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Abstract

We study two complex invariant manifolds associated with the para-
bolic fixed point of the area-preserving Hénon map. A single formal power
series correspond to both of them. The Borel transform of the formal series
defines an analytic germ. We explore the Riemann surface and study the
singularities of its analytic continuation. In particular we prove that a
constant, which describes the splitting of the invariant manifolds, does
not vanish.

1 Area-preserving Hénon map

One of the most interesting problems of modern dynamics is related to study-
ing mechanisms of chaotic behavior. In Hamiltonian dynamics the splitting of
separatrices is recognized to be its main source. Among the models the Hénon
map plays a special role. For example the geometry of its separatrix splitting is
closely related to creation of elliptic islands near a homoclinic tangency in area-
preserving maps [Dua98]. The last phenomena can be modeled by the quadratic
area-preserving map,

Fei(z,y) o (z1,51) = (z + ey, y +ex(l — 1)),

where ¢ > 0 is a small positive parameter. It is well known that any non-trivial
quadratic diffeomorphism of the plane, which preserves area and orientation
and has two fixed points, can be put by a linear change of coordinates into this
one-parametric family for some £ > 0.

The study of the separatrix splitting is especially difficult in the case of
small &, due to the exponential smallness of the splitting [FS90]. For small
positive € the origin is a hyperbolic fixed point of F. and the corresponding
separatrices are one-dimensional curves in the plane (z,y) (see Fig. 1). The
separatrices look like the separatrix of the limit flow defined by the system of
two differential equations

T=y, y=z(l—=z).

Unlike the separatrices of the limit flow the separatrices of the map split. The
intersection of separatrices with the horizontal axis is a homoclinic point due to
a symmetry of the map. It was established by one of the authors [Gel91] that
the angle between the stable and unstable separatrix at the first intersection of
the separatrices with the horizontal axis is given asymptotically by

64me27" /e
o= T(|®|+O(£)) (1)
for some © € C. This formula implies the exponentially small transversality of
the homoclinic point for all small € > 0 provided the factor || does not vanish.

In [Gel91] this factor was evaluated numerically: |©] ~ 2.474 - 106,




oz 02

02 4 o2}

04t 1 o4

Frys 4 08

08 08

Figure 1: The limit separatrix (left) and the splitting of separatrices of the
Hénon map (right). The unstable separatrix is drawn by the solid line, the
stable one by the dashed line

The splitting constant © is a complex number, which comes from the study
of the separatrices of the parabolic fixed point of the Hénon map,

2

(u,v) = (u+v —u? v —u?), (2)

in the complex phase space C2. These separatrices are the main object of the
present paper.

The study of the separatrices of the map (2) can be reduced to the study of
the single second-order nonlinear finite-difference equation

w(z 4+ 1) = 2u(z) + u{z — 1) = —u?(2), (3)

where 2z is a complex variable. It is often called “complex time”. Of course, this
equation has a lot of solutions. The separatrix solutions are uniquely defined
by the asymptotic condition

6
uF(z) = 5 + 0z for z & +oo.

[{4 ”

The sign “+” corresponds to the stable separatrix and the corresponds to
the unstable one. The functions u® are entire. The splitting of the separatrices
may be described by the difference

w(z) =ut(z) —u(2).

If Im z goes to infinity following the negative imaginary axis this difference goes
to zero exponentially fast. The splitting constant © describes this quantita-
tively:

. Z4
w(z) = e 7 (0 + 0(7Y). (4)



The last asymptotic equality can be considered as the definition of the splitting
constant ©. We discuss some alternative definitions of © later in Section 2.4.

Theorem 1 In the case of the Hénon map the splitting constant |©| does not
vanish. More precisely, © € iR and Im© < 0.

The proof of Theorem 1 is based on the detailed study of the Borel transform
of the formal separatrix of the parabolic fixed point. We describe the Riemann
surface of the Borel transform and give a complete description of the first sin-
gularity, which contains both a polar part and an infinite order branching,.

The knowledge of the singularity leads to a quite efficient and simple method
for numerical evaluation of © (Sect. 3.2).

Many analytical phenomena described in the present paper are rather usual
in Ecalle’s theory of resurgent functions [Eca81]. A nice introduction to this
theory can be found in the book [CNP93]. The results of the present paper look
quite natural in the general context of this theory. Nevertheless, our approach is
mostly elementary and does not require the knowledge of the resurgent functions
theory (except for the appendix, but its result is not necessary to prove that ©
does not vanish).

Different maps can have different values of splitting constants. The methods,
developed in the present paper, can be used for their study.

The first definition of a splitting constant was proposed by V.F.Lazutkin
(L84, LST89] for the case of the standard map.

Hakim and Mallick [HM93| proposed to use the Borel summation for the
study of the exponentially small splitting of separatrices. A more rigorous ap-
proach was used by Suris [Sur94] (for the semistandard and cubic maps), who
established the relation between splitting constants and asymptotic behavior of
the formal series coefficients. A modification of the last approach could lead to
a proof that © does not vanish, but to complete the proof one still needs the
knowledge of the singularity structure. .

Establishing an asymptotic formula like (1) is an extremely difficult analyt-
ical problem. The first formula of this type was derived by V.F.Lazutkin {L84]
for the standard map. Lazutkin’s original paper was based on two conjectures,
which are not proved in their complete form up to know. A complete proof of
the Lazutkin asymptotic formula has been published recently in [Gel99].

A formula similar to (1) describes the splitting of a small separatrix loop,
created in a saddle-center bifurcation in a general family of area-preserving
maps [Gel98]. In this case each family has its own splitting constant, which is
not determined by any finite jet of the functions.




2 Analytical properties of 4

2.1 Formal separatrix solution and its Borel transform

Let C[[z7!]] denote the space of all formal power series in the non-positive
powers of z with complex coeflicients.

Lemma 1 Any nonzero solution of Eq. (3) in C[[z71]] can be written in the
form u(z+a), where a € C and u is the unique nonzero even solution in C[[z7*]],

00
ay - 15# 663_
U(Z):Z-Z?]:_—(iz 2+724 4026+

=

—_

The coefficients ay, form an alternating sequence of real numbers.

The proof of this lemma is completely straightforward. It is sufficient to sub-
stitute the series into the equation and reexpand the left and right hand sides
into power series in z72. Collecting the terms of equal order we obtain a recur-
rence chain of algebraic equations, which define uniquely the coefficients. We
provide this recurrent rule later (see Sect. 3.2 Eq. (14)). It is useful to con-
sider the second-order finite-difference operator in the form of an infinite-order
differential operator:

5 2 3 202*
P = e% —2+4+e7% =4sinh Z(%)',
(Pu)(z) = wu(z+1)—2u(z)+u(z—1),
where 9, denotes the differentiation with respect to z. O

Our main object is the formal Borel transform of u defined according to
the usual rule 277! s 5—,, i.e. we study the series in positive powers of the

complex variable
o0 2L
Czk 1

a(¢) = ;akm-

(5)
The Borel transform converts multiplication into convolution: if 4(¢) and 9(()

are formal Borel transform of the formal series u(z) and v(z), the transform of
the product u(z)v(z) is

¢
(4% 9)(C) = / a(¢ — ¢)a(¢) d¢’

The Borel transform maps the differentiation 9, into the operation of multipli-
cation by —(.



The formal Borel transform % is the unique odd solution of the convolution
equation,

4 sinh? -g- a4(¢) = — (% * 1) ((), (6)

in C[[¢]]. In other words, this equation generates the same sequence of coeffi-
cients ay, as the original one.

Let R be the Riemann surface obtained by adding the origin to the first
sheet of the universal covering of C\ 27iZ. It is the set of all homotopy classes
(with fixed extremities) of paths issuing from 0 and lying in C \ 27iZ (except
their origin).

Theorem 2 The formal Borel transform 4 is convergent at the origin and de-
fines a holomorphic germ, which extends analytically to R with exponential decay
at infinity on each half-sheet of R.

The proof of this theorem is in Sect. 4 and in the appendix. The analyticity
on the main sheet of R was proved by V. Chernov [Che98].

In fact, 4 is of exponential type —co, i.e. it decreases faster than any expo-
nent e“¢ for any real ¢ along each nonvertical ray.

In particular, Theorem 2 implies that %(¢{) is an odd real-analytic function
in a neighborhood of the origin in the main sheet.

Theorem 3 The analytic continuation of 4 to a neighborhood of its first sin-
gular point 27i in the main sheet of R can be written in the form,

As As A log(¢ — 2xi)

U = C=omp T Co2m? T Lo i

+ h(¢ — 2ni) +7r(¢—271),

(7)
where h and r are holomorphic at the origin and have analytical continuation
onto the whole Riemann surface R, moreover h(0) = 0.

The proof of this theorem is in Sect. 5.

2.2 First singularity as a solution of the variational equa-
tion
We need a more detailed description of the singularity. In fact we show that

the singular part of 4({) at the first singularity ¢ = 2xi is described by a linear
combination of two basic solutions of the variational equation near u(z),

(z +1) = 20(2) + p(z — 1) = ~2u(2)p(2) . (8)

We give the precise meaning for this statement later in this section.
First, we need some preliminary information on formal solutions of the vari-
ational equation.




Lemma 2 The homogeneous variation equation (8) admits two formal solu-
tions, which can be written in the form

bad 1989
_ _ -3 -5 —7
p1(z) = ;z““ 12277 — 30z —I—Wz +...,
=1 a1 173
e = X mTmt et mw st

k=-2

The coefficients of the series are real. Any formal solution of the homogeneous
variational equation' can be represented as a linear combination of these two
fundamental solutions.

The proof of this lemma is comparatively simple. The first solution can
be obtained by differentiation: ¢1(z) = “Lu(z). In particular, this implies
by = —2kay, k > 1. The second solutlon can be found by a substitution of
the series into the equation. This leads to a recurrent chain of linear algebraic
equations for the coefficients dj (the answer is explicitly written in Sect. 3.2
Eq. (16)). The coefficients dj, are defined up to a common factor. We normalized
the second basic solution by

W‘Pupz (Z) =1,

where W, ,,(2) is the finite-difference Wronskian

_ pr(z—1) @2(z—1)
Worp,(2) = det ( p1(2) pa2(2) ) ‘

In the theory of linear finite-difference equations its role is similar to the role
of the classical Wronskian in the theory of ordinary differential equations. If
©(z) is a solution of the homogeneous variational equation, then ¢ = Wy, (2),
k = 1,2, are 1-periodic in z. On the other hand they are formal series and,
consequently, constant. The desired representation for the solution is ¢(z) =
Cap1 — C1P32- |

The next theorem establishes a very remarkable relation between the solu-
tions of the formal variational equation around the formal separatrix u(z) and
the first singularity of 4({). Let us consider the formal power series

. 2 klhy
(p(Z) = 271 <A5 -+ A3 + A1> Z Z_k-l—-kT 3 (9)

k=1

where the infinite sum represents the formal Laplace (inverse Borel) transform
of the Taylor series h(£) = Y po | hytF.

tin C2][[z~']], the class of sums of a polynomial part plus a formal series in powers of z~}



Theorem 4 The formal power series (9) satisfies the variational equation (8).

The proof of this theorem is in Sect. 6 and it is quite elementary.
Since p(z) is a formal solution of the variational equation (8), Lemma 2
implies that it is a linear combination of the basic solutions.

Corollary 1 There are complex constants p and © such that

p(z) = Opa(2) + pep1(2) . (10)

This equality may be considered as an alternative definition of the splitting
constant. In Section 2.4 we prove that it is equivalent to the original definition
from the introduction.

The formal equality (10) is equivalent to the following set of equalities for
the coeflicients:

w_© 170 _ 118
* T 7ai? 37 840mi’ LT T 448071
dy, by,
] = [ = | —— 1 > 1
hog—1 = O kD’ hor = p oLk for all k > 1, (11)

where by and dj, are defined by Lemma 2 as the coefficients of the formal solu-
tions ¢; (2) and ¢2(z). In particular h; = % and hay = 6p.

Remark. Theorem 4 is almost trivial from the viewpoint of Resurgence theory. Indeed
in terms of this theory ¢ = Aaxiu, where Azsi is an alien derivation. The theorem
follows immediately from Eq. (3) since the operator Az:i commutes with translations
of step 1 and obeys the Leibniz rule.

2.3 The splitting constant © doesn’t vanish
Proposition 1 The constant © is purely imaginary, In © < 0, and p is real.

Proof. Since the function 4 is real-analytic and odd, it is purely imaginary
on the imaginary axis. Consequently, the coefficients As, Az, A; are real, the
hag—1 are purely imaginary and the hyy are real. This implies that © is purely
imaginary and p is real.

Suppose @ = 0. This leads to a contradiction. Indeed in this case As =
As = Ay = 0 due to Corollary 1 and it follows from Theorem 3 that @
would be bounded on the segment [0,27i]. The following trivial arguments
show that this is impossible. Let #(y) = ii{iy), it has the Taylor expansion

o(y) = 2211(_1)“2_5%2%: where all the coefficients are positive. The radius
of convergence of the series is exactly 2x. If the supposition were true the real-
analytic positive function ¥ would be bounded on the interval [0,27). But it

satisfies the convolution equation

Asin® g B(y) = (0 *9)(y),




which can be easily derived from Eq. (6). If 0 were bounded, the left-hand side
of the last equation would converge to zero when y — 2w. This is impossible,
since the right-hand side is an integral of a positive function.

Since the function #(y) is positive and @(iy) = —i9(y), As is negative. This
implies that Im©® = Tr 45 < 0. 0O

2.4 Splitting of complex separatrices

Now we are ready to check that the constant O, defined in the previous section,
is the splitting constant in the sense of the definition from the introduction The
Laplace integrals

oo
w*(2) = / e~*a(0) d¢

define two entire functions which satisfy Eq. (3). (In some sense—be careful
about the domains—the Laplace transform is inverse to the Borel transform.)
These functions—together with the functions v*(2) = u*(2) — ut(z — 1)—
represent the stable and unstable separatrices of the parabolic fixed point of the
Hénon map (2). We study the splitting of these complex separatrices, which is
described by the function

[e)

w(z) =ut(2) —u(2) = / e *q(¢)d¢.

—0Q

The integral is taken along the real axis on the main sheet of R.

Lemma 3 For large negative Im z there is an asymptotic equality,
w(z) = (o1 (2) + Opa(z)) 722

The symbol = indicates that the relation is asymptotic, i.e. ¢, and @y are
formal series; if one retains only a finite number of terms, then the error would
be of the order of the first missing term.

To prove this lemma it is sufficient to deform the path into the upper half-
plane, and compute the contribution of the first singularity. Note that a part of
the path goes to the second sheet of the Riemann surface R (see Fig. 2). a

Since 2(2) = 2%/84 + O(2?) and ¢, = O(z7?), the lemma implies the
estimate (4). Thus the constant © of the previous section is actually the splitting
constant.

The first definition of the splitting constant was proposed by V.F.Lazutkin
[L84, LST8Y)] for the case of the standard map. The constant was defined as
a first-order Fourier coefficient of an “energy” splitting function, &(u™(2)) —
E(u™(z)). This definition was used by one of the authors, who obtained the

10
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Figure 2: The integration path is moved into the upper half of the first sheet
of the Riemann surface. Then it is deformed and pushed to the second sheet
through the cut between the singularities at 271 and 4xi

numerical value, |©| ~ 2.474-10° [GLT91, Gel91]. The last two papers also con-
tain the values of the splitting constant for the cubic and some other polynomial
area-preserving maps.

In {GLS94] it was shown that this definition is equivalent to the following
one:

o = lim eQWiZW,ww;(z),

— li 2miz B
K Im zl£>n—oo N 1/V(‘Dl w(Z) ’

where W is the finite-difference Wronskian. The limit is reached exponentially

fast due to the following estimate:

w(z) = (H‘Pf(z) + @(p;(z)) e—2miz | O(zloev41ri2),

which is written here for the Hénon map, in terms of ¢ and ¢; which are the
Borel-Laplace sums of ¢1 and ¢y corresponding to Laplace integration over R™.
The computations, based on this definition, afford to compute between 6 and 8
correct decimals of © using the double precision complex arithmetic.

In the next section we will prove that in the case of the Hénon map

(~1)*+ ay(2m)+
(2k + 3)!

|0 =42 lim
k—o00

11




This formula, established by semi-empirical reasoning, was used by several au-
thors [Che98], [TTJ98] for numerical evaluation of the splitting constant. The
computation of V. Chernov [Che98] (14 correct decimals) are in excellent agree-
ment with the present paper as well as with [Gel91, GLT91], where an inde-
pendent method was used. On the other hand we are not able to explain the
discrepancy with the numerical experiments of Tovbis et al. [TTJ98], where for
the constant K = |©}/1687 it was obtained K = 7374, which is some 36% larger
than we expect.

3 Evaluation of the splitting constants

3.1 Complex singularities and asymptotic behavior of Tay-
lor coefficients

It is well known that an analytic function is completely defined by its germ in
a neighborhood of any point of its domain. In particular, this implies that the
Taylor series of 4 at the origin contains information about all the singularities.
Here we show how the information about the first singularities can be extracted
from the asymptotic behavior of the Taylor coefficients. In the next section we
show that this leads to a highly efficient numerical method for evaluation of the
splitting constants © and .

The function @(¢) has singularities on the boundary of Dy, = {( € C:[(| <
27 } at £27i. Let g be the corresponding polar part:

As As Ay
9(9) C—2mp "¢ omp T c=2m
As As Ay

+(C + 27i)5 * (¢ + 27i)3 + ¢ + 27

[ As . As 2
—_— (ja( + "2—'8C + Al ———471'2 + C2 5

where we used the symmetries of the singularities due to the fact that 4 is
real-analytic and odd. Since

2< B 1 o0 1 C 2k—1
a0 ()

we obtain
o A (—1)"*1(2k+3)!
2k—1 _ 5
a( g(O) - m (27r)2k+3
Ay (CDMCEFD A (DR 2K - 1)! (12)
2lr (2m)2h+1 T (2m)2kh—1 '

12



All the derivatives of even order vanish at zero.
The difference f(¢) = 4(¢) — g(¢) is analytic in Dar and continuous in its
closure. Applying the Cauchy estimates

!

: k!
g F(O)} < @F S 1£ (O

and taking into account that 82"_111(0) = ay, we see that

ak—a?4gmy:o(%§§g§>. (13)

If we keep only the first term in the expression for 82"‘19(0) and solve the
equation with respect to As, we obtain

_ Al (_1)k—1ak(2ﬂ_)2k+4
) (2k + 3)!

It is not too difficult to compute several hundreds of ag. This formula was used
by different authors to compute As and, consequently, evaluate © = 7rids. The
convergence of the method is rather slow. We can substantially improve it using
more detailed knowledge of the singularity structure. As a first improvement
we note that Az = 17A45/120. Then we substitute the first two terms of (12)
into (13) and solve the equation with respect to As:

N _(—U“ﬁm@ﬂ%+4(34“31 (2m)°
5T (2k + 3)! 41 T 120 (2k +2)(2k +3)

In this way we constructed a sequence, which converges to As much faster.
If we repeat the same reasoning adding to g the first N, N > 1, terms of the
logarithmic part of the singularities at +97i, i.e. if instead of g we consider

gn(¢) = sn(¢—2mi) + sn(C —2mi),

+ O™,

>_1 + O™,

where N
As

A A log &
sN(g):zg+—€—:§”—+—€i+ ~o>

omi

hm€™
m=1
we obtain an approximation for aj with relative error O(k'N -7). This ap-
proximation contains hy, for which Corollary 1 establishes the relation to the
splitting constants © and p.

Of course, the constant in the © estimates depends on N. In the next
section we numerically observe that choosing N = k/2 leads to exponential
convergence (relative error is O(e~°*)). From the theoretical point of view this
is quite natural and can be rigorously proved by applying the techniques of the
present paper. This is due to the fact that ¢1 and ¢y are resurgent functions
too, which provides Gevrey-1 estimates on the growth of the sequences bi, di
and the constants in the O-terms.
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3.2 Numerical algorithm

Using the complete knowledge on the singularities structure, we construct g
very efficient numerical method for the evaluation of the splitting constants ©

previous section.

First, we compute the coefficients of 1, and of ¢y, the first formal solution
of the variational equation. We use the following recurrent formulas. We Jet
a1 = -6, ay = 15/2, and

1 ! 2m +1 m—la EQ
mA-1— kO
\ = —— : _F 1
m 2m2+m—6(:4;1 <2k—1)“"+k§ 2 ) (14)
for m > 3,
b = —2m a,, form > 1, (15)

Then we compute the coefficients of 2, the second solution of the variationa]
equation. We let d_, = 1/84, d_, = 17/84, dy = —17/2240, and

d L (mz_:l(m“)d +m21a d) > 1
m= Ty _ k m+1—gdy | m=>1.
2m?2+m -6 = \2k—1 P
(16)
Then we evaluate two auxiliary sums:
N-1
2(-1)(21 + 1)ld
1 _ m -
Sen = Z(Zw)\?“r?»’ U=k-m-1)
m=-2

= 2(=1){(20) b,

(2m)2+2

=
E

Il
g

(l=k-m-1).

m=1

Finally, we evaluate the splitting constants © and p by comparing a;, with
ay = si,N®+si’N;L, (17)

the k™ derivative of gn(¢) at origin (provided & > 2N ). According to the
previous section ay = (1+ O(k~N=7)). In our experiments we used N = k/2,
which seems to minimize the error due to the replacement of ay by a;. In fact
our numerical method is not sensitive to this choice, The method of the present,
baper can be used to analyze this error analytically.

In the numerical €xperiments we computed n = 50 terms for each of the
sequences (ay, by, dy, 5};,1\1: si,N). Then we found the constants,

©% = 2474425593 553 251053 840 - 106 )
n 4908.934 252 164

Il

14



by replacing G by ay and solving (17) by the method of least squares using the
last six values of k = 45...50.
Tn order to estimate the error due to the replacement of &y by ax we com-

puted the relative errors
ay; — ak

_ Zk
51;—‘ )

ag

where @t = s vO" + s2 ypt is the “experimental” value of G- Some particular
values are

§10 41072, G 2 —7-1077, 30 % —4- 10713,

The result shown on Fig. 3 gives a numerical evidence of o ~ e~ck. From the
analytical viewpoint this error is due to a contribution from the other singular-
ities of 4.

Finally, we repeated the computations for larger values of n. We used the
coefficients with k = 90...100 to determine the values of © and . This test
confirmed that the previously computed decimals are all correct.

Figure 3: The plot of log |8x| versus k

4 Proof of the analyticity of v on the first sheets
Theorem 2 claims that 1 extends analytically to R Tn this section we only prove

that @ extends analytically on the main sheet of R and on the first half-sheets,
i.e. the half-sheets which can be reached from the main sheet by crossing the

15



and it is sketched together with the explanations of the basic notions in the
appendix.

(except for their origin). The natural projection ¢ € R s le (C\ 2miz)u {0}
(¢ is the extremity of any path representing () is locally biholomorphic in a
neighborhood of every point.

Let us introduce two open subsets R(0) C RD of the Riemann surface R.
We will denote by RO the set C\ +27i[1, +oo[ (the complex plane deprived
from the two singular half-lineg 2mi[1, +o0[ and —27i[1, +00[), which cap be
identified with the set of homotopy classes of paths Issuing from 0 and lying
in C\ +27i[1, +ool. This is the “maip sheet” of R. The union of the “nearby
half-sheets” will be denoted by R it is the set of homotopy clagses of paths
issuing from 0, lying in C \ 27iZ and crossing the imaginary axis at most once.
We arrive to 4 nearby half-sheet, when we follow a path which crosses the

Riemann surface, when we pass between different singularities. Thus there are
infinitely many nearby half-sheetsg.

For a given analytic germ at the origin, saying that it extends to an ana-
lytic function on R (resp. RO) resp. RMW) amounts to saying that any path
which represents an element of R (resp. R(O) resp. RW) is a path of analytic
continuation for jt.

fines a holomorphic germ, which extends analyti
decay at infinity on each half-sheet of R,

The rest of the section contains the proof of this theorem. This is a necessary
step for proving Theorem 2 completely.

corresponding holomorphic germ.  We claimed that the disk of convergence
was Doy, but the inductive Computation of itg coefficients a;, does not help
much in the study of the analytic continuation outside this digk.

This is why we use an alternative representation of 4, €xpressing it as the
limit of some iterative scheme at each step of which properties of analyticity can



be checked in RW . Then the theorem follows from the uniform convergence of
the scheme (on a system of subsets, the union of which covers RW).
We first define the new unknown series 9 by

i(¢) = —6¢ +9(¢)-

In the sequel we only deal with ©, which 18 the unique solution in c3C[¢]] of the

convolution equation
aﬁ—l?(*f):wg—f)*f), (18)

where a({) = 4sinh? § and wo(Q) = 6l¢ald) = ¢

4.1 Tterative scheme

Let us introduce some auxiliary meromorphic functions:

1
B = ’—a(C)EC’QC{C},

3 cosh $(3 + 2 cosh’ £)

_ dcoshpO T o 2o -5
Y(C) Do § € ¢T°C{¢)
4+ 11cosh®§
5O = ~V(Q+ e €l
inh” 3

We will denote by [y [ the formal series or the function ¢ foc £(¢1) dCrs
whenever [ is a formal series (f € C[[¢]}) or a holomorphic function (f € C{Ch)-

Lemma 4 (The operator E) The operator
Ve@ﬂMM+W=aV—muVeéﬂw

is invertible and s inverse E can be expressed S

W e o) » B =B+ 1z /YW - ly/ W,
127 /o 127 o
W e ¢"ClCl) withn 2 5, BEW e ¢">Clcl)- |
W e ¢°C{g} and if the germ defined by W extends analytically to RM
(resp. to R), EW € 3C{¢} and the germ defined by EW eatends analytically
to R\ too (vesp. to R).

Proof. Let w e ¢¢C¢]l. In order to find v, we use the change of unknown
fpnction V = BF and we differentiate twice the operator that we want to invert:
¥ e ¢3C][¢]) is solution of

ol — 120k V=W

17



if and only if
F=aVedqi]  and F" —128F = i, (19)

One checks easily that ; — aY/12 € (3C{¢) and » = aZ/12 € (1C{¢) are
independent solutions of the corresponding homogeneous equation f! — 128f =
0, with Wronskian yz' —y'z = 1 (in fact z = yJov2). Thus, whenever g c
C3C¢]], the solutions of f _ 126f = g are the series f= —y J, 29 + z [y yg +
1Y + c29, and among them only f = ~y Jy 29 + 2 [} yg lies in ¢*Cli¢]).

Hence a unique solution for (19):

F= _y/zpi/“ + z/yW“ = —y/zvif + z/mf + W
0 0 0 0

(the last identity stems from a double integration by part). Multiplying by 3,

we obtain the desired formula for V.
The property of decreasing the valuation by 2 at most is easily checked.
IfWis a convergent bower-series, 0 is V. The analyticity in R(1) o R is
preserved because Y and 2 are meromorphic with poles in 27iZ, only. 0

Lemma 5 (Algorithm for the 0),5) The formulas
* Wo = 6[Ca(¢) ~ ¢*] e ¢aiey,
* 0 = Eﬂi}n, n 20,

* W, = — E zAjnl *17,12, n > 1,

Ni+tnp=n—]

define inductively two sequences of formal series satisfying
YR 20, 9, € ], Un € Y]],

and such that the unique nonzero odgq solution of (6) s

WO = =6¢+ "5, (¢).

n>0

U= E Up and ¢ = E Wy,

n>0 n>0
are convergent in Cl[¢]]. We have

@€ ¢y, a0 =129 =1  anq W =1y — b %9

18



by construction, hence the result. 0
Tt is a well-known result of Resurgence theory that, if two germs extend
analytically to R, their convolution product has the same property. (We will
recall the reason why this 1s 80 in Section 4.3.) This fact and the last part of
Lemma. 4 show that each power—series iy, OF Wy 188 nongzero radius of convergence
and defines a germ which extends analytically to R, since we start with o which
converges to an entire function. We won’t try to prove the convergence of the
series Y On iN the whole Riemann surface R now, but we retain that each term
extends analytically t0 R,

In order to prove Theorem 5, it 18 thus sufficient to study the convergence
of S 0n 08 @ series of holomorphic functions in RO, We will begin by
restricting ourselves to the main sheet RO fe. tO the holomorphic star of
these functions.

4.2 Convergence on the main sheet.

For p €]0,7/2], we define D, to be & closed subset of C obtained by removing
the open disks of center 271 and radius p and all the points which are “hidden”
by those disks from an observer based at the origin:

Dy = C\{t¢t E]l,—l—oo[, e D(£27i, p) 1.
The main sheet of R obviously coincides with the union of all these sets.

Lemma 6 (Initial bounds) For any p €l0,m/2[, there exist positive MU~
bers ¢, co such that

BOL <K
V¢ € Do\ {0} (O <™
12Ol < cldls

and

3
v eD, 00) < -

Proof. Let p €l0,m/2[. We observe that V¢ € D,, Re 2 \/_’2‘%%%\(:\' Let us
p T

frst consider the functions 0, Y and Z: they are analytic in Dp, except at the
origin for BandY which have poles of order 2 and 5 there, whereas 7 has a zero
of order 2 at the origin. On the other hand these functions decay exponentially
when |¢| tends to infinity (with ¢ remaining in Dp); because

1i ¢ =1
foim, et B(0) ,
1i Hy = 12
Re ngl:\:oo ¢ (g) ’
1i 1ot 7 = —12
Re (1—r—r>1:l:oc>C ¢ (C) ’

19



and exponential decay with respect to |Re(| in D, means €Xponential decay
with respect to ], hence the result.

Now g = i, + 52 Jo Yy — Y Jo Zivy, where Wo is an entire function
of order 1 satisfying

; “Le=(£0) () _
Re ?Ln:too e o (C) 6.

Thus 4 (¢) < const [¢[elRe ¢ ¢ I<l > p. On the other hand wWo(¢) = 0(¢®)
hear the origin. From that we deduce inequalities

[Yio] < const (1+ I<]) and ]Zz[)ol < const (¢ + [CF) inD,

which show that %(¢) < const I¢]? for ¢ > p. And the proof is complete since
() = 0(¢). o

LemmAa 7 (Bounds in the main sheet) [t p €0, 7/2].
(¢) If ' and & are holomorphic functions in D, which satisfy

WGQn!ﬂMSFMDaMRﬂMSGMW

where F and G are continuous functions on RY, their convolution prodyct Fx@
is holomorphic i, D, and satisfies

V¢eD,, I(F %)) < (F*G)(I¢)).
(b) If W s holomorphic in, R, and satisfies

VEED,, Q)] < cler

with ¢ as in Lemma 6.

Proof. Part (a) is quite obvious since (F x é’)(() = (fol F(t()é((l = t)¢) dt.
Let p €]0, 7/2[ and W, C, v as in Part (0). For ¢ € D,, we can write
(E.W) (¢) as the sum of three terms:

1 Ve 1
wWthmW@+%§Acmewmu%§OcﬂmWMMt

By virtue of the Previous lemma, the firgt term is bounded by ¢*C|¢[*~2) the

second one by 12?35'4) I€1"~% and the thirqg one by 12?;5:3) €172, hence the resulé.

20
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Lemma 8 (Convergence in the main sheet) Let p €)0,7/2{ and ¢,co > 0
as in Lemma 6. The formulas
&2

Cp = ﬁc’"’ n 2> 1

/ —_—
Ch = E Cn1Cna>s

71 4no=n—1

define inductively two sequences of positive numbers satisfying
2n+3 on+5
and |W <o
(2n + 3)! fbn (O < ™ (2n + 5)!

V(€ Dy, \ﬁn(g)\ <cn

The series of functions S 0y converges uniformly in D, to a holomorphic func-
tion v and G = —6( + D has ezponential decay at infinity in Dp-

Proof. Taking into account the bound for vo which is provided by Lemma 6, we
proceed by induction and suppose that g, .- On—1 8T€ bounded as indicated
in Lemma 8 for some 7t > 1. The desired bound for Wn is obtained by Part (a)
of Lemma 7, since

2n1+3 C2n2+3 <2n+5

—n—1 = 75 a2y = = n 4 5)
m e =0 G a3 Gl @ntd)

Then we derive the bound for 9, by Part (b) of Lemma 7, since (2n+4)(2n+ 5) >
42.
Let A = 4c*/21. The generating series e(X) = 2on>0 e, X™ is easily com-

puted: ¢(X) = co +'%XC(X)2, thus

Tt defines a holomorphic function on the open disk of center 0 and radius (co N7
which is bounded on the closure of that disk, therefore cn < const (coN)™ for all
n > 0. From that we deduce the uniform convergence of the series of analytic
functions Y, On 0 Dy and an exponential bound for the sum:

V¢ € Dy, |9(¢)| < const eleoN) 7L,

For 4(¢) = —6C + #(¢) we can choose T = (coM)'/* and write el <
const\C\eT‘C‘ in D, (since a(¢) = ©O(¢)). But we can improve this bound by
considering the equation we started with:

v e D\ {0}, WO = ~B(0) (@ * )(Q)-

We know indeed that, if 1] > p, 1BOL = conste—Re ¢l and |Re¢| > 26|¢]
in D, with § = (p* + Ar?)" Y2 p[2. Let us ‘ntroduce a number € > 0 such that

Ve e D, ICPIBOIS ceokl.
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We now see that any exponential bound
YCED,, Ja() < Col¢lerlel]

with Cy > 0 and 7 ¢ R, implies |(4 *0)(¢)] < %Q[C]*Q’erm, and thus

€D ()] < ¢t

This allows to decrease the exponential type indeﬁnitely, and we conclude
that for all + ¢ R, the function [CI el [4(¢)] is bounded inD,. 0

4.3 Convergence on the hearby sheets.

We now explore farther the Riemann surface R, but still progressively. With
respect to Section 4.2, some more geometrical facts are involved, byt the analysis
Is quite similar.

Let M ¢ N and p €], 215[11 [ We define the disks Dy,. .. Darg1 and the
Opposite disks D_,,. .. Dy by

D, = D(27rim,mp), D_, = D(—27rim,mp), m=1,..., M.

We define Dy, to be the closed set obtajned by removing from C all these

disks: Dyrs = \ ( U Dm).

—M<m< M, m#£Q

We define R;(:z)w to be the subset of RM consisting of all the points ¢ which
can be represented by a path contained in D, ar and such that the shortest such
path ¢ is either

L. a straight segment;

2. or the union of a straight segment issuing from the origin and tangent to
some disk D,, (=M <m S M, m # 0) and of an arc of the circle oD,
ending at ¢, and we require in that situation that the half-line L(¢) tangent
to v at ¢ and going backwards he contained in Dy s

3. or the union of a straight segment issuing from the origin and tangent to
some disk D,, (-M <m S M, m# 0), of an arc of the circle 0D,,, and
of a straight segment S(¢) tangent to D, ending at ¢ and such that the
half-line L(¢{) which extends S(¢) backwards from ¢ be contained in D, ar.

In the first case ¢ lies in the main sheet RO but in the last case it lies in the

half-sheet contiguous to R (0) corresponding to one crossing of |2rim, 27i(m+ )]

ifm>1 (of 127i(m — 1), 2mim[ if m < -1). In fact only a sector of thig half-sheet
is accessible because of the restriction L(¢) ¢ D, v (see Fig. 4).

22

e



v(a

Figure 4: The paths ¢
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We have by construction

1
RU= RO
PEIG, T /2[, M €N+

We now fig Jor the rest of this section Ay €N and p €]o, 2]\2[%[ Our goal s
to prove the uniform convergence of the series y 9, in Rf,l])u

We need to recall how ope follows the analytic continuation of the convoly-
tion product of two holornorphic functions of R, and to exhibit bounds which

cally contractile. One can visualize itg construction by letting a point ¢; move
along Y from the origin to ¢, the point (; remaining connected to the ori-
gin by an extensible thread, and imagining fixed nails pointing upwards at the
points of 2miZ, with diameter 2lmlp for the nail at 2mir, anq moving najlg
pointing downwards at the points of G +2mZ (with diameter 2lm|p for the nail
at § ~2mim) between which the threaq is stretched progressively when ¢1 moves
along 7¢: at the end of the brocess ¢; has reached ¢ and [¢ is the thread under
its final form. (One can think that the fixed nails remain op 4 fixed rule, and
the moving najls are fastened to another rule which is parallel to the first one
with reverse orientation and which is trailed by ¢ in its motion.) Notice that
at each moment of the process the thread between the origin and €1 remaing
Symmetric with respect to itg midpoint, thyg I¢ is Symmetric and Symmetrically
contractile,

our case, for a given point ( ¢ Rﬁ(:j)w, the resulting path I'eis easily described
according to the three possible shapes of Y (see Figure 5):

® in case 1 above, I¢ coincides with Ye;

® in case 3, if m > 1, the path ¢ startg from the origin by g straight

Segment, meanders between the disks ¢ — D, Dy, - Dy, 4, Dy,

> =Dy, D,, (in that order) and ends by a straight segment leading

to ¢; moreover it is the shortest such path (if m < -1, Dy, must be

replaced by Dpir (1 <k<m- 1) in the brevious sentence); it is thyg a
Succession of straight segments and arcs of circle;

® in case 2, the description is the same as ip the previous Case except that
there is no Straight segment from Dy, to C~Dyp_y. for kb — 0,....m because
of tangencies (with the Convention Dy = {0}).
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Figure 5 The paths T'¢
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The paths Y and I'¢ can be viewed as subgets of Rl()lj)u rather than subgetg
of D, ar (i.e. we identify them with their lifts in R). Since I¢ is Symmetrically
contractile, one can follow the analytic continuation at ¢ of the convolution

,)‘,[, and write

P20 = [ Feyéiac,

where ¢ ig determined ag the symmetric point of ¢; op T¢. Let us denote by 8¢
the curvilineay abscissa on Te¢, by My the corresponding barametrization of I'¢
and by £(¢) the length of I¢: we have 2¢) = 5¢(¢) and the maps

{Q - bag { 0401 — 1,
G — 8¢(C1) s = M(s)

are mutually reciprocal. The formula for the analytic continuation of the con-
volution broduct may be written

. € ) ’
(FxG)(¢) :/0 F(Me())G (0 () - ) (dé‘\f) ds.

Lemma 9 (New bounds for the convolution) jf f and G are holomorphic

Junctions in, R/(:])VI which satisfy

YCeR,, 1E(0) SFUQ) and |G(o)) < G(e(¢)),

VCeRM 1By GOl < (Fx G)(€(¢)).

by

Proof. The description of T¢ given above allows one to check that

V(e Rf,f])u, Lec R,
CerM e e Te, U¢) <se(¢), (20)

we have

o €
(B Gy 0)) < / PG (b(c) - 5))) 5

IA

&¢)
/0 P (M (D)5 ¢ (M (0(0) - )y — (FxG)(e(c)),

26

e

T



O

Note that in this approach the inequality (20) is essential, but we know how to
check such an inequality only for points inR pl,gw. One may then wonder whether it is
possible to explore farther the Riemann gurface R by 2 similar method or whether we
are confined to the nearby sheets; we show in the appendix how to bypass the difficulty

in order to explore every sheet of R.

Lemma 10 (New bounds for the operator E) There exist ¢,co > O such
that:

()
. BOL <O
veerY, { W@l = cl(¢)~%
1Z(O)) < etO
and

X 0(¢)?
vee R B0(Q) < Co—%—‘)’;

(b) if W is holomorphic in ’RS}VI and satisfies

ve e Ry, IWOIS ce(C)”

for some real C > 0 and integer v = 9 the function EW is holomorphic
in RM and satisfies
p, M

vee RW)y, EWOIS 22Ce(C)"
Proof. One checks the existence of a number & > 0 such that
e e Ry, U0 <wll+D:
On the other hand, for ¢ € R(pl}\,f we have |} < Q) and
Gl<p > (RO = UO= 1)
Thus Part (a) of Lemma 10 follows from Lemma 6.

Let W, C, v as in Part (b). The formula for the analytic continuation of EW

at a point ¢ of RS}M may be written

(EW)Q) = BOW(0)

1 0o dM
+52(0) /0 i (M) () 48

€< . /
—LY(© / 2y M) () ds.
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Let us treat Separately these three terms, using the inequalities of Part (a):
~ the first term s bounded by C2CZ(C)”‘2;
~ We observe that

I(YW) (0 (s))] < CCUM(5))"=5 < cogrs

is bounded by 12?25'4) €¢)r2;
~ analogously

[(ZW)(M () < cCe(n, ()12 < cogr+2

2

thus the third term jg bounded by 12?’/23) 2¢)r—2,

Hence the desireq bound for I(EW)(C)I ]

Lemma 11 (Convergence in the nearby sheets) et GC > 0 as in the
previous lemma, The formulas

02

/ !

Cp = Z CniCny, €, = 2~1 Chs n>1
Ni+ng=n—1

define mductively two Sequences of positive numbers satisfying

¢ 2n+4-3 ¢ 2n+5
V(¢ e R;(:I)l/[’ Iﬁn(C)’ < (2(7€)+ 31 and ’lf)n((:)[ S 0;1(2(7?\-}6)!'

The series ¢ unctions 3" g, converges uniformly in R(l), to a holomorphic
o,M
function ¢ gng U= ~6C+v has exponential decay qt infinity in 72/()11)\[

YCERM,, 1a(0)] < const £(¢) emto),

where 7 = (4eoc®/21)1/2, Agin the end of the proof of Lemma 8, we can improve
this bound and decrease the exponentia] type 7, but this time the implication

N . . C .
Y€ Rt O] < o t(0)ertt0) vy Rohes a+a)(¢)f < U e
is ensured by Lemma 9 only for r > 0; introducing numbers §,C > such that
WERN €OPIB(0)] < ceotte)

we thus can reach [4(¢)] < const U elm=0U) iy T>0and 7—4 < 0, but
we must then stop. 0

In fact, it is g consequence of the resurgent roperties of 4 explained in the
appendix that it hag €xponential type —oq in RSM too.
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5 Proof of Theorem 3

Let us use the same notations as in the previous section: a(¢) = —6C+ (C) =
—6¢ + S 9 (0)- We will obtain by induction the shape of the singularity at 2mi
for each On, and the property of convergence established in the previous section
will yield the result.

Definition 5.1 o We say that a germ P e C{C} is of type (=1) if it 18 odd
and of valuation 5 at least, and if it extends analytically to R and can
be written

. B (¢ — 2w .
F() = -+ w Jog(¢ — 271) + R(¢C — 27)
¢ —2m 271
ina neighborhood of 2mi on the main sheet, where B € C, and H and R
are holomorphic at the origin with H(§) = ce + DE + O(£®) for some

c,DeC

e We say that a germ F e C{C¢) s of type (—5) if it is odd and of valuation 3
at least, and if it extends analytically to RW gnd can be written
C D

C—amy (- 2m)’ e am

F(C)

+E(C/”.2Li) log(C — 2mi) + R(¢ — 2m)
2m

in a pez’ghborhood of 271 on the main sheet, where B,C,D € C, and H
and R are holomorphic at the origin with H() = o).

Remark. One can rephrase the above definition using the alien derivation Domi of
Resurgence theory (see the appendix): an odd germ FeC{) corresponds to an even
formal series F(z) € Cllz~ ') via formal Borel-Laplace transform, and the requirements
on the shape of the singularity at 9i amount respectively t0 the conditions

Agni B = 2miB + Ccr?+ Dzt + 0%

and
AoiF = B2 2mi 2 20D 4 O(
owi ——zr z +~2".‘ z +—6‘.— +0O(z ).

Lemma 12 (Transformation of singularities) The convolution product of
two germs of type (—5) s of type (-1, and the image by the operator B of a
germ of type (1) is of type (—5).
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product G is odd and of valuation 7 at least, and it extends analytically to RO,
One checks that its singularity at 2ri has the desireq form by a direct analysis
of the convolution integral, writing it ag

. ¢ . . ¢ .
G = / B (Q)B(C - ¢ydg, + / B¢~ &) Ry(G) de,
¢/2 ¢/2

like in the proof of Theorer 4.
Alternatively one can

and for j = 1,9 ye have 1*:'](2) = 0(z7%), even, whereag Aijﬁ"j(Z) = B;z* ¢ Ciz% 4
D; + O(27?) for some complex numbers B;, Cj, D;, hence the result.

Let US now consider g germ F of type (~1). We have already noticed that
G=EFisof valuation 3 at least and extends analytically to R its is easily
Seen to be odd. Let yg study its singularity at 2mi. We use the expression

G = Y/(y“2/y]3’”) with Yy =aY/12,
0 0

which can be checked from the proof of Lemma 4. por ¢ small and such that
27i+ € lies in the majn sheet R(%) we can write

where the stars « stand for some complex numbers and reg(¢) denotes some
regular germ. Byt y(2mi+ &) = *E73(1 + 0(€?)) is odd, thus

WF")(2mitg) = ypo P e e
T b reg(€)) log £ 4 rege)

and

( /O VEDC 4O = €50 1 o)) 4 € 'reg(0) log &,

Now y=2(27i 4 §) = 51 4 O(€?)) is even, thug (y‘2kyﬁ")(2wi +&) =
0+ O(E) + &reg () Iog e,

v P ) @i o) < vy s &+ 0(E") + reg(e) log¢,
0 0

and since ¥ (2xi 4 §) =%&5(1 4 O(%)) is even, we conclude that

G2rmi+€) = ves *E ey {reg(§) log € + reg(¢)

30
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as required. O
Since Wo extends to an entire function, it, follows easily by induction that
each Oy is of type (—5) and that each Wy, is of type (-1). Thus there exist
sequences of numbers (Ag")), (A‘S”)) (A(ln)) and sequences of functions (h™),
(r(”)) holomorphic near the origin such that, for all n 2 0,

R . A(‘n) A(”) A(n)
bp(2mi+§) = —g%—-k 4513"%—1&——

for ¢ = 2mi+¢& close to 271 on the main sheet, with R (0) =0
For any ™ 2 0, the function R is nothing but the ‘yariation” (or mon-
odromy) of the singularity of ¥, around 27t

R (€) = Dn (27 + £) — Dp(2mi+ £e2m)

L Lo e)log + (),
2m

for ¢ = 2mi+¢& close to 2mi on the main sheet, if we denote by 271+ & e~ 2™ the
point of R with the same projection onto C but lying in the sheet immediately

T

“helow” the main one (i.e. C18 represented by the segment [0, (), but omitée >
is represented by the path which begins by the straight gegment and continues
by a clockwise—oriented circle around oni). But then Lemma 11 implies the
uniform convergence of the series Zh(”) in a disk D(O, po) centered at the
origin and of sufficiently small radius po:

h= (™)
n>0

is holomorphic at the origin and satisfies h(0) = 0.
Now consider the functions

m gmAD
o) =g " = 2 e
for n > 0: they are¢ holomorphic in the pointed disk {0 < 1€l < po} and the

series Y. Uy, 18 uniformly convergent in the annulus D(0,p0) \ D(0, p) for all
p €10, pol; its summ

¥ " o 1

5 () = 306 =0T+ S e lost

n>0

is holomorphic in the pointed disk D(0, po) \ {0}- Writing the coefficients
A, A, Al as Cauchy integrals involving o, we thus deduce that the series

As = Z A(sn)’ Ay = z Agn)’ AL = 2 A(ln)
n>0 n>0 n>0

are convergent and conclude the proof of Theorem 3 by observing that the
function £ w07 &) — AgE™% — Agt™? — A &1 is regular at the origin.
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6 Proof of Theorem 4

¢
(&% a)(¢) = z/

UC=¢acy ag,
¢/2

9
4sinh? & () _ |- haenae (21)
2 </2
Now we uge the first two terms of €Xpansions (5) and (7) to evaluate (¢ — ¢’
and (¢’ respectively. We have

¢ Nale dr ards 1 axAs \ 1
“2/</2U(C‘C)U(C)df = ‘T§—<G1A3+?)E+O(l)
R 1545\ 1
= 5‘34‘(61‘13‘?)54-(9(1),

where ¢ = ¢ —27i. On the other hand,

4sinh2§ u(¢) = % + (Ag + %) 3 +0(¢).

We obtain the third polar coeflicientg A; and the function from the analysis
of the varjation (monodromy) of 4.

Let two points, dengted by ¢, and Ca, converge to the imaginary axis just
above the singularity at 27i from the right—hand~side and from the left-hand-
side, respectively. Let ¢ =2ri+ ¢ denote the limit poing (see Fig. 6). Then the
prelogarithmic factor of (7) is given by

h(§) = lim u(Gr) = u(Gy).
Q> 24640
2> 2mi+é_g
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Figure 6: Integral paths

In order to evaluate the limit we take the difference of the two copies of the
convolution equation,

Gk

sinh® % u(G) = 2 [ (e — (¢ aC s
/2
and pass to the limit:
s S b = 2 [ a(¢ - )¢

Il

o -t £)de' -
£ 4-2miEY
Now we substitute the convergent expansion (M instead of (2w + £):

lo
pn? SO = 72 f ale - g>/g£ B(e') dé
£’+2m€’y

—Ami Res &u(é &) (5'5 , o %)X

- —2]0 ale — €)REN &€
4 2,&
4 (Ag,a bl | 4, % 2‘@ + Ala(g)> .

In this way we obtain the following equation on the singularity of &

4sinh” 3 § hig) = —2ax DGR (22)
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where

o 024,
F(€) = dr; (As%@ + Aj f;(f +Am(<~‘)) :

This is a linea, nonhomogeneoyg equation for 4, Since h(0) = 4(0) = 0 the
corresponding terms of the équation are cyhie at zero. Consequently f(0) =
F(0) = F"(0) =0. The equality f/(0) = g Implies

A5a3/4.'+A3a2/2.’+A1a1 =0.

To finish the proof it ig sufficient tq check that Eq. (22) generates exactly
the same Tecurrence ryle for hy as the forma] homogeneous variationg] equation
(8), which is not too difficylt. O

A Resurgence of formal solutiong

Al A (more) general formg] solution

Proposition 2 (Normalized genera] solution) There js ¢ Unique sequence
of nonzero sepjeg (@n)nen in (C[z][[z“lﬂ such that:

* the series

u(z,b) = Z b, (2)

n>0

satisfies formally (3) when cxpanding pot), sides of the equation in Powers
of b and then, in powers of z;

® each serjeg Uy, 48 even;
® Ui(z) = 24 4 O(z2);
® for all =2, the coefficient of 24 in Uy is zero,

Remark, A more general formg) solution jg obtained by considering

Uz + a(z), b(z)) = Z b(2)"i, (2 + a(z))

n>0

where a(z) and b(2) are I-periodic objects, e.g. forma] eXpansions in powers
of e*"iz (51 of ez bt not both at the same time),
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Proof. Let us introduce notations for difference operators:
S flx)m fz+Y) _flz), P:f@7 f(Z+1)~2f(Z)+f(z—1)-

When a formal Laurent series f € Clz)llz 7t i given, it admits 2 primitive
in Cl2){[z I} if and only if its residuum (the coefficient of z—4 in f) vanishes; in
that case we denote by 0;'f the unique primitive of f without constant term.
The invertibility of S is easily studied:

Lemma 13 A formal Laurent series f € Al admits a preimage by S
in Cl2)llz") if and only if its residuum vanishes. In that case the unigque
preimage of f without constant term can be obtained as

51 f = B@)%; ',

where

ox . X g X2
B(X) = - Y (DT Beggpr

eX —1
e>1

(The proof 18 straightforward.)
When substituting ii(z,b) inside (3) and expanding with respect to b both
sides of equation, we find

® P’ﬂ,o = ——’(7%,

L4 P'flll = -—2‘1]0111,

o Piip = — E Uy Ungy T > 2.
ny-+n2=n

We already know that the first of these equations admits a unique nonzero even
solution o, which is nothing but the series called u in the rest of the paper:

. 43647
’lTL()(Z) = Zakz’% = ——62_2 + —52—4 - Z()‘Z-ﬁ + —86—6‘21—8 + O(Z—lo).
>l

The second equation coincides with the variational equation (8) whose fun-
damental system of solutions (¥1, (o) Was introduced in Lemma 2, according 0
which there is only one possibility for 41

17 51 36 _:
ﬂl(z) = 84@2(2) = 24 + —1—622 - —8—6 + ’5—2—_2 + 0(2—4).
We recall that
Y1 = 62&0 = zbk'z—Zk-l, (23)
K>t
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whereas Py = Zk>_2 drz272% could be found directly. But one could also use g
method which is fhe finite-difference analogue of the classical method of vari-
ation of parameters for second-order ordinary differential equations (see e, g.
[Gel99] for detaileq explanations); thig leads to

1
D S—l’ = —
TR ) #1(2)pi(z 1 1)

(P + 2%p). 40, = Up, (25)
with a right-hand side
n—1
Up = — Z akan—k
k=1
determined by the previous terms 4, . . . s Up_q.

Lemma 14 7, Laurent serjes Y e (C[z:)][[z‘z]] is given such that ©1% has no
residvum, the linear non-homogeneoys equation

(P + 2120).@ = ’lﬁ

admits a unique solution o in (C[zz}[[z*:z]] whose coefficient of z* vanishes. This
solution can be written

1
P = 5 (@) + 8(-2)) 1 opy s
where ¢ is some complex number ang

¢ = ~0187 (pyep) + P25 p19h).

(Proof of the lemma: Since the “Wronskian” of (©1,9) is equal to 1, one cap
check that ¢ — @p1 + B, is solution of the non-homogeneous equation as soon

therefore the odd series ®(z) — P(~z) satisfies the homogeneous equation and
can be written C191(2) +capq (2) with ¢, €2 € C. Now ey = because of oddness
and

B(z) = %(@(2) +o(=2)) + Zo1(2).

The unique even solution ¢ without coefficient in front of 24 ig obtained by
removing £y, () and adding the appropriate multiple of ¥2(z2).)
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We now proceed by induction in order to solve the equations (25). Let us
suppose that, for some 1 > 2, the series o, - - ,lip—1 DAVE been determined
in C[22){[z7?])- The sories In = — Yope Ukln—k belongs to that space t00, and
we only have to check that @10n = Ty 051l has no residuum. This results from
the identity®

n—1 n—1
f)nazﬂ'o = —’}2’8z {"10 z 11kﬂn—kl - 15 Z{(azak) (Pan—k) + (azﬂn—k)(Pﬁk)} >
k=1 k=1

since the derivative of & Laurent series has no residuum and, for any two Laurent
geries f and g,

0. 5)(Pg) + (PDO:9) = 2 e G (024 1)(0:9)]
m>0 ’

has no residuum due to

F@mG) + (T )G = O {i(—nf(aﬁm (@21G))|. O

£=0

Remark. In fact @z, b) = Ym>0 L~ 2m=20,,(b2°), with 2 family of formal series
Un(X) € Q[ix1). For instance Up(X) is the generating series for the leading
terms:

UO(X) = 2 cn X" with vn > 0, @n(Z) — anﬁn—z + O(zﬁn—z;)_

n>0

Tts coefficients can be computed inductively since it is the unigue nonzero formal
solution of the equation

(6b3p — 2) (663 — 3)Up = -U3.

It can be checked that all the series U,, have positive radius of convergence.

A.2 Resurgent properties of the general formal solution

Now comes the essential result of this appendix, which contains in fact Theo-

rems 5 and 3. The following theorem is formulated in the language of Resurgence

theory, but we provide some explanations on its meaning after its statement.
3A compact way of deriving this identity consists in introducing the generating series

U= Enzl pi, and V = anz b7y, and checking that

Ul(z,b)
9. (/ " @3(z) - (0(2) + X)% d,\’> = (P.YBU + (8. 40)V-
0
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rays of each half-sheet of R.
There exist twe families of formal series

Au(0) = 3" 4,07, Bo® = 3" Bob®,  oe 2miz,

n>0 n>0

such that the Bridge equation, holds:
e € 2mZY,  Ai(z,b) = (Aw (4)3, + B, (b)@z)d(z, b). (26)

This equation must be understoog as a compact writing of the Tesurgence relq-

Yw € 27TiZ*, vn > 0, Awan = Z [(n2 + I)Awﬂnlﬂnz-i-l + Bw”rzl 8zﬂnz]
Ni+ne=n
(27)
which alloy one to compute gf the alien derivatives of the resurgent func-
tions i,,.

a) Simply ramified resurgent functiong

If a formal Laurent serjeg o(z) € (C[z][[z‘l]] is given, we cap isolate the
polynomia] part 1(z) and Compute the forma] Borel transform of the remain-
der @y () according to the ugua] rule B: z=n-1, ¢ /nl:

()5:Z/}+Q00>
{ Y € (2],

If moreover, when following the analytic continuation of the minor @, the
only encountereq singularities are of the form {polar part }+{logarithmjc singu-
larity}, the resurgent function @ is said to be simply ramified (we mean that, if
or denotes the determination of © obtained by following some path T of analytic
continuation which leads close to Some point o of 277, we can write

PO =poll™) 4 S hvar(©) og ¢ 4 rege)
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with pol(X) € C[X) and var((),reg(() c C{ChH)-
Simply ramified resurgent functions whose [minors extends analytically to R
form a subalgebra RES of Az

b) Alien derivations
Let w € 2miZ". The alien derivation of index w s 2 particular linear opera-
tor Ay of RES which satisfies the Leibniz rule:

V1,92 € RES, Aw (p1P2) = (Aup1)P2 T @1 (DuP2):

For definiteness, let us first consider the case where w = 2717 with r > 1 if @8
given in RES, we may consider the or—t determinations of the minor ¢ in the
gegment 12mi(r — 1), 2mir{ which are obtained by following its analytic continua-
tion along the half-line iR* and circumventing the intermediary singular points
o, . . ., 2mi(r — 1) to the left, or to the right; we denote them
@Ela--'ysr—l

cach €¢ being 2 plus sign Or & minus sign indicating whether 9rif was circur-
vented to the left or to the right. For ¢ el - 9i, 0f, we set

r!

x(C) = Z Mﬁ@’lwa"""sf”(%ir +0)s

€1,y--9Er—1

where the integers p(e) and qle) =1~ 1— p(g) denote the numbers Of plus signs
and of minus signs in the sequence (€1, ,Ep—1)- According to our hypothesis

on the shapeé of the singularities of the minor @, the function X must take the
form

1
%(C) = ANCN A+t AT %X(O Jog ¢ + reg(C);

where Ay,..., AN ar€ some complex numbers and X(C),reg(() e C{¢}. We
define ‘

pup = 2 algr A T A +BTR

It can be checked that A,@ 18 2 well-defined clement of RES; observe that
its minor X can be computed in the segment ]0,27r'1[ according toO the formula
V¢ 6]0,27r'1[,

t !
)A((C) — Z p(e)q(e) [(psl,.“,sp_l,—!—(QﬂiT + C) _ "051,...,5,._1,—— (27(-1,,_ + C)]

7l
I w = —2mir with r > 1, the operator Ay s defined in a gimilar fashion.
If a simply ramified resurgent function @ has only real coefficients, &€ p(z) €

RES N R[z)[[z ], one checks that

A _omind(2) = B @)
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On the other hand, if ¥ is even with respect to z,
A—27rir¢(z) = (AQWiTSE)(‘Z)'

The fact that the operators A, are derivations ig essential in Resurgence the-
ory. They are called aljen derivationg by contrast with the Natural derivation 0,.
There is 5 relation

but no relation between the A,’s the
These Operators encode ip fact the whole singular behavior of the minorg.
Given 3 Séquence w, . . »Wn I 2miZ* the tomposed operator Ay, 0 0 A

of some analytic problem) it ig observed that the alien derivativeg obey barticular
relationg depending on the problem under consideration.

he equation (26) can be viewed ag g bridge between alien calculyg and
ordinary lifferentia] calculus ip the case of the forma) solution 4, hence jtg
hame. The fami)jeg of complex numbersg Aw”n and Bw”n which determine the
differentia] operator in the right-hand side represent all the “transcendental”

Yw € 2miz*, A, (b) = A (b), B_, (b) = —B,(b).
Therefore we conclude that
Vw e 27TiZ*, Vn e N, Aw”n = A_w”.n € i]R, Bw”n = —B_w”n € R.

The Bridge equation (26) provides the decompositioy of

T
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as sum of its even part Ay (b)Oyu(2, b) and its odd part Bu (b)0, (2, b) (even and
odd with respect to z). Note that all the successive alien derivatives may be
computed by iteration of the Bridge equation:

Ao 0 Auyii(B) = (Aun (905 + Bun (0102 = w2)) (A (D)2 + B, (0. )ii(2,0)

(beware of the inversion of indices), etc. Therefore, in principle, the singular-
ities of each determination of the minors Uy, can be expressed in terms of the
numbers Ay and B, and of the coefficients of the series Un-

d) First singularity of the first minor
Here are the resurgence relations for the first series:

i
Vo € omiZ®,  Auio = Aujota ¥ Bujo g,

On the other hand, in the case of w = 27, we can rephrase Theorem 3:

27fiA1

2miA 2mA ~
mids 4 SRR 4 — + h(2),

TR

A‘zmﬂo (Z) =

with h(2) = 2p>1 plhpz Pt
1f we compare those two results by separating the even part from the odd
part in the last identity, we obtain

Azri|jo t(z) = 84 Agrifjo z dpz
k>—2
miA omiA 2miA Cor
= 4"52;4—}———2‘.322—&—__0‘. 1 +Z(2k’1)‘~h2k—1z 2k
k>l
di L .
B‘zmnofdzo(z) = B2ﬂi||0§:bkz 2k—1 :Z(Qk)!hzkz 2k-1

E>1 E>1

i.e. we find again the relations of the corollary of Theorem 4. In particular,

1
Agijlo = éjl@, Banijlo = B

A.4 Idea of ghe proof of Theorem 6

_ We already know, from Section 4, that the minor @o of the first formal series Uo
converges at the origin and extends analytically to RW.

The same is true for the minors of ¢1 and p2- Indeed, in the case of 1,
the relation (23) can be translated into & relation between the minors: ¢1(¢) =
—Ci(0)s which shows that ¢y extends analytically to R(M) | In the case of Y2,
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consider the relation (24): the series ©1(2 + 1) admits g minor e~¢g, (¢) which
extends analytically to (1) » and it can be checked that the series X which
involves the multiplicative inverses of ©1(2) and ¢, (z + 1) has also a minor y
which is holomorphic in R then the operator § ~1 which simply amountg to
division by e=¢ — 1 for the minors, and the multiplication of series preserve the

n-—1

with 7, = — k=1 Uty _p, and &, ~ =015 o5, + 257 10,), and the
Same arguments as above apply.

sequence RES") Rpg(2) » - - of subalgebrag of C=){[z=1]], whose intersection is
nothing but the algebra RES of simply ramified resurgent functiong. Then we
will explain how one can check that the Up’s belong to each algebra RES(V) and
therefore to RES.

~ Let RES™ he the subspace of Cl[z=1] consisting of all the Laurent series @
whose minor ¥ satisfy the following Properties: :

® ¢ converges at the origin and extends analytically to R(0) (the main sheet
of R);

* ¥ has at worst ramified singularities at 27 and —27i, ie. singularities
of the form pol(¢~1) + 217ivar(§) log ¢ with pol(X) e C[X] and var(¢) e
CC1){¢h.

One can check thag RESM 5 4 subalgebra of C2)[lz=1)) which contains RES,
and on which operators Ay, Ay may be defined ag previously and stil] satisfy
the Leibniz rule; but thege operators take thejr values in g Space of formal serjeg
which will be larger than Cle)[l=1] (these formal Series may involve log z).
Now consider the subspace RES®) consistin§ of all the elements & of RES™
such that Asrip and ANPY belong to RES(! » and the latera] continuationg
of ¢ have ramified singularities at F4ri. Tt is stable by multiplication too, and
not only Ay, . o Aioni are defined on it, but also operators Ay, A_ 4 which
extend the alien derivationg Agyqi of RES and still satisfy the Leibniz rule.



9mi is circumvented to the left or to the right: let us denote by ¢ (¢) and @ ©)
the two corresponding determinations of ¢ at a point ¢ of |2, 4ril. The minor
of Agmi@ 18 nothing but

() = @ (@mi+ () — ¢ (2mi+0) for ¢ €]0, 27

Now the condition Norip € RES(U implies that X extends to R©  and thus
@t extends to the whole half-sheet contiguous t0 R©) defined by paths which
cross |2mi, 4il from right to left, since we can write for the points ¢ in that
half-sheet

@t () =00+ (¢ — 27)-

This is the key-point: the determination of ¢ in that half-sheet may be expressed
in terms of the functions ¢ and X in the main sheet. Similarly, ¥~ extends to
the symmetric half-sheet, according to the formula

¢~ ()=o) - (L — 2m).-

Therefore, our requirement on Aogrip, which deals with analyticity in the main
sheet for its minor, can be interpreted as a property of analyticity for ¢ in other
sheets of R.

One can go On and define inductively RES(?’),RES(4), ..., by requiring at
each level that all the «computable” alien derivatives of the previous level lie
in RES(M and adding a condition about the shape of the singularity of the minor
one step farther. In fact the algebra RES!Y) at a level N > 11is characterized
by the possibility of defining on it all the operators

A2W1Nzo"'oA2TfiN1’ EEN*v Nl,...,NgEZ*, \N1\++\NC\SN
By definition rESVHY ¢ RESYY), and RES = () RESWY).
N>1

_ We have already seen that
¥n>0, in€RESY.

The main part of the work was done in the case of dip, and in fact the arguments
of Section 4 would allow one to check that the lateral continuations of g have
only ramified singularities.

Taking the alien derivatives at 497 of the equations that the series tn satisfy
and using the fact that Atoxi© P = Po Ay, W obtain a system of linear
equations for the series Atoriling which can be written as a single equation for
A:\:21riﬁ = }:nZO bnA:\:?Trian:

P(Ag2mifl) = —20A 2ri T-
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A:thiﬂn = Z [(n; + l)Aj:27riHnl ﬁnz-ﬂ-l + A:t27riHnI azﬁ'nz]-

V>0, 4, ecRES®
We can then proceed by induction and prove that
VN>1,V¥n>0, 4 ¢ RESW)

by iterating the previous argumentsg: at each leve] v » applying the alien deriva-
tions Ay, iy (which commute with P) to the equations that the series 4,
satisty, we obtain that the series Adtoriniy, (which could involve log 2) satisfy
linear equations from which we deduce that they are linear combinations of
the 4,,’s and 8.1, ’s:

Asorini, = Z [(712 + l)A:l:27riNHn1 Ungt+1 + At oniNin, 3zftn2]

N1+no=n

(thus they are Laurent series and do not involve log 2), therefore aj the series
AQ,riNl 0-..0 AQT,—iNl Up, lie in RES(l), and we obtain that the serjes Uy, belong

to RES(V+1) by checking the shape of the singularities at £27i(NV + 1) of the
lateral continuations of the minors. 0

u(z+1) ~ 2u(z) + u(z - 1) = F(u(z)) (28)

associated to an analytjc function F(X) = _ x2 + O(X3),
Any such function F determines a Symplectic mapping of the plane:

. - > o ./Yl :Y+1Y+F(1Y)
F . (/Y,)) 4 (1‘&1;)1)’ { Y :X+F(JY)

A particular solution u(z) of (28) yields an invariant curve (z(2) = u(z),
Y(2) = u(z) - u(z—~1)) for F, in the sense that F maps (z(2), ¥(2)) onto (x(z+
D,y(2 +1)).
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The general normalized solution i(z,b) that one can construct in this case
provides & formal conjugation

X =i(z,b)
{ y = ifz,b) — @z - 1,b)

between F and the “normal form at infinity”
T : (2,0) (z + 1,b).

The coefficients Auin and Byjin which appear in the Bridge equation can now
be interpreted as analytic invariants, &€ they allow to describe the analytic
classification of the mappings F-

b) Connection formulas
We use the Laplace transform to define two families of entire functions

ulduf,. . and ug ,uy .-~ 0 the following way:

400
yn > 0, u(z) = Pa(2) + / n(Q)e ¢ A,

0

where Py, is the polynomial part of dn!

i (2) = Pu(z) + o™
Due to the general properties of Borel and Laplace transforms, ut
Gevrey-1 asymptotic expansion in any sectorial neighborhood of +oo of aperture
gtrictly less than 27.
The formal sums

admits Un 38

ur (b, 2) = Z prut(z)

n>0

satisfy the equation (3), and we conjecture their convergence with respect to b.

The operators 111 the right-hand side of the Bridge equation give rise to two
formal automorphisms

Saown = exp(Z(Azﬂ-.N(b)e*“*NzawBw(we-z"*maz)),

N>1
Daown(b,2) = (b + z Asz(b)e'r‘)”iNz,z + z B?mN(b)e-szZ),
Nzl N>1
@up = eXD(Z(A_2ﬂiN(b)eZFiN28b + B-2mN(b)€2mN'zaZ)>7
N>1
@x\p(l%z) = (b—!— Z A_sz(b)e%riNz’z + Z B—ZﬂiN(b)ezfriNz),

N>1 N>1
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which should allow to describe the pézssage from ut o u”. We conjecture that
they are convergent (at least with respect to z) and mutually inverse, and that

u”(b,2) = u+(‘I>down (b,2)), u+(b, z) = U (P, (b, z)).

When expanded with respect to b, these relations brovide exact connection
formulas between the u;F’s and the u,’s. At first order, for large negative Im z,
we find

ug (2)

Il

U (24 Bypypge2miz O(e~4miz))
FAzmijoe ™ iy (4 4 Oe™?miz)) 4. O(z10~4riz)
Uy (2) + e=2miz (A27riHOu1—(Z) + ani”oazu(;(z)) + O(z10p—4miz)

as already seen in Section 2.4,
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