [DGJS97],
inasmuch as that paper was confined to the case where o = 0.

Were the first-order approximation abnormally small (e.g. because the
right harmonics are lacking in F'), we could still try our luck with the second-
order approximation, or look for the first finite-order approximation of AS of
the “right” exponentially small size. The Hamilton-Jacobi algorithm above
gives a way of determining the functions S~ and St at each finite order
with respect to p (there still remains the problem of bounding from below
the partial derivatives of the functions AS, = S;F — S.), and the method
for proving Theorem 4.1 may be adapted to bound the partial derivatives
of the remainder

AS — pAS; — ... — uNASy
at any order N. But perhaps a better solution would be to perform a change
of variables in order to modify the form of the perturbation as in [Sim494].

Let us now introduce some other notations in order to deal with Hessians.

Notations. For any p,h > 0 we define a continuous (4logI')-periodic func-
tion s, on R by the formula
VX €R, 5,4(X) = C,,%? cosh((% ~{ )Z;O—;”;h ) logT),
whith the same numbers Cpp and X, as above. We set s, = sp/9, and
X =Xy /2,ho-
For k €]0,1/4], we define

X — X, 1
= < — — .
L {XERlK”{410gI‘}S2 w}

Notice that R\ L, is the union of the intervals of length 4k logT’ which
are centered on the solutions X of the equations w,(X) = Cy or w,(X) =
C, cosh 1—0%2 (i.e. the points of minimum or maximum of w,).

Notice also that

spp(X) =Cpp [cosh({ % }logI‘) -I-cosh((l—{ le—;);(f‘_ﬂ ) log I‘)],
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hence 2w, n(X) < s,4(X). According to Theorem 4.1, we know that the
Hessian of the restriction of AS to any section {q = ¢, } is exponentially
small with at least a coefficient 2w, (log¢) in front of e =1/, but we shall see
that under the hypotheses of Theorem 4.2 it can reach s.(loge). But we

exclude some intervals for € by requiring loge € L.

Theorem 4.3. Let q. €]0,2n[ and x €]0,1/4]. Under the hypotheses of
Theorem 4.2, for € > 0 small enough and such that loge € Ly, and for
1 € R such that |p| < conste'®/*, the function

@ € T? = AS(gs, 5 11, €)

is a Morse function with ezactly four distinct critical points, at which the
absolute value of its Hessian is bounded from above and from below by ez-

pressions of the form
const |p|? €72 exp(—s,(loge) e 1/4).

The results for the three-degree-of-freedom case can be generalized to
some extent: in all this section the ratio of the two components of the
frequency-vector w is kept fixed to the value I' in order to use the arithmetic
arguments of [DGJS97], but [RW98] provides other arithmetic tools to deal

with the case of any constant-type ratio.

4.2. Proof of Theorems 4.1 and 4.2. The only difference with the pre-
vious sections lies in what we have called the analytic part of the method
(Section 2.2), which can be improved: the accurate knowledge of the arith-
metic properties of w = (1,I') makes it possible to replace Corollary 2.2 by
a refined result, which we essentially take from [DGJS97] (Lemma 4, p. 50).

Lemma 4.1. Let po,hy > 0. Suppose that a function x(v,0,€) is real-
analytic for (v,0) €] — ipo,ipo[x']l‘;ilo and € > 0, and satisfies the partial
differential equation

(—(Z +e7 2y —a—)x =0

v 00 '
For oll positive p < py and h < hy we define

B(p,h,e) = sup  |x(v,6,¢)|-
(v,0)€l—ipip] T

The function x eztends analytically to {|Smv| < po } X ']I‘;jZO x {e > 0}, its
mean value a(e) = (2m) 2 [2 x(v,0,€) d6 does not depend on v and
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i) there exists ¢ > 0 such that, for € > 0 small enough, (v,0) € R x T2,
200 < p < po and 2ho < h < hy,

x(v,6,¢) — a(e)| < ¢B(p, h,€) exp(—w,n(loge) e 1/4);

it) for all bg,00 > 0, there exists ¢’ > 0 such that

Ve > 0 small enough, ¥(v,0) € R x T2,

IX(IU7 0’ E)—G(E)l < ¢ B(p0_5061/4a h0_0051/47 5) eXp(—wpo,ho (IOg 6) 8_1/4);

Proof. i) The proof is given in [DGJS97], p. 50-51. We reproduce it in order
to show where the function w,; comes from.

We begin like for the proof of Corollary 2.2 (we are in the same position,
but with additional hypotheses) by applying Lemma 2.1 for each ¢ > 0; it
yields the following bounds for the Fourier coefficients of x:

Yk €Z% Yo ER, |xi(v,¢)| < Blp, hye) ¢ Mo ke,
Thus, if v € R, § € T? and € > 0,

Ix(v,0,6) —a(@) =1 Y xk(v,e) e < B(p,h,e) T
kez?\{0}
with
E = Z e—h‘lkl—pe_l/Z'k'wl.
keZ2\{0}
We decompose this sum according to a partition of Z2\ {0}:
D= ) 4+ 2 + >
lk.w|>1/2 |k.wl<1/2 and |kz|>e~1/2 lk.w|<1/2 and |kz|<e—1/2

Observe that in the last two terms the condition |k.w| = |k1 + Tky] < 1/2
implies that the index & is determined by its second component ky. Now
one checks easily that each of the first two terms can be bounded by an
expression of the form

_ —1/2
consty e 60Nt €

with const; = p/2 for the first term, const; = (T + 1) for the second one,
and consty depending only on hg in both cases. In order to conclude, it is
thus sufficient to show that
Z e hlkl=pe™ 2kl < ¢ exp(—w, x(loge) eV, (4.4)
|k.wj<1/2 and 0<ky<e—1/2
with some ¢ > 0 independent of p and h (the restriction to positive values

of ko is allowed by parity).
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The left-hand side in (4.4) is a finite sum which contains no more than £~1/2
terms; let us look for the largest one. The Fibonacci sequence (Fy)n>0 ap-
pears here in relation with the best approximations of I". It is recalled
in [DGJS97] that, if |k.w| < 1/2 and kg > 1, there are only two possibilities:

- either there exists n € N* such that ko = F,,_;, then necessarily k =
k™ (ie k= —F, ) and

kw| =T7" |k = CE"? - (-1)*T" "),

with C = 571/2;
- or ko does not belong to the sequence (F,) and
rc
|k.w| > —.
||

The second possibility leads immediately to a “very small” contribution:
ko @{Fn} = e Ml 2hol < oxp(—e=1/4 /AT Cph), (4.5)

with v/4TCph > /T3Cph = maxxer{ wpn(X) }.
Whereas in the first case we can compute

e—h|k[—pg—1/2|k,w| — eXp(—-(pE_l/2 + (_1)n+10hr—2)1-\——n — ChT?. ]_-\n)
= exp(—Az(n))

with

1 2
Ag(n) = 224 T+/Cpoh cosh(i logz — - 1og(F Ch

| —-D"FIT2Ch 1722
T=¢c (1+(—p—————a/) ,

) — nlogF), (46)

(by use of the identity at + bt~ = 2v/ab cosh(% loga — +logh + logt) for

a,b,t > 0).
Observe that z depends slightly on n but takes only two values if ¢ is

fixed, and
g/t =g~ 1/4 (1+ 0(61/2)), logz = —loge + O(e'/?). (4.7)

It is thus interesting to study, for a fixed value of z >> 1, the sequence

1 X
Ag(n) = £/ Coh cosh(gg-—x—l_———’—h —(n+1)log I‘).
Let n, be the integral part of %fﬂ : the sequence (Az(n))n<n, I8

decreasing and the sequence (Az(n))n>n, is increasing, thus

min{ As(n)} = (Am(nx “1or Aa;(nz)> =g/, (—logz),  (4.8)
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but apart from these two exceptional terms we get again “very small” con-
tributions: n & {ny — L,nz} = Agz(n) > 2'/*C, 4 cosh(logT), thus

ko =Fp1withng{n; —1L,n,} =
o—hlkl—pe= /2 |k.w] <c exp(—€_1/4 Cp,n cosh(logT)) (4.9)

with G, cosh(logT') > C,,;, cosh(} logT') = maxxer{ w,x(X)}, and with
a constant ¢ stemming from the use of (4.7) to replace z'/4 by e=1/4.

