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Some uncompleted problems of Newtonian and relativistic celestial mechanics

Victor Brumberg
Institute of Applied Astronomy, St.Petersburg, Russia

Abstract

. A review of some problems of Newtonian and relativistic celestial mechanics to be regarded as uncompleted
problems worthy of further investigation. These problems include general solution of the three-body problem by
means of the series of polynomials, construction of the short—term and long—term theories of motion using the
fast converging elliptic function expansions, representation of the rotation of the planets in the form compatible
with the general planetary theory (combined Birkhoff normalization for the motion and rotation of the planets),
determination of the main (indirect) relativistic effects in the motion of a satellite and in the rotation of the
primary planet using the Newtonian theories of motion and rotation combined with the relativistic transfor-
mation of the reference systems, logical simplification of relativistic celestial mechanics and astrometry in the
post-Newtonian approximation by using the linearized (weak—field) metric of general relativity, and the motion
of the solar system bodies at the cosmological background.

1. Introduction

This is not an ordinary paper dealing with some specific celestial mechanics problem. The author has worked in
the field of celestial mechanics since 1955, the year of graduating from the Moscow state university and entering
as a postgraduate to the Institute of Theoretical Astronomy in Leningrad. The period of intensive progress
of celestial mechanics started several years later caused by space research, computer technology, advances in
mathematics and increase of observational precision. Now this period is practically over. It does not mean
that all problems seemed to be actual for that period were completely solved. The aim of the present paper
is to outline some problems coming into study by the author but still awaiting and deserving (at least, by the
author’s opinion) more thorough investigation. These problems were mentioned (amongst some other) as open
problems in the draft lectures (Brumberg, 2005) but here they are exposed in more detail.

2. General solution of the three—body problem

In 2012 specialists in celestial mechanics will see the centenary of the famous paper by Sundman (1912) present-
ing the general solution of the three-body problem by means of the power series converging for any moment of
time. More specifically, it was demonstrated by Sundman that for the three-body problem with non—zero value
of the area integral (excluding the case of the triple collision) the rectangular coordinates of the bodies, their
velocity components and the time are analytic functions in the infinite strip of finite wide seize 22 symmetrical
with respect to the real axis of the complex plane of variable w regularizing the double collisions. By applying
the transformation by Poincaré of this strip into the unit circle of plane 8

w:&lnﬂ :exp(m.u/QQ)—l

T 1-6’ exp(mw/2Q) + 1
Sundman presented the general three-body solution in form of the series in powers of # converging for any
|0] < 1, i.e. for any real moment of time ¢. Not depreciating the theoretical significance of this achievement

(2.1)
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it was clear from the very beginning that such series are not too useful for gaining an insight into the general
picture of motion. But their utility for numerical solution of the three-body problem remained under question.
In 1933 Belorizky (1933) gave negative answer to this question demonstrating extremely slow convergence of
these series. Since then the Sundman’s series have been mentioned in the textbooks on celestial mechanics just
as an example of practically useless theoretical result. But even before the research by Sundman it was known
that any analytical function f(w) represented locally in some circle of convergence by a Taylor series

o0

fw) =Y et (2.2)

k=0

can be expanded in its rectilinear star by a uniformly converging series of polynomials whose coefficients are
expressed linearly in terms of the coefficients of (2.2) (analytic continuation theorem by Mittag-Leffler). In other
words, for any point belonging to the rectilinear star of Mittag-Leffler there exists the sequence of polynomials

falw) (n=1,2,..)