We finally obtain the inequality (4.4) by observing that its left-hand side
is bounded by

¢ e71? exp(—W e %) + ¢ exp(—w, p(loge) e~ 1/4),

where W > maxw, in the first term thanks to (4.5) and (4.9) (with
W — maxw, bounded from below by some positive number which does
not depend on p and h), and the second term takes into account the two
exceptional indices (in order to replace —logz by loge, one can use the
estimate (4.7) and the fact that the function w,p is Lipschitzian with a
Lipschitz constant uniform in p, h).

i) We apply the first part of the lemma with p = py — dpe'/* and h =
ho — oge'/, and we observe that

Coh
wp,h(X) = C & wPO’hO (X + XPO)hO - Xp)h)’
pO)hO
éﬁ; =14+0(!/?), Xpoho — Xpp = O(e'/*) and the function Wpo,ho 18 Lip-
schitzian, thus w4, (X) = Wy, no(X) + O('/4) where the involved constant

depends only on pg, hg, dg, 00- O

Proof of Theorem 4.1. In order to prove the inequalities (4.1) it is suffi-
cient to adapt the proof of Proposition 1.3 which was given on p. 25: the
inequalities (3.2) are still valid but one can now use Lemma 4.1 (instead of
Corollary 2.2 which was used there) — we let the reader check the details.

In order to prove the inequalities (4.2) we substitute to Theorem 3.2 the

following assertion:
For all up > 0 there exist positive numbers g9 and by such that, for all
small enough 6,0 > 0 satisfying 28 < o, the inequalities
1(8)7°(8p)" (AS — pAS1) (u, e, )| <
bol P A(8/4,5/4)2672" 0051 exp(—w, p(loge) e7H/*)  (4.10)
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hold for
(U, 90) € [—U(),'u.()] X Tza € 6]07 50]) we [__:U’Oa,u'()]a
withro+|r| =1 0r2 andp=%—68, h =ho—0, po = by L A(6/4,0/4) "1 6202.

Such a result is sufficient to conclude, since the choice (6, 0) = (4¢!/4, 8¢1/4)
yields

Wz _5hp—o(X) = wi(X) + O(e*)
as noticed previously. To prove the assertion we proceed as on p. 31-37, but

where Corollary 2.2 was used we apply Lemma 4.1 instead. O

Proof of Theorem 4.2. See [DGJS97], p. 41-43, where it is shown that the
chain of reasoning which leads to Lemma 4.1 is optimal in the considered
case. Indeed, if we use the variable u, we can write
~ +o0
Adi(u, pie) =eV? /_oo cosh?(u + ¢)

and the theorem of residues allows to compute each Fourier coefficient of

m(p + eV ¢w) d¢

the function
P = 2O(A5), 9= (9.)7,).
One finds

| 2%(8_1/2k.w)T0+1kT _ie=1/2

B0 o) — (1Yo ;To+|r uk.w
Xe(u;e) = (=1)™4 Sinh(Ze 1 2k.w) my e . (4.11)

Since
Vk € 72, Y(u,e) € R x R*t, |Xg(u;6)| < ma.x{ |X8(u,<p; €)] },
p€eT?

it is sufficient to estimate the size of a well chosen Fourier coefficient. The
largest one was identified in the course of the proof of Lemma 4.1: it cor-
responds to the minimum of the sequence which we had denoted A, i.e.
k = k™ with n = ng or ng — 1 according to the formulas (4.6) and (4.8)
(we have now p = 7/2 and h = hg). With that index k,

X% (u; )| = const (€72 [k.o])0F [ [k | exp(—gE“l/Qlk-u)I — holk|)

thanks to the second hypothesis on the Fourier coefficients of m. We recog-
nize in the exponential term exp(—Ag(n)) = z/* w,(—logz); we conclude

by observing that |n — %ggip] is bounded, thus

log &
|k.w| =T~ > conste "4 > conste'/*
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and, for § =1 or 2,
logz _
|k;| > const ™ > conste 4 > conste /4,

a

4.3. Proof of Theorem 4.3. Our goal is to study the critical points of the

function

fs,,u = A‘Slq:q* P pE T? fe,u(ﬂo) = AS(U*"P;gaN)

with u, defined by g« = qo(u«) (we shall often omit e,u in subscript).
We shall use the same scheme (and the same notations) as in the proof
of Theorem 3.2. In particular we fix some ug > |u4|, and we work with
o =28 = 8¢/* and

p=g—881/4, h=h0—851/4.

The subsets £ and & of C x (C/27Z)?% now depend on ¢ and we take
A(8,0) = const e~ L.

— The mutually reciprocal transformations Id +uUf : €2 — £y and Id+p V -
[—ug,ug] X T? — R x T% provided by Proposition 3.3 allow to define

AY = AS o (Id +pU) solution of (8, + & %w - 83)AS =0

for e > 0 and p € [—pug(e), uo(€)], with po(e) = const 2. The function AS

is in fact determined by its restriction

Geus = ASjyg 1 0 €T? = g, ,(0) = AX(0,6;¢, 1)

according to the rule A¥X(v,0) = g(§ — e~ /2vw). Thus we can define a
diffeomorphism O, , of T? by

Ocu(0) = ¢ — e V2w + u(Vp — € Y2V, W) (un, 03 €, 1)

which satisfies

Jep = Ge,n © Ocppe |

As soon as |u| is small enough, independently of &, the Jacobian Jac®
of ©, , at any point has a determinant larger than 1/2 (because the definition
of V is required here only in the real domain, we need not bound the partial
derivatives of its components near the complex singularities). Thus, for
i € [—pole), po(€)], there is a one-to-one correspondence between the critical
points of f , and g, ,, any critical point ¢g of f with Hessian 7 ¢() giving
rise to a critical point 8y of g with Hessian #4(60) = Hs(0)(Jac©)~2(¢y),
and the problem is reduced to the study of the critical points of g, ,.
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We shall apply to g, , the following lemma, in which |dR| is a notation
for maxy2{ |9, R|, |0s,R| } and |d?R| for maxy2{ ]8021R[, |06, 0, R|, |05, R| },
and whose proof is left to the reader:
Lemma 4.2. Let A, A' e R*, w,w' € R, n € N* and k = k(»=D k' = (),
Consider the function
0 €T? — P(0) = Acos(k.0 + w) + A cos(k'.0 + w')

and a perturbation R: T? — R which is a C? function such that
min{ |A], |4’ } min{ |A|, |A" }
10]&%| ’ 20]k1|?

Then the function P+ R is a Morse function on T?, which possesses eé:actly

ldR| < |[d*R] <

four distinct critical points. Furthermore, at each critical point 6y of P+ R,
the Hessian Hpyr(6o) satisfies

1
3144 < [Hpyr(8o)] < 3|AA'|.

For that purpose, we shall identify inside the Fourier expansion of g,
the two pairs of largest coefficients (they go in pairs of terms with opposite
indices due to realness) and show that the corresponding indices are of the

form
X. —log a]

4logT
([.] denotes the integral part of a real number). Note that isolating the

he = kD, KL = k09, p = |

dominant pair (with indices say k. and —k.) would amount to providing a

“monomial” approximation
9e,u(0) = A, sin(k,.0 + w,)

which cannot be a Morse function on T? for dimensional reasons: we need
at least a “binomial” approximation with independent pairs of indices, as in
Lemma 4.2.

— Let us now state a refined version of Lemma 4.1 which will produce

such approximations. We shall use the notations

VX eR wi(X)=C, cosh((l - )il;gjli:‘* }logf‘))

and W = C; cosh(logT'). Observe that s, = wy + w!.

Lemma 4.3. Under the same hypotheses and notations as in Lemma 4.1,
there ezists ¢ > 0 such that, for € > 0 small enough such that loge € Ly,
%po < p < po and %ho < h < hg, one can write

x(0,0,¢€) = Ay, cos(ke.0 + wy, ) + Ag: cos(ki.0 + wy ) + Re(6)
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with a perturbation R, which satisfies
"de:‘") ”dzRF,” < CB(p, h,€) exp(—W 5_1/4),

and real numbers Ay, wy depending on € and defined by the Fourier coeffi-
cients of Xjy=0 as
xx(0,€) = 24,€"k,

Moreover the absolute value of one of the numbers Ay, Ay is bounded
by cB(p,h,e) exp(—wy(loge) e~1/4), and the absolute value of the other
is bounded by cB(p,h,¢) exp(—w.(loge) e~1/4), depending on whether n,
or ne + 1 4s closest to %2%5—5.

For the sake of simplicity, we shall assume in the sequel that n, is closer
to %‘—1;%155 than n.+1. The proof of Lemma, 4.3 follows the same lines as the
proof of Lemma 4.1 and we omit it. We only indicate that the restriction
loge € Ly is meant to ensure gaps in the hierarchy of Fourier indices, in the
sense that

hlke| + pe 2 |ke.w| ~ w,(loge) e /4,
hlEL] + pe 2|k w| = wl(loge) e~ V/4,
RE™] 4 pe V2™ | > We™ 7 if n g {n, —1,n},
maxw, < minw,, < maxw!, < W. 7

Moreover, when applied to the function AS;, the chain of reasoning which

leads to Lemma 4.3 yields also bounds from below for the main coefficients:
AS1(0,0,€) = AL cos(ke.t + wl)) + A cos(k.0 + wly)) + RD(6)

with [dRY)], |d2RM) < const /2" ™4 and

—1/4

1 —an!
, ]Agc,)| = const g1/4 g~we(loge)e ,
€

|A§cl)| = const g1/4 ¢~ w+(loge)e™ 1/
where he symbol < means that the left-hand side can be bounded from
above and from below by expressions like those in the right-hand side (use
the formula (4.11) and the inequalities (3.2)).

When applied to the function x = AY — pAS;, which satisfies
Ix| < conste™3|u|* in &,
Lemma 4.3 yields
Ge,u(0)—AS1(0,0,€) = uZ(AZ) cos(k5.0+w,(£))+Aﬁ) cos(ké.0+w,(c?)+Rgl)L)

with
—1/4 —1/4
3 H)

|A§cze)| < const g3 g~ w+{loge)e ]Agj)| < const g3 e~ w(loge)e
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and
1dRP)], |d* RV < conste=3 =W e",

— We are now in a position to apply Lemma 4.2 to

9eu(0) = Accos(ke.0 + we ) + AL, cos(kL.0 + @) ) + Re u(6)

with
Acy= pAQ) + 124D, AL, = pA + 1240, Rey=pRO + u2RE),

This yields the desired information on the number of critical points and the

Hessian at them for g, ,, and thus for f . O

5. PROOF OF THEOREM 3.1: DOMAIN OF ANALYTICITY FOR THE
SOLUTION S+

5.1. Method. We shall content ourselves with the case of S*. Let us fix
once for all u;, A, d,0; we suppose of course that the half-aperture of the
sector D:[l o is strictly larger than Ap.

In the particular cases where d =1 or @ = 0, we could treat directly the
Hamilton-Jacobi equation, but for the general situation we can only propose
an indirect method. The idea is that the Hamilton-Jacobi equation does
not tell much — at least explicitly — about the dynamics on the invariant
manifold under concern, and for that reason we could not rephrase it as a
fixed-point integral equation involving only bounded operators (or perhaps
we should say that all the information is contained in the Hamilton-Jacobi
equation but we do not know how to extract it in an efficient manner).
More specifically, this unboundedness phenomenon takes place with respect
to the angular variables ¢; and not u: when we solve the linearized equation
Dox = 1 in the space of the functions decreasing exponentially fast when u
tends to +oo, we find x = ET1) where Et is a bounded operator of the
suitable Banach space, but beside the operator Dgy the Hamilton-Jacobi
involves separately the partial derivatives of the unknown function, which
means that we should study the operators 8, o Et and 8, o Et too; the
first of them is a bounded operator, but not the others when d > 2, hence
the difficulty (this difficulty does not arise if & = 0). But we shall see that
the operators Jyp; o E* are no longer involved when the Hamilton-Jacobi

equation is bypassed through dynamical considerations.
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The alternative strategy which we propose consists in finding first a
parametrisation of the invariant manifold
(4= q0(w)
L) p=dolu) + pP(u,0; 2, 1)
Wt ¢ (5.1)
=0+ pd(u,b;2, 1)
| I = pJ(u,0;2,p)

which makes use of the plain variable u and of new angular variables ; with
respect to which the pull-back of the restricted Hamiltonian vector field is
straightened, i.e. can be written

=1+ 0(u)

0 = zw.
Requiring moreover that the functions P, ®;, J; decrease exponentially fast
when u goes to 400, we shall be able to apply the fixed-point theorem in
some Banach space (the operators agj o Et won’t appear thanks to the
straightening condition) and to obtain the analytic extension of the solution

to the domain
uweD ., 0eTd FASDY || <
11,07 ho—%’ u1,0,A8 13

for some positive .

This means that we shall replace the representation of the invariant man-
ifold as a Lagrangian graph by a parametrisation which will carry a better
control of the dynamics on it because it will correspond to the stable folia-
tion:” by fixing § € T¢ in the formulas (5.1) and letting u vary, one would
obtain the parametrisation of a curve Wé* which is a part of the stable
manifold of the point § = (27,0,0,0) € T,—z'.e.

Wj ={M e T*¢| dist(¢’; (M), ¢%(8)) tends to 0 exponentially
fast as ¢ tends to +o0 },

denoting € =]27 — g, 2n[xT? a part of the configuration space, T*C the
corresponding part of the phase space, and <p§q the time-¢ map of the Hamil-
tonian flow associated to H, .

Then we shall solve the inversion problem

p=0+p2(u,0,z,u) & 0=+ p0(u,p;2,p)

"In fact our method is close to the usual one for proving the stable manifold Theorem
in finite differentiability (see [Yoc95], [HPS77]), and somewhat easier since the analyticity

with respect to 8 comes for free.
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and find functions ©; analytic for

u € D pEe T;ilo_%a z € Eul,J,Aﬂa |:u'| < /J’I27

u1,0?
for some positive p5. For |u| small enough, we shall do the substitution:
(¢ =qo(u)
P = qo(u) + pP(u, o + uO(u, p; z, p); 2, )

Wt ¢
Y=

| L = wd(u, o+ pO(u, p; 2, 11); 2, 1)
and there will remain only to perform an integration in order to recover the

function S+.

5.2. Fixed-point Theorem and various Banach algebras. We shall
use twice (to find the parametrisation and to solve the inversion problem)

the following classical fixed-point theorem:

Theorem 5.1. Let B be a Banach space and p*,c,c” positive numbers.
Denote by | .| the norm of B and suppose that for every complex number p
such that |p| < p*, a mapping F, is defined from the ball A = {X €
B; | X| <2} to B, which satisfies

[7uO) <& and VX, X' € A, |Fu(X') = Fu(X)| < "lul 1X — X].

Then, for |p] < inf{ p*, # }, the mapping F,, admits a unique fized point X,
in A, the sequence of iterates (F)7'(0))m>0 is well defined and converges

to X, in B uniformly with respect to p, and
| Xl <2¢, 1X, — Fu(0)] < 2¢¢"|ul.

Let us define the Banach algebras® which our unknown functions will
belong to. We begin with spaces for their Fourier coefficients. Let By be the
Banach algebra of all analytic functions in the domain D:l 5% Yur 6,08 Which
extend continuously to bounded functions on its closure 5:1 5 X pIEINS

equipped with the supremum norm. If s € N, we shall use the notations

Bf = {4 € Bf; lyls <o},
I¥ls := sup {e Rt ly(u, 2)| ).

—+ —
(u,2)€EDy, 5% Zuy 6,08

8All the Banach algebras that we consider are commutative Banach algebras over C in

which the product of two elements v, x satisfies the inequality |¥x| < [¥llx]-
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Since u; +Reu > 0 for all u in 5:1,5 this defines a decreasing sequence of
Banach algebras B (with weighted norms | . |s). We define also the Banach
algebras

0
Bf = {v B Wl <o}, Wls = Il + 152,

Ifp € By, [9ls < I9lss1; if 9 € Bf and x € By, yx € B, and [ihx]s4e <
l#lslx|:- And these properties hold also for the sequence (B{)s>0.

The corresponding Banach algebras B} (h) and BY (h) are defined accord-
ing to the following construction: if B is a Banach algebra (with norm |. |)
and h a positive number, we consider the Fourier series in d angular variables
with coefficients in B and introduce the notation

[eln =3 e el if = e*Ooy (5.2)
kezd kezd
Here of course, k.0 = k161 + - - kq0q and |k| = |k1| + - - + |kg|- It defines a
Banach norm on the algebra
B(h) ={v¢ = Z 0 4y, with ¢y, € Bsuch that |1, < oo }. (5.3)
kezd
Any Fourier series ¢ in B(h) converges to a continuous mapping 1 from TZ

to B which satisfies the inequality supga |4 < |1]s. Moreover, if ' < h, it
h
satisfies also (see [P0s93])

[l < coth?(B5) supga [ (5.4)

One checks easily the inequality for the product:

Vip, x € B(h),  [¥xln < [#lalx]n,
and if 0 < h < h*, the Cauchy inequalities:

Vip € B(h*), ¥r € N*, [(9p) 9l < 1l ral(R* — h) T [gp .

(See Appendix A.)

Such a construction was already used in [Pos93, RW98]. The reason why
we too use this kind of norm for Fourier series will appear in Lemma 5.2.
We shall denote by | . |s» and |. |5, the norms of Bf (k) and B (k). These

are spaces of functions analytic in the domain DZ’I

¥} X Tg X Eul,J,Aﬂ and
bounded in its closure.
For the parametrisation of W+ and the inverse change of angular variables

which we described in Section 5.1, we shall obtain

X = (P,J,®) € Bf () x [Bf (h1))* x [Bf (h)]%, © € [B] (h2))?,
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with hy = hg — 1%, hy = hg — % (and X and © will depend analytically
on x). When dealing with products of Banach spaces of this kind, we shall
use as a norm the supremum of the norms of the components. Let us give

already two lemmas which will prove useful:

Lemma 5.1. Let B be a Banach algebra and 0 < h < h*. Suppose G €
B(h*) with 8yG € [B(h*))¢, and let p € C and A = {9 € [B(h)]% |up]n <
b=h . The formula

I
VpeA, G)=Go(ld+up) =3 — gl 4l (d)a

o rlorgl Tt
defines a mapping from A to B(h) which satisfies:
Vi, ' € A, 1G®) — Gk < 2%d|u] 189G lae |9 — ]

(Proof in Appendix A.)

For the second one, we introduce the notation

. 2
po(u) = dof) = ———

and we note that po(u)~! = 2e%(1 + e~2), thus

d

—_— -1
VueDy 5 Ipo(u)™l < AemtReu ang KD ()| < ) gurtReu

with A = sup{ 1, %cosh u1 } (A depends only on uy).

Lemma 5.2. Let h > 0 and s > 1. The formula

27loo
Ve EBI(), (BN == [ plut 0+ a0w,2)de
0
defines an operator Et : Bf(h) — B (h) which is an inverse to the right
for Dy = % + zw.% (i.e. Dy o EY is defined and equal to Id). Moreover,
for all € Bf(h),
IE*lsp < 6lolsp and oy E¥ls—1h < Asl9]sn

with K =4/sin AB (k > 4 and k depends only on AS).

Proof. We suppose b >0, s > 1 and 9 = Y, cza ¥ (u, z) e%% € BF(h). Let
1 the half-aperture of the sector D:[l, 5- Fork € 72, we define a function yy:

2_100 .
V(u,2) € Dy s X By 50, Xk(tr2) = - /0 Yl + ¢, 2) @25 dg
(5.5)

(observe that |arg(| = |argz~!| < By, thus u + ¢ € 5:1’5). This integral
converges, since s > 1, |p(u + ¢, 2)| < e7sr—3Rev|y | e ReC and Re( =
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|¢| cos(arg z) with cos(arg z) > sin AS (because | arg z| < 5 —Af). Moreover
the inequalities |x(u,z)| < e~ su1=8%eu|yy | sin~! AB show that Bty =

X = Yopeza Xk(U, 2) €% belongs to By (h) and
K
IxXks,p < 4 1%ls,n

with k = 4sin™! AB. Clearly y satisfies the partial differential equation
Doy =

in D 5 x Tf x Ty, 5,08-

Let (u,z2) € —25:1’5 X Yy, 6,a5. The Cauchy theorem allows us to change
the half-line of integration in (5.5). If k.w > 0, we increase the slope of the
half-line in order to take advantage of the decrease of the exponential e*2¢k-w;

+00 ) s .
xk(u, 2) = — i bio(u + £etPr) gize i ebw i ge

and we obtain a new bound:

1 "
scos By + |zlkwsin(B; +argz)

Since 0 < 81 < T and AB < B +argz < m— AfB, we end up with
2

K
lzk-wxls < 7 1xls-

Ixels <

Similarly, if k.w < 0, we decrease the slope of the half-line of integration,
and the previous inequality holds true in all cases (even if k.w = 0). But
Ouxk = Pr — izk.wx, because of the partial differential equation, thus for
all k € 2% [9uxells < Shpels and

K
"auXHS,h < —2—”¢"5’h

—_ -1
Lastly, the inequalities (Yu € D:l,(;) ]po(u)‘1|,|d(—50u——)(u)| < AewrtReu

imply that the function py'x belongs to B} ;(h) and

Ip5 " xls—1,8 < Mxls by

-1
and its derivative 9, (py ' x) = %——)x +pg '8ux belongs to B ;(h) too with

"au(palX)"s—l,h < /\"XHS,h + >‘||auX||s,h’

—1
since |d(—2%—l(u)[ < AemrttReu Hence

g " Xls=1.n < AL2Ixlsn + 10uxlsn] < Aslblis -
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5.3. The (u,0)-parametrisation. Let P, Ji,... ,Jy, ®1,... ,®,be analytic

functions of (u, 01, ... ,04, z) 2n-periodic in the 6; and consider the manifold

W= {(g,¢,p,1) = (q0(u), 60 + p®(v,0, z), po(u) + pP(u,0, 2), pJ (u,6, 2)) }.
A necessary and sufficient condition for the Hamiltonian vector field

g=p O =zw+al
p=sing—pdF(q,p) |I=—-pd,Flg,¢)

to leave W invariant and for its pull-back to be of the form

=14 0(p)

0 =z2w

is that X = (P, J, ®) satisfy
Do(poP) = —0,F(u,0 + u®(u,0,z)) — uPo,P
DyJ = —0,F (u,0 + u®(u,0,2)) — ppy PO, (5.6)
Do® = aJ — up; 1 Po,®.

Proposition 5.1. Let hy = hy — %. There exists a positive number )

such that the system (5.6) admits a solution X in B = By (k1) x [By (h1)]% x
[BF (h1)]? for |u| < W). Moreover, the solution X = (P, J,®) depends ana-
lytically on p and there exist By,Cy > 0 such that

”P”th < Cy, ||J||2,h1 < Cy, ”(I)"Z,fn < 01,

|P +p5  E*0uFlhy < Bilul, |+ E*8,F|a, < Bilul.
If § <o < X2, one can take
py=b' A o, By =b A% %07, Cp=b; AS7Y,
where A = 0%A(6/2,0/2) and the positive number by depends only on u;
and AS.
Proof. Let us define a mapping F,, of B in itself by the formulas
Fu(P, J, @) = (P*,J*, ®*)

P* = —pytET(0,F (u,0 4 u®(u, 0, 2)) + pPo,P),

J* = —BT(0,F(u,0 + p®(u, 0, 2)) + ppy P8, J),

®* = Et(aJ* — upy ' P0,®).

Our goal is to apply Theorem 5.1, since a fixed point of F,, is a solution
of (5.6). We first note that F,(0) = X = (P J1) &0} with

PO = —prlEta, . JO = —E*tg,F, &0 = Et(aJD).
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In order to indicate explicit constants in the course of the demonstration,
we shall assume § < o < A~? right from the beginning. But it will be
clear that, if this is not the case, there still exist constants which satisfy the

desired inequalities: only the formulas for them may then differ.

Lemma 5.3. Let A = 07%A(6/2,0/2) and hy = hg — %. There ezists a
positive constant ¢ (which depends only on u1) such that, for any j,j' €

{1,...,d}, the following inequalities hold:
180, Flops 5 < cAo™ and [8,Flop, 12 < cAs™,

]|6%ap;_ﬁ||2,h1+;_0 < cAo™? and ||8u8(pjﬁ’[|2,hl+% <cAsloh

(Proof in Appendix B.)

The lemma implies that

10uFl2,ny < cASTY, |0,F o, < cAo™! < cASTE,

and thus, by virtue of Lemma 5.2,
POl < Ascds™, [T |gp, < keds™.

18D g5, < sup{|ai,... ,|aq| IsicAs™L.

Let by = Ax%csup{1,|ail,...,|ag|}: this positive number depends only
on u; and AB and allows to bound the first approximation X() by

IXO) < ¢ = b A5,
By applying Lemma 5.1 to the Banach algebra B, we see that whenever
« o
lul < pi= 400, and | ®|a,n, < 2¢f,

the composition of 8,F or 8,F with Id + u® defines an element of BS (h),
thus the mapping F,, is well defined on

A={X€eB |X]| <2}

provided that |u| < pj.

Let us now compute a constant ¢’ = ¢} which will satisfy the assump-
tions of Theorem 5.1. Suppose that || < p} and X, X' € A. Let X* =
Fu(X), X" = Fu(X'). We must study the components P'* — P* J'* —
J* & — & of X'* — X*.

Lemmas 5.1 and 5.3 show that

18, F o (Id + p®') — 8,F o (Id + p®) |2, < 2%dcAs o ul| X' — X]|
(5.7)
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and
8, F o (Id + ) — B F o (I + ) fo y < 2deAo2uf| X' - X|. (5.8)

We observe also that the identity P'd,P' — P9, P = (P' — P)3, P +
Py, (P — P) implies
|P'0uP’ — POuPlop, < |P' = Plip [P lipy + I1Plip [P = Plyp,
< 4c)|P' — Py,
hence
| P'8,P' — PO, Play, < 4bjA67HX' - X]. (5.9)
And the identity py' P'8yJ' —py P8, J = pgt (P — P)3yJ' +py 1 P8, (J' — J)

together with the inequalities |py ' ()] < Aert®e% (vu € DF ) imply

u1,0

o5 P'0uT" — p5 ' POuT 2,h,
S AP = Plupg |7 lan, + NPl — Tl < X — X].
Hence
Ipg " P'ouT" —pg POuJlap, < 4N A6THX' ~ X|,  (5.10)
and similarly,
Ipg ' P'0u®’ — pg ' POuDlzp, < AN AST'IX' — X|.  (5.11)
Now, in view of the inequalities (5.7) and (5.9), Lemma 5.2 yields
I[P = P*lyn, < Ax(2%de + 4b0) AS o7 ul| X' — X
< A71k(2%dN%c + 4b)) AST Lo || X - X|.
And, in view of the inequalities (5.8) and (5.10),
[J™ = T¥on, < 6(2%dcdo™ + 4Xb) o) A~ Lo u|| X! — X (512
< A 1k(2%dAc + 46,) AdT Lo || X! — X
Finally, because of the inequalities (5.12) and (5.11),
19" — @*|o.n, < Ar[sup{|a;| }A " k(2%dAc + 4b))
+ AN o] AST o ]| X - X
< &% sup{ 1, |aj| }(2%dAc + 801 AT o7 u|| X' - X,
and | X' — X*| < b{As Lo~ ul| X' — X| with a positive number
b = k2sup{1,|c1],...,|aq }(2%dN2c + 8b))

which depends only on u; and AS.
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So, we can take ¢ = b{A§ 'o~! and Theorem 5.1 provides a solution
X = (P, J,®) in A, analytic in pu for
1

1 -1

1
Il < inf{ i, o7 } = inf{
2¢f
Moreover,

12 = POy, 1T = T g, < 1X = XO) < 2] ] || = 2050 42620 |

and

IPlLhss 112,00, 1 @l2n, < IX] < 261 = 267 A6,
one can thus easily choose b; large enough, but depending only on u; and Ap,
so to ensure the three inequalities announced in Proposition 5.1. The uni-
form convergence of the sequence (F}*(0))m>o guarantees the analyticity

with respect to p of the solution. O

5.4. Elimination of the variable #. Let us now focus on the functions
®1,..., P, discovered in the previous section. As functions of (u, 8, z) they
belong to By (ho — %), but they also depend analytically on y. They are
defined for || < p} and satisfy "(I)Hz,ho—% < (.

Proposition 5.2. Let hog = hg — %‘01. There exist positive numbers i, Co

such that, for |u| < ph, the close-to-identity change of angular variables
o =0+p2(u,0,z 1)
admits an inverse
0=+ pO(u, 2, 1)
with © belonging to B = [BF (h2)]?, depending analytically on p, and satis-

fuing the inequality
[®l2,n, < Co

If § <o < A2, one can take
wy=b3" A0, Cy=byA5T!,

where A = 0~%A(5/2,0/2) and the positive number by depends only on u
and AS.

Proof. The equation to be satisfied by © can be written
© =F,(0):=—-do(Id+ u0)

(here of course composition must be understood with respect to the vari-
ables 6; only, the rest of the variables (u, z, 1) being considered as a param-

eter).
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We shall assume § < 0 < A™2, so that we can take pyo= biA~ 180 and
C1 = b1As™! with A = 0744(6/2,0/2). In view of applying our fixed-point
theorem, we first observe that F,(0) = —® and

122, < APl pyrze < b =b1A67,

and that according to Lemma 5.1, F,(©) is defined and belongs to B as

soon as O]z, < 2¢, and
g
|ul < pg = inf{ —, u3 }.
40c}’

Let us suppose that |u| < i3 and [Olgp, 16/l < 26 According

to Lemma, 5.1,
|74(©") = Fu(®)lz s < 2%d|11l|B0®@ ]2, 1,1 £ 10" — Ollg ps

but the Cauchy inequalities show that 102,00+ 2 < 1061 A6~ Lo~ Thus
we can define

cy = 10.2%dby A§™ o1
and apply Theorem 5.1. O

5.5. Substitution and integration. Let us suppose § < ¢ < A2 and

consider the functions
P(u, 0,2, 1) = Plu, ¢ + pO(u, ¢, 2, 1), 2, 1),
T (u, 0,2, 1) = J (U, 0 + pO(u, @, 2, 1), 2, ).
Since [O]; ,_ 90 < "6”2:’10—?—3 < Cy = by A6™!, we can apply Lemma 5.1

0
with h = ho — 3%, h* = ho — 82, B = B} or B}

90 90 .
PeB(ho—10), T €Bf(ho—10) for lul < inf{ s, s,

and these functions depend analytically on p. Moreover,

IP = Plypg-2s < 2%d|ul|0p Py, 32 Ca,

o
20C, }

|7 = Ty pe- 95 < 2%dl1s]|8 |3 p, 52 Co.

0
Using the Cauchy inequalities and Proposition 5.1 with C; = b1 A6~ !, we
find
106Pl - 3551007l 2 < 1007C,

50:

[P = Plypg—sz, |7 = Ty py_se < b3A%6 207 ) (5.13)

T
10 10

with bg = 10.2%db; b,.
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Proposition 5.1 provides also the inequalities
1P~ PO, 1= Oy s < b A% 207 )
We thus end up with the inequalities
[P = PO o0, T = Tl s < b4A%6 207, (5.14)

10
where we choose by > b3 + by large enough (depending only on u; and Ap)
so that all this holds for
lu| < bytA Yo

Proposition 5.3. The series of Proposition 3.1
§t = S'O(u) + Z/"n‘g’:—(u, P Z)

n>1

converges for |u| < by A™160 to

. +00

S’+(u> 2 Z,/,L) = SO(U') - /1’/ po(u')’P(u', ®, 2, /'1‘) du,

u

and

8y (St — 8o — S = upo(P — PW),  8,(5F = So — uST) = (7 — JV).
Theorem 3.1 follows from this proposition: One checks that there exists a
positive number b5 which depends only on u; such that |pg|; < b56~! and

Ipbl1 < b5672 (see Appendix B), thus the first inequality in (5.14) implies

that for |u| < b;'A~ 140,
18,(5* — 8o — Sy 52 < babs %630 P, -
102(5* — 8o — 8 )y < babsA2(1+371)5~% |u?.

The second one can be rewritten
10, (S+ — S — l‘gf—)uz,ho—?—g < ba A0 20~ |l
1040, (3* = 5 — w5} lyp_se < bsA26-207|u2
The Cauchy inequalities yield
102(St — So — S o po—o < 106442626722,
and, by integration, the first inequality in (5.15) implies also
(5% = So — uSF) (w052, 1)| < %b4b5A25_30_1IMIQe"zul_me“

— —d —
for u € D:[l,,;, p € Tp,_, and z € Ty, 51p- O
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Proof of Proposition 5.3. The formal manifold Gr(dS*) may be written

q = qo(u)
W* - p :pﬂ(u) +/1’Z/j’np"nk,(u’ (p,Z)
n>0
I=p) u"Jp(u,e,z)
n>0

with coefficients P} = py'8,5;" IRTRVASES 0,5 11 exponentially decreasing

at +oo with respect to u, and it is invariant by the Hamiltonian vector field
g=p p=zw+al
p=sing—pdgF(g,0) |I=—-pd,F(g,¢).

The same is true for the Taylor expansion with respect to u of W:

q = qo(u)
w.d P=po)+p)  i"Palu, 0, 2)
) n>0
I=p Z B Tty z)
n>0

with P = > pu"P, and J = > p"Jn.
This means that we have got two formal solutions, (P*, J*) and (P, J),
of the system

Do(poP) = —0uF — u(POLP +poat .8,P)
DoJ = —08,F — p(oy " PouT + aJ.0,7)

which expresses the invariance by the Hamiltonian vector field. But this
system has a unique formal solution whose coefficients decrease exponen-
tially with respect to u at +oo, as is easily checked by using the invertibility
of Dy.

Therefore, we get for all n > 0 the identities

palaug;,:_l = Pn, acpS;;_l = Tn,

the first of which can be integrated:

+00 ,
5:4-1(“»90, z) = —/ po(u)Pr (v, 0, 2) du'.
U

O

Remark 5.1. The fact that W is Lagrangian stems from the isotropy of the
torus 7. Indeed, the symplectic 2-form is preserved by the flow, but on W,
all the trajectories lead to 7 where it vanishes identically, thus it vanishes

on W too: W is isotropic — and Lagrangian since it has dimension d + 1.
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6. PROOF OF PROPOSITION 3.3: STRAIGHTENING OF THE
CHARACTERISTIC VECTOR FIELD D

In order to prove Proposition 3.3, we shall apply twice the fixed-point
Theorem 5.1: once to find U and once to invert Id + plf; then we shall
deduce from the Cauchy inequalities bounds for the derivatives of &/ and V
(each time the domain which we work in will shrink a little). We first define

the appropriate Banach algebras.

6.1. Definitions and initial bounds. Let D and ¥ be open subsets of C.
We denote by Bpxy: the Banach algebra of all analytic functions in D x %
which extend continuously to bounded functions on the closure D x X of
that domain, equipped with the supremum norm, and by Bp,s the sub-
algebra of the functions whose partial derivative with respect to the first
variable belongs to Bpxy too. For h > 0, we define then the Banach al-
gebras Bpxx(h) and Bpyyx(h) according to the construction of Section 5.2
(see the formulas (5.2) and (5.3)).

Let us fix ug > 0, AB €]0, arctan 2—%[ and d§,0 > 0. The last two parame-
ters will be supposed small enough with respect to ug and Ap, even if we do
not mention it explicitly (for instance the half-aperture of the sectors Dyys

and D:z 5 must be larger than AS). We define four domains
D(3) — Du(3),% ' D(Q) — Du(z)’%‘s— C D(l) — Du(l),% C D(O) = Du(o),gg

by the conditions

DO = Du(i),é(i)v uld) = u2 + éi;f};i, 6t = 3%@5’ 1=0,1,2,

where 3 denotes the half-aperture of the sectors D;M and D:er,J’ so that
DO =D,,;,  {ueC| dist(u,DD) < %} cpb-b =321,

Since the sectors DT, . have the same aperture, there is only one corre-

ul® 8
sponding sector for the variable z:

Z)'u,(i),é'(i),Aﬁ =1, :=0,1,2,3.
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The interest of these definitions is the property that for all u in D), the
disk of centre u and radius /6 is contained in DU~Y, which allows us to
benefit from the Cauchy inequalities with respect to u. Observe that, if say
§ < 1, the numbers u(©®, 4! and 4 are bounded by a number u; which
depends only on uy (one can take u; = % cot B, where 3 is the half-aperture
of the sector Df;’l).

We shall write B® or BY instead of Bp)y 5 or Bpi)yx; (the norm of 8@,
resp. B, will be denoted |-1®), resp. || .]@) and we shall use four different

values of h:
3414

h®) =ho—o <h® < BW < BO = py — % A = hy— 2%

We shall obtain, for |g| small enough,
U e B (rM) x [ﬁ(l)(h(l))]d, Ve BA(h?) x [B@ (n))¢,

When dealing with products of Banach spaces of this kind, we shall use as
a norm the supremum of the norms of the components.
Section 5 provides initial bounds in B (h(9)) for the vector field D that

we want to straighten:

Lemma 6.1. In the coordinates (u, ), the characteristic vector field D can
be expressed as

- ~ 0
D = Do+ p(Dy

— + Dy,
6u+(p

0
%)a
with 5 B B _
Dy = pH(F) 7 0u(5(5" + 57) = S),
D, = ptad,((St + 57) - ).
If AB, 6,0 are small enough, there exists a positive number pg such that the

functions bu,f)wl, cen ,15% are analytic for

ueDO, peTl,, 2€%, |ul < uo.
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Moreover these functions and their partial derivatives belong to BO(pO),

and there exist positive numbers Cy, Cy such that

~ ~ 0 ~ ~ .
1Dl 1Dy, 150y < Co, 1D, 14D, 1, <01, 1< <.

If § <o <1, one can take
po =by A 60, Co=boAs™", Cy=bAs o7},
where A= 0"%A(5/4,0/4) and by depends only on uy and Ap.
(Proof in Appendix B.)

6.2. Straightening of D by Id+ull. We now prove the first part of
Proposition 3.3:

Proposition 6.1. There exist positive numbers u; and M, and there exist
real-analytic functions Uy,Uy,, ... ,U,, satisfying the following properties:

~ the vector fields D and Dy = 6% + zw.a% are conjugated by the mapping
(u,0) = (v,0) + nU(,0; 2, p),
with U = Uy, Uy, - - . ,Uy,), §

— these functions are analytic with respect to all their arguments; for |u| <

1, they belong to BO (W) with [4,|%,, 114y, 150, < M.

More precisely, if § <o < 1, one can take
p1=b7'A7162  and M =b As7!
where A =0"%A(8/4,0/4) and by depends only on uy and AB.
Proof. If we omit the variables z and u, the equations to be solved can be
written
DolUy = Dy o (Id +pl),
DolUy; = Dy, o (1d+uld). (01

In order to apply the fixed-point Theorem 5.1, we shall define an inverse to
the right for the operator Dy in B (h(1),

The domain DM is a lozenge whose corners are u(!), ip, —u(l), —ip, where ‘

26
=Dt I _
p=utanfy 2  3cosfs
(B2 denotes the half-aperture of the sectors D;u), P and D;L(l), 6).
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EY)

Lemma 6.2. Let ¢ = Z (v, 2)eF? € BORM). The formulas
kezd

_e—izvk.w ‘[ZP eizCk.wd)k(C, z) dC ’lf kw> O,
Vk € 2%  xip(v,2) = { ¢izvkw Sl €5 F (¢, 2) d if kw <0,

Jo ¥ (¢, 2) d¢ ifkw=0,
define a function X = > czaxk(v, 2)e*? of BORMY such that Dox co-
incides with 1. The correspondence ¢ — x = Ey1 defines an operator
E,: BO(RM) — BO(hMW) which satisifies a bound

1 1
| 1E:9150, < sl
where k depends only on us and Ap.
(This lemma is slightly reminiscent of [FS96, Lemma 3.3] which deals with

a difference equation.)
Proof of Lemma 6.2. We note that if v € D),

[—ip,0) DO, Jv +ip|? < 7%+ ud,
[v,+ip] C DY, |v—ip|* <%+,

where the number u; depends only on uy and is larger than u,
Suppose that k.w > 0, (v,2) € DY %3 and ¢ € [v, +ip]. We have
Ie—izvk.w+iz(k.w| - e—k.w Sm(z{—2zv) <1
since Im(zv) < Sm(2() < Smizp). Thus [xk(v,2)| < |v — ip|lype V), and
Ieel® < (2 + ud) 72 | .
In fact, the previous inequality holds also if k.w < 0 or k.w = 0. Thus
x € BO(hM) and
1 1
IS0 < (2 + )2l
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Since for all k € Z%, 8,k +izk-wxr = g, the function y satisfies the partial

differential equation
Dox =1
in DM x T¢ ) x 5.
But we can derive another bound by using the inequality
Sm(zw) > |zw|sin AS,
where w = 1p — v, in the case where k.w > 0: if we parametrise the segment
of integration by ¢ = v + {w, £ € [0, 1], we obtain

|w]

1
< Iy |V / —tkwSm(zw) gp < )
IXk(U’z)l = "¢k" lwl 0 € dé = Lw gm(zw) "d)k‘” 3
hence .
(1) (1)

In the case where k.w < 0, we would obtain the same inequality by using

w = v + 1p. Finally, in all cases,
1

M <1 1
1Bl < (1+ )l
because of the partial differential equation, thus x belongs to B(!) (M) and
we have the desired bound. O

Remark 6.1. One checks easily that, if ¢ is real-analytic, x = E,1 is real-

analytic too.

End of the proof of Proposition 6.1. The system (6.1) is thus equivalent to
the equation F,(U) = U where the mapping F, is defined by the formulas

Uy = Ep[Dy o (Id +ulh)],

f“(U):L{* « ~ .
Up; = BylDy, o (ld+pl)], 1<j<d.

In order to specify its domain of definition and to study that mapping, we
apply the following lemma, which is analogous to Lemma 5.1 but with the

variable v involved as well as the angular variables 6;:

Lemma 6.3. Let D and D* be open subsets of C and h a positive number.
)

Suppose that for each v in D, the closed disk of centre v and radius 5 s
contained in D, and let h* = h + 5
Suppose G € Bp+xx(h*) with dG € [Bp+xx(h*)]™! and let u € C and

A= {U = (x,%) € Bpxs(h) x [Bpxs(h)]*; |ul|n < inf{ %’ % 3}
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The formula

YU=(x,¥) €A, GU)=Go(Id+uld) =

Z Mr0+|r| X”'O,(/)"'l - _¢Td (8 )7"0 (BQ)TG
Irl gl 1 a 7Y

7o
(ro,r)ENxNd 0

defines a mapping from A to Bpxs(h) which satisfies:
vUuUu' e A, 1GU") - GU)|n < 27 (d + 1)|ul [dGl; [U — Ul

(Proof in Appendix A.)

From now on we shall assume that § < ¢ <1 in order to indicate explicit
constants (but it will be clear that, if this is not the case, there still exist
constants which satisfy the desired inequalities). Specializing the previous
lemma, with D = D) ¢ D* = DO and b = kW) < b* = KO, we find that
our mapping F,, is defined at least for |uif "511()1) < & (and |u| < o).

By virtue of Lemmas 6.1 and 6.2, F,(0) = (E,D,, E,D,,) satisfies

IF OIS, < ¢ = rboAs.

In view of applying Theorem 5.1 we define the Banach space B() = B(1) (M) x
[BM) (R(M)]¢, denote by | . ||§Ll()1) its norm, and we restrict the domain of defi-

nition of F, to {4 € BY; |u ][%2) < 2¢' } assuming

6 1 1

—142,

<pfi=— =
Il < p 12 2¢  24kby

We observe now that, for |U ”%()1)7 124 ||%()1) < 2¢, the images U* = F,(U)
and U™ = F,(U') satisfy

" U, < <l = Ul

with ¢’ = 29+1(d + 1)kC; = 2%+1(d + 1)kbg A6~ 6!, We thus obtain a
solution U € B") which satisfies

A0y < 0146 for |u| < py = b ATIS?

with a positive number b; which depends only on us and AB. And one
checks easily that U is real-analytic thanks to Remark 6.1. O

6.3. Inversion of Id +xU and end of the proof of Proposition 3.3.

Proposition 6.2. There exist positive numbers po and N, with ps < py,
and there ezists a real-analytic vectorial function V = (Vy,Va,,...,Vy,)
which satisfies the following properties:

— the components of V are analytic with respect to (u,,z,u); for |u| < po,
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they belong to B (h®) and [V|%,, Ve, |5, < N;
~forue D@, pe ']1‘2(2), z € X and |p| < pg, the point (u, o) +uV(u, @, 2, 1)
belongs to Y x T;il(l) and its image by Id +pU coincides with (u, ).

More precisely, if 20 < o <1, one can take
pg = b3 A% and N =byAs!
where A = 0~ %A(6/4,0/4) and by depends only on ug and AP.
Proof. The equation to be solved is V = F,(V), where
Fu(V) := —U o (Id+pV).

We use Lemma 6.3 with a slight adaptation: we define D = D@ ¢ D* =
DW and b = h® < h* = h+&. Since h) = h*+ &, we can use the Cauchy
inequalities for ¢/ in order to obtain bounds in B* := B*(h*) x [B*(h*)]:

[8utlse < U1, < M, |8aUl} < 1207 M. (6.2)

We shall suppose 0 < 1 and we retain that |dU|}. < 12071M. According to
Lemma 6.3, F,(V) is defined as soon as V € B® := B®) (h(2)) x [BG) ()4
and ||ﬂvll,(12()z) <inf{§/12,0/24}. From now on we shall suppose 2§ < o.

Let us check the hypotheses of Theorem 5.1: the first approximation is
F,u(0) = —U and

IF. 1%, < ¢ = M = b A5

We can restrict F, to the set {V € B®) ; ||V||§L2()2) < 2¢' } if we suppose
6 1 1

< *;: —— =
Il <w” = 1555 24b,

And if VI, V1%, < 2¢, we find

—152,

17,0V = Fu) I, < v - VI,

with ¢ = 24+1(d+1).1207 M = 12,2441 (d+1)b; Ad~1o~!. We thus obtain a
solution V € B(?) which satisfies ||V||§12()2) < by AS7Y for |p| < po = by 1AT1E2,
with some by = bo(ug, AB). Of course V is real-analytic since U is. O

According to Proposition 6.2, for z € ¥ and |u| < pg, the image of D «
T4 by Id-+uV is contained in D x T and (Id +pU) o (Id + V) = Id.
Moreover we can ensure the injectivity of Id +uf on 5(2) X T;il(z) by taking
by large enough, thanks to the inequalities (6.2). This means that Id + ulf
induces a bijection between (5(2) X TZ(Z)) N (Id+p L{)‘l(—ﬁm N TZ(z)) and
its image, the reciprocal being Id +uV .
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Since [U|\y < M and [V|%)) < N, the sets (Id+uU)~ (D) x Tho)
and (Id +up U) (75(2) XTZ(z)) contain D) x T} s as soon as |ulM < inf{¢,<

and |pu|N < inf{ %, ¢}. Thus, for || < inf{ M~!, N=1}.inf{ 4, <}, we have
by restriction a bijection Id +u U between P« Ti(g) and its image, and a
bijection Id +uV between 5(3) XTZ(:;) and its image. The Cauchy inequalities

provide the desired bounds for their partial derivatives in 5(3) X TZ(a).

APPENDIX A. FOURIER NORMS AND COMPOSITION LEMMAS
Let B be a Banach algebra, denote by | .| its norm, and let A > 0.

(B(h),| -|») is a Banach space. Suppose indeed that (1/)(”))n20 is a Cauchy
sequence in B(h). For each k € Z¢, the sequence (1/1,(?))”20 of Fourier coeffi-
cients of index k is a Cauchy sequence in B and admits thus a limit ;. Let
us check that 9 = 3, 74 ¥pe®? belongs to B(h): if K is fixed in N*, we
can choose n large enough so that
> b -yl <1
lkI<K
and the partial sum 3 g [4%| elklh < 1 4 |4, is thus bounded inde-
pendently of K (A, = |™] tends to some limit A > 0 since |4y — Ap| <
| —4p(m)| ;. thus A, is bounded independently of n), and 9 € B(h). Let
us check that |4 — (™|, tends to zero: let € > 0; we fix N € N such that
Vn,m > N, |4 — (™|, <, and we fix K € N* such that
> Il < 37 et <
k> K k> K
We observe that for n > N,
D2 17T < T j e 4 g — M, <2,

lk|>K |k|>K

and 3 o — 9 HP <

kezd
PO et &l IEL Lo S A LRSS S el P

k| <K k|2 K |k|>K
But for n large enough the first sum in the right-hand side is less than e,
thus ¢ — ™[ < 4e. 0
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The inequality for the product |¥x|n < |¥|n]x|n is obvious. Let us prove

the Cauchy inequalities:

1)l < 71! .. gl (B = B) 1Mo

if 0 < h < h*, % € B(h*) and r € N¢, We have
1@0)™ln = D KT - kgtepel €h < My .. Mafb]ne,
kezd
with M; = supkjeN{ k;je_(h*"h)kf }for j =1,...,d, and we observe that
M; < (B* —h) " sup{t"ie7t} < (h* - h)_”r;j e” " < (h* — h)"Tiryl.
>0
O

Proof of Lemma 5.1: We suppose that we are given G € B(h*) and v €
[B(h)]¢ which satisfy the assumptions of the lemma. We apply the Cauchy

inequalities to G and we observe that

] r
|—F— SUE A B9) Gl < [l (h* = B) MG e <

rl.
hence the convergence in B(h) of the series which defines G(v)), and the
inequality |G(4)n < 24|Glns-

We suppose now that we are given ¢ and 1’ in A. According to what has
just been proved, for each ¢ € [0,1], 9pG o (Id +u[te + (1 — £)9)']) is bounded
in B(h) by 2¢|0pG|p+. But

1
GW') - G() = (' — ). /0 ByG o (1d +pltsp + (1 — t)']) i,

hence the result. |

Proof of Lemma 6.3: The proof is the same as for Lemma 5.1, except that
there is one more variable involved. The Cauchy inequalities that we use

are

165)(86)" Gl < rolrit...ral(§) ™" (§) |Gl
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APPENDIX B. INITIAL BOUNDS

We first adopt the notations of Section 5. The numbers uy, §, 0 and AS
are given, with § < o < A2,
Proof of Lemma 5.3: According to the inequality (1.8),

V(s 0) €Cs x Thy s, [F(u,0)| < A(5/2,0/2) %o,

The Cauchy inequalities with respect to u show that
2R B, )| < €1 A(6/2,0/2),
Y(u,p) € Cs x Ty _sg, 2
T | emtrRen)g, By, )| < 1T A(8/2,0/2)3.
(We have used the fact that § < 1.) Since D;Ll 5 C Cs, the inequalities (5.4)

provide a constant ¢y which depends only on the dimension d such that

”F"2,h0—%0 < cpe?™ A and "8“15"2,)10—%0 < cpe?U A§!

where A = 07%A(§/2,0/2). The Cauchy inequalities with respect to the
angles now allow to bound ||8¢jﬁ‘”2,h0_%g, ||8uF||2,h0_%a, 10, B%,ﬁ’”Q’ho_%g
and "auafijHQ,ho—%a' 0

Bounds for py and py: We can write po(u) = e %f(u) where f(u) =
4(1 4+ e2¥)~1 is 2mi-periodic and meromorphic, with simple poles at 77 /2
and —im/2. A compacity argument shows that, if u belongs to the intersec-

tion of Cs/p and the strip { —u; < Rew < 1}, f(u) satisfies an inequality
|f (w)] < b5,

where the positive number b depends only on u;. On the other hand, for
Reu > 1, |f(u)] is bounded by |1 — e~2|7L. Thus

Vu€ GCsa, Reu>-—ur = |po(u)| < byl e Rew

where b’ depends only on u;. The Cauchy inequalities allow us to conclude
that
[pols <0567 and |pplh < bs67?

for some bs which depends only on uy. a

Proof of Lemma 6.1: We now adopt the notations of Section 6. The first
assertion of Lemma, 6.1 is a simple restatement of the formula (3.7). Let us

denote by pg the function ‘fii;. According to Proposition 5.3, we had

0u(ST — So) = upoP = ppoP, 0,(ST — So) = pI T = puJ,
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and if we use again the bounds of Section 5 but with (u(?), §/2, 0/2) replacing
(u1,6,0) , especially the bounds for P — P and J — J in the inequality (5.13)
and the bounds for P and J in Proposition 5.1, we find

0 —
P 14 01T 1 0 10aP VI 0 10uT I o < A8

for |u| < po = b 1A~ 80, where A = 0~%A(6/4,0/4) and ¥’ depends only
on ug and AfS.
The functions 8, (ST — Sp) = pupoP~ and 8,(S* — Sp) = uJ~ satisfy the

same kind of inequalities, and we have
. 1 _ _ - 1 _ .
Duzipol(,P—f__I'P )) D(pjziaj(\zj*_'i"jj )’ .7:1,-~-7d,

where the function py ! and its derivative are bounded in D(© by a number

which depends only on uy. We thus obtain

d 0 =4 0 = 0 ad 0 —
Dulis g 1Dl 50 10uDuligy o 10uDilily , o < b" A5

with some new b” = b"(ug, AB) and we can conclude by the Cauchy inequal-
ities. O
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