falw) = Zn:ci”)akw’“ (2.3)
k=0

(n)

converging uniformly to f(w). The convergence factors ¢; ' being independent of function f(w) represent the
coefficients of polynomials

gn(w) =D eVt (2.4)
k=0
converging uniformly to
1
= 2.
gWw) =1 (2.5)

provided that w does not take real values from 1 to co. Generally, the faster the sequence (2.4) converges to
(2.5), the faster the sequence (2.3) converges to f(w). The possibility to present the general solution of the
three-body problem by means of the series of polynomials was not mentioned in the paper by Sundman. But
this possibility as a consequence of his main theorem was immediately noticed by his contemporaries, first of
all by Picard (1913). The first practical realization of this possibility was made only 50 years later (Brumberg,
1963). It turns out that the series of polynomials may be quite plausible for the numerical solution of the
three-body problem being concurrent with numerical integration for large intervals of w. The calculations of
(Brumberg, 1963) were performed under very limited computation facilities. Under present computer facilities
this problem (a sort of compression of Sundman’s series) might be investigated much more efficiently. The paper
(Brumberg, 1963) notes also that the general solution of the three-body problem might be represented by means
of the series of Hermite polynomials with respect to w. The domain of convergence of the series of Hermite
polynomials is just the strip [Im(w)| < const. In the expansion in Hermite polynomials as well as in the series
of polynomials for the rectilinear star of Mittag-Leffler the quantity Q (demi-width of the strip of convergence)
does not occur explicitly (in contrast to series of Sundman) and one may hope for better convergence of these
series. Its summation may be facilitated by using the recurrence relations for the Hermite polynomials. Based
on this we may formulate

Conjecture 1: The general solution of the three-body problem (triple collisions being excluded) may be
efficiently presented in form of series of Hermite polynomials in terms of w converging for any moment of time.

3. Perturbation theory with elliptic functions

Even when the differential equations of celestial mechanics admit solutions in analytical or semi—analytical form
these solutions are often represented by lengthy power—trigonometric series in many variables rather cumbersome
in practical use. The effective approach to deal with such series is to apply specialized celestial mechanics routines
based on some computer algebra system (such as Maple, Mathematica, etc.) in combination with compression
techniques of celestial mechanics aimed to make the solutions as compact as possible. Compression of celestial
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mechanics theories was always a subject of intensive research. More than one century ago Gylden suggested
to ”view the mean (true, eccentric) anomaly ... as the elliptic amplitude of new (independent) variable” (see
Nacozy, 1977). The key point of this idea was not so much to deal with elliptic functions themselves but rather
with their fast converging Fourier expansions to be considered as a compression technique in constructing
celestial mechanics theories. But the full realization of this idea started only with introducing by E.Brumberg
(1992) the elliptic anomaly w defined by

U T
2K 2 (3.1)

sing = —cnu, cosg =snu, w =

with eccentric anomaly g, modulus k = e of Jacobi elliptic functions (e being the eccentricity) and the complete
elliptic integral of the first kind K = K (k). Theoretical and practical aspects of using the elliptic anomaly
were advanced in monographs (Brumberg, 1995; Brumberg and Brumberg, 1999). But the elliptic anomaly is
awaiting its actual application. It was too early when in the end of 19th century Gylden put up the idea of
the elliptic anomaly in the vague form. It was too late when this idea was clearly formulated in 1992. By that
time the rapid advance of celestial mechanics caused by computer facilities and space research demands passed
already its top point. In three foregoing decades many theories of motion of natural and artificial celestial
bodies were constructed by other techniques available at that time. No doubt that many of these theories could
be presented in more compact form by using the elliptic anomaly.

The key point in constructing theories with angular arguments different from time resides in integrating
trigonometric functions dependent on several arguments of such type. The classical way was to use the Hansen
device to transform two angular arguments into a single one by using the standard expansion with Bessel
coefficients

expi(Asiny + B) = Z Jm(A)expi(my + B), J_m(A4) = (=1)"JTn(A4) (3.2)

m=—00

(see details in Brumberg, 1995). But this approach turns out to be not so efficient in practice, especially, in
dealing with highly eccentric orbits. Another approach to facilitate the construction of long—term and short—
term dynamical theories with using the elliptic anomaly has been proposed in (Brumberg and Brumberg, 2001).
The essence of this approach is as follows:

Integration of a series
[ee]

S= > > Suexpi(kz+ly),  Soe=0 (3.3)

k=—o0l=—0c0
with respect to time ¢ results in
(0] [ee]
[sat=">" 3 sun (3.4)
k=—ocl=—0c0

with integral

Iy = /expi(km—}—ly)dt. (3.5)

Hence, one has to deal with integral (3.5) with k,! being non—zero integers and x, y representing some angular
variables (anomalies) relating to one or two bodies. It is assumed that these variables are related to time ¢ by
the differential expressions

n(l+fdt =dz, f=f(x), (3.6)
and
m(l+e)dt =dy, ¢ =¢(y) (3.7)

where n and m are real constants while f and ¢ are some functions small by their magnitudes as compared
with 1. The case n = m is possible provided that « and y are related to one and the same body. By multiplying
(3.6) and (3.7) by k and [, respectively, and adding the results one has

(nk + ml)dt = kde + ldy — (knf + lmy)dt. (3.8)
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Substituting (3.8) into (3.5) and integrating the first term one gets
(nk+ml) I = —iexpi(kz +ly) — /(n/{:f + mlyp) expi(kz + ly) dt. (3.9)

The integral remaining in the right-hand member is often of the same type as the original integral (3.5) but
due to the smallness of f and ¢ it has smaller magnitude than integral (3.5). By repeating this procedure
one may hope that at some step of the integration process one may neglect the remaining integral and express
the integral (3.5) in the ‘closed’ form. This procedure may be applied to any number of variables. In classical
celestial mechanics a typical example is given with classical anomalies, e.g. # = v (true anomaly) and y = ¢
(eccentric anomaly) with eccentricity e being a small parameter. Then

1 1
f= _3(1 + ecosv)z —1= —3{1 -+ e[expiv —|—exp(—iv)]+
n n
+ %.52 + %62 [exp 2iv + exp(—?iv)] }, (3.10)
0= % = ;?{expig + exp(—ig) + se[expi(v — g)+
+expi(—v+g)+expi(v+yg)+expi(—v— g)]} (3.11)

with = v/1 — 2. Similar technique has been applied recently to treat the problem of motion of the major
planets (Gerasimov et al., 2000). This particular case with v and g may also be treated rigorously by the
algorithm of Jefferys (1971).

Extending this classical technique for more sophisticated anomalies let f and ¢ be represented by the series

= Z frexpirz (3.12)
and
o= Z orexpiry, (3.13)

coefficients f, and ¢, being, at least, of the order |r| with respect to some small parameter (with vanishing fy
and g for zero value of this parameter). By substituting these series into (3.9) one gets a recurrent relation

(oo}

(nk+ml)Iy = —iexpi(ke +ly) — Z (nkfrIygrs + mloe Ik 14r). (3.14)

r=—00

Let us assume that coefficients Sg; are of the order |k|+ |{| with respect to the small parameter and the maximal
order of the terms to be taken into account is equal N. It means that we should know coefficients Ix; only
for |k| 4+ |I| < N up to the order N — |k| — |l|, inclusively. These coefficients may be found by iterations. At
first step one gets their initial approximate value from (3.14) by putting f. = ¢, = 0. Then the same formula
permits one to improve their value until the prescribed accuracy will be achieved. Eventually, the result of the
integration (3.4) is presented in the same form as the original series (3.3) itself.

If  is the elliptic anomaly w defined by (3.1) then one of the basic relations (Brumberg and Brumberg,
1999)

ndt = (1 — ksnu)dnudu (3.15)
may be rewritten in form (3.6) with
T 1+ ksnu
1 = . 1
T/ =3K dn® u (3.16)
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The expansion of the right-hand member of (3.16) in multiples of w may be easily found by combining the
expansions (6.2.37) and (6.2.39) of (Brumberg and Brumberg, 1999) for 1/dn®u and snu/dn® u, respectively,
resulting in coefficients f, of (3.12). As a checking relation one can use

[ee]

(1+/)2=1 ®=——= > &expisw (3.17)

s§=—0Q

where coefficients ®; of the derivative of the mean anomaly M with respect to w are given explicitly in (Brumberg
and Brumberg, 2001).

This technique may be also applied, for instance, in dealing with two-argument series of the general
planetary theory with elliptic functions (Brumberg, 1995). The basic relation (3.4) takes therewith the form

QK’T(k) (n' = n)(1+ f)dt = dw (3.18)

with n, n’ being the mean motions of the disturbed and disturbing planets, respectively, modulus & of elliptic
functions being expressed in terms of semi—-major axes a and a’

4aa’
= — 1
(a+ a')? (3.19)

and K (k) being the complete elliptic integral of the first kind. Then,

1 [,r
f=— -1, u=-—uw. (3.20)

dnu T

The standard trigonometric expansion of 1/dn u results in (3.10) with = w and coefficients

T (_1)|r|7r ql"!

:——1 —r = Jr = = s
fO 2! K ) f f kK 1_|_q2|r|

(3.21)

k' and q being the complementary modulus and Jacobi nome, respectively.

In the second-order general planetary theory one deals with the triplet of planets i (disturbed planet), and
j and k (disturbing planets). Introducing anomalies w;; and w;; by analogy with (3.18)—(3.20) and putting
T = w;;, y = w;; one may apply the technique described above to integrate the two-argument series of the
right-hand members. This technique might be more effective than the Hansen device to express one of the
anomalies in terms of another one (Brumberg, 1995). In addition, this integration technique may be applied
to any angular variables satisfying relations (3.6) and (3.12) including various regularizing arguments (KS and
others) for many-body problem. But only practical applications may demonstrate actual efficiency of this
technique. Therefore, it is reasonable to formulate

Conjecture 2: Integration algorithm (3.3)—(3.7), (3.12)—(3.14) might be effective tool in constructing semi-
analytical theories of motion, particularly, with using the elliptic anomaly (3.1) (for highly—eccentric orbits) or
synodic anomaly (3.18)—(3.20) (for general planetary theory).

4. General theory of planetary motion and rotation

In no way underestimating numerical integration planetary theories (DE of JPL, EPM of IAA) or Le Verrier type
semi—analytical theories (VSOP of IMCCE) the construction of GPT (general planetary theory) still presents a
challenge for celestial mechanics (Brumberg, 1995). The aim of GPT is to separate short—period (dependent on
mean longitudes) and long-period (dependent on perihelia and nodes longitudes) terms reducing the equations
of motion to a secular system describing long-term planetary evolution. This system may be solved by various
techniques in different forms (including theoretically attractive but practically hardly feasible trigonometric
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form) but this specificity is not demanded by GPT. GPT has been elaborated at first for eight major planets
(Brumberg, 1995 and references therein) and then was extended to include the Moon (Brumberg and Ivanova,

1985). If M; and r; are masses and heliocentric position vectors of the major planets for i = 1,2, ..., 8 with the
value 7 = 3 relating to the Earth-Moon barycentre, and Mg and rg are the mass of the Moon and its geocentric
position vector, respectively, then designating the rectangular coordinates by z,y, z we have for e =1,2,...,9
zi+iy = A(L—p)G, zi=Aw, G=expid, Ai=nt+e (4.1)

with
niA} = G(Mo+ M;) (i=1,2,...,8), niAS = GMs, (4.2)

index 0 referred to the Sun. In GPT one takes, as a starting point, a quasi—periodic intermediary with arbitrary
constants n; and ¢; and then constructs a normalizing transformation from p;, ¢;, w; to eccentric and oblique

variables a;, a;, b;, b; admitting the immediate reduction to the secular system. The resulting equations have
the form

X =iN[PX + R(X,1)]. (4.3)

Here X = (a,a,b,b) and R = (Ry,..., R4) are vectors with 36 components (a, b and R; are 9-vectors). One
has therewith B2 = —R;, Ry = —R3. N and P are 36 x 36 diagonal matrices of the structure

N =diag(N,N,N,N), P =diag(E,—E,E, —E), (4.4)

N is 9 x 9 diagonal matrix of mean motions n; and F is 9 x 9 unitary matrix. The GPT right-hand members
are

Ry = DADa+ D®, Ro=-Ry, Rs=DBDb+D¥, Rys=—Rs (4.5)

with 9 x 9 diagonal matrix D = diag(expiAg). The transformation
a = Da, b= Dp (4.6)

results in the autonomous secular system for the major planets and the Moon with constant matrices A, B in
the linear parts and the power series & = ®(a, @, 3,5), ¥ = ¥(e, @, 3, §) in the non-linear parts

a=iN[Aa+ ®(a,a,8,8)], B=iN[BS+¥(a,a,s,pb). (4.7)

Actual construction of the GPT to higher degrees with respect to eccentric and oblique variables and higher
order with respect to the ratio of the planetary masses to the solar mass seems now to be quite feasible especially
with using synodic anomalies related with elliptic function expansions as indicated in Conjecture 2.

The next logical step is to try to study the rotation of celestial bodies within the GPT framework, i.e. to
separate short—term and long—term rotation terms and to obtain a secular system for the long—term rotation
compatible with the secular system for planetary motion. The investigation of this problem started, for sim-
plicity, with Poisson equations for the case of the axially symmetrical Earth gave promising results (Brumberg
and Ivanova, 1997, 2007). The general case of the rigid-body rotation of the Earth as well as of any other
solar system body may be hopefully treated in the same manner. The important starting point here is to
present the equations of rotation in the form compatible with GPT equations (4.3). Initially, in the Earth’s
rotation problem one has to deal with two geocentric coordinate systems, an inertial system x = (2;) with the
fixed ecliptic as a main reference plane and a rotating, Earth—fixed system x’ = (2}) oriented by means of the
principal axes of inertia. The rotation matrix A of the transformation

(3

x = Ax’, x' = ATx (4.8)
can be expressed in terms of Euler angles ¢, 6, ¢ (Tisserand, 1891; Smart, 1953)
A = Ds(¢)D1(0) D3 (), (4.9)

D; being elementary rotation matrices (e.g., Brumberg, 1995). To solve the Earth’s rotation problem means to
find these Euler angles in function of time. For computer manipulation it is reasonable to replace three Euler
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angles by four Euler parameters regarded as the components of the unitary 4-vector u = (u1, us, ug, us). With
the aid of the complex variables u = uy +1ug, v = uz + 1uy4 there results

o8 Y+ .0 Y=
u = —sin 5 exp <—1 5 ), v = icos 5 exp <1 5 . (4.10)

In terms of Euler parameters the kinematical and dynamical equations of the Earth’s rotation are described in
the form

3
0= Qw)u,  Li— Y egrljwiws =M (i=1,2,3) (4.11)
7,k=1

with principal inertia moments I; (I; < Is < I for the Earth) and vector w = (w;) of the Earth’s rotation
angular velocity with components w; referred to 2} axes. Q is 4 x 4 matrix with components

3
Qij = ZEijkwk s Qz’4 = _Q4i = Wi, 944 =0. (412)
k=1
In (4.11) and (4.12) ;% stands for the Levi-Civita symbol

cign = 50— ) = Rk =)
The torque vector M = (M;) is determined by
2M = Q(u)grad,U (4.13)
with the force function U and 4 x 4 matrix ) with components
3
Qij = ) cijpur +0ijta, Qui=—Qia=ui, Qaa=ua, (4.14)
k=1

d;; being the Kronecker symbol. In application to the rigid Earth model it is reasonable to put (under the
notation of the Connaissance des Temps)

W1 = le s Wo = ng ; w3 = Q(l + mg) ; (415)
Q being the mean Earth’s rotation velocity (Q = 7.292115-107° rad/s). The dimensionless quantities m; are

small (m; ~ my ~ 1075, m3 ~ 1078). To be consistent with our previous designations we put Q@ = —2n,n =
const. The equations of the Earth’s rotation may be put into the form

u=1n[(1 4+ mz)u — mv], (4.16)
v =in[(1 + ms3)v + mu], (4.17)
. . _ 1 (M .M
i = —2in(1+ ms)[(ky + ka)m + (k1 — ka)m] — — [ — +i1—, (4.18)
2n Il 12
o =5, 5 M3
ms=—1in o (m* —m®) Il (4.19)
with
=y 4+ ime. (4.20)
and Ii—1 L—1
O Rk _bol 4.21
YT oL T g (421)



Equation (4.18) may be simplified by means of the change of the variables

my = 2v/kam | mo = 23/ky m m' =m] +im) (4.22)

involving

. . 1/ 1 M, i M
"= _dinkiks (1 R N LAY 423
m inykiks (14 mg)m’ — o (sz AN 12) (4.23)

In using (4.23) instead of (4.18) one should use in the right—-hand members of equations (4.16), (4,17) and (4.19)

the expressions
m= (Vs + V) + (VB = V) (420

and
m? — m® = 4\/kiks (m'* — m'?). (4.25)

We have derived the system of the equations of the first order in terms of u, 4, v, v, m, m, mg (with
possible changing m, m by m’/, m’). By differentiating (4.16), (4.17) we can exclude m and mg to deal with the
system of the second order equations in terms of u,u,v, v alone. There results

i =—n(u+Q1), (4.26)
i=—n%(v+ Qo) (4.27)
with )
Q1 = (2m3 + m2 + min)u — %(mgu — o), (4.28)
Qs = (2ma + m2 + min)v — %(mgv + ), (4.29)

where m and rng are expressed by (4.18), (4.19) with

m= — (v — vu) (4.30)
n
and .
ms = —1 — —(u@ + 99). (4.31)
n

Equations (4.26), (4.27) (together with their conjugate complements) represent a system of four second-order
differential equations with respect to u, u, v, v. To facilitate the application of the Birkhoff normalization we
transform this system to a special-form system of eight differential equations of the first order with respect to
new variables p = (p;), p= (pi) (i = 1,...,4). Indeed, the transformation

. i, 1.

U, P3=V= 0, pg=U= v (4.32)

3|
3

Plzu—%ﬂ, p2=u~—
brings the system (4.26), (4.27) to the system like (4.3)
X =iN[PX + R(X,1)] (4.33)
where X and R stand for 8-vectors of new variables and right-hand members, respectively,
X =(p,p), R=(Q,-Q), Q=(Q1,Q1,Q2, Q) (4.34)
N and P are 8x8 diagonal matrices of the structure
N =diag(n,n,n,n,n,n,n,n), P =diag(1, 1,1, 1,-1,-1,-1,-1). (4.35)

The right-hand members of the equations of the Earth’s rotation depend on planetary and lunar coordinates.
Usually, these coordinates are regarded as known functions of time. Instead of this, they may be regarded them
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as functions satisfying some definite differential equations. Combining (4.3) and (4.33) one obtains a complete
system describing the planetary and lunar motions and Earth’s rotation. The resulting equations have the same
form as (4.3) or (4.33) where

X = (a,a,b,b,p,p), R=(Ry,...,Rs) (4.36)

are vectors with 44 components (a, b and R; for i = 1,2, 3,4 are 9-vectors, p and Rs5 = @ are 4-vectors). One
has therewith Ry = —R;, R4 = —R3, Re = —Rs. N and P are 44 x 44 diagonal matrices of the structure

N =diag(N,N,N,N,n,n,n,n,n,n,n,n),

P = diag(E(9), —FE(9), E(9), —E(9), Eay, —F(a)), (4.37)

N is 9 x 9 diagonal matrix of mean motions n;, E(g) and FE(4y are unitary matrices of dimension 9 x 9 and 4 x 4,
respectively. This form allows us to formulate

Conjecture 3: It is possible to extend GPT to treat not only planetary—lunar motions but their own
rotations as well and to obtain a unique secular system describing evolution of motion and rotation.

5. Relativistic extension of Newtonian theories of motion and rotation

With a few exceptions, general relativity is used now in practical celestial mechanics mostly in representing the
motion of the major planets in BRS (barycentric reference system). No doubt that rather soon new relativistic
theories of the motion of the satellites of the major planets as well as of the rotation of the planets will be highly
demanded. A question arises if in so doing it is possible to use the existing Newtonian semi—analytical theories of
motion and rotation. In (Brumberg, 2004) dealing with motion of an Earth satellite in GRS (geocentric reference
system) it was suggested for the evaluation of the third—body perturbations to use not the rigorous (rather
cumbersome) relativistic equations of motion but rather the Newtonian equations (with relativistic contributions
from the primary) with substitution of the relativistic four-dimensional [BRS&GRS] transformation (e.g.,
Bretagnon and Brumberg, 2003) for the coordinates of the perturbing bodies (the Sun, the Moon). It simplifies
the computation of the main (indirect) relativistic perturbations in the satellite motion caused by the influence of
the third-body. Brumberg and Simon (2003, 2007) demonstrated the possibility to find the indirect relativistic
perturbations in the Earth’s rotation just by substituting the [BRS«++>GRS] transformation for the lunar—solar
GRS coordinates into the existing Newtonian theory (SMART97) of the Earth’s rotation. The determination of
the relativistic indirect terms in the Earth’s rotation parameters opens way to find the relativistic contributions
in the rotation vector of GRS—ITRS (International Terrestrial Reference System) transformation as given in
(Bretagnon and Brumberg, 2003).

This technique is exposed in detail in the papers indicated above. For convenience, the basic formulas
underlying this technique are reproduced below (within the post-Newtonian approximation).

Let t and x = (2%) (i = 1, 2, 3) denote BRS time and spatial coordinates. The corresponding variables for
GRS let be denoted by u and w = (w'). The relationship between ¢ and u reads

'u:t—c_z[A(t)+vErE]+..., ' =X —Xg, (5.1)
rg, vg being the BRS position vector and velocity of the Earth. The time function A(t) satisfies the equation

GM4

TAE

A(t)=3vp +Us(t,xg), Ugp(t,xg)= )
A#E

(5.2)

with summation over all perturbing bodies A taken into account (the Sun and the Moon in the cases considered
above) and ragp = x4 — xg. Its solution is presented with separating a linear secular term from all other
(polynomial, trigonometric and mixed) terms

A(t) = Lot + Ay(t),  Let = Lo(J — 2443144.5)86400s (5.3)
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with
A, =P = Eto‘ ZA,? cos(¢p + vgt) (5.4)
o k
and condition P = 0 on Jan. 1, 1977 Oh Om Os TAI (J=2443144.5 TAI). Theoretically, t and u are supposed
to be TCB and TCG, coordinate time scales of BRS and GRS, respectively. But in practice ¢ and u are often
used as the time scales TDB and TT differing by scalar factors from TCB and TCG, respectively,
TDB = (1 — Lp)TCB, TT = (1 — Lg)TCG. (5.5)
These three scalar factors satisfy the relation
1-Lp=(1-L¢c)(1 - Lg), (L =Lc+Lg—LcLa). (5.6)
According TAU Resolution B1 (2000) their values read

Lo = 1.48082686741 x 1078, Lp = 1.55051976772 x 1078, (5.7)

Lg = 6.969290134 x 10710, (5.8)

Contrary to values (5.7) dependent on the O-C analysis of planetary—lunar motion L¢ is a defining constant.
In terms of TDB and TT the equation (5.1) takes the form

TT = TDB — ¢ 2[4, (t) + vere] + .. . . (5.9)
The use of TDB and TT involves the scale factors for spatial coordinates and mass coefficients
(X)TDB = (1 — LB)X, (GM)TDB = (1 — LB)GM, (510)

(w)rr = (1 - Lg)w,  (GM)rr = (1 — Lg)(GM), (5.11)

so that the velocity components and the equations of motion remain the same. By introducing the scalar
parameters
_{1,t:TCB, V_{l,u:TCG,

0, t=TDB, 0, u=TT (5-12)

one may write the direct BRS<+GRS transformation for any possible combination of the time scales as follows:

u= (l—luLB+1/Lg)t—c_2(Ap+vErE), (5.13)
w' = [1+ (1 —p)Lp — (1 = v)Lg)ry + ¢ 2AM(t, vg), (5.14)
Ai(t, rg) = %vErEv% — qaiijjr% + UE(t,xE)r% + aEI‘ETfE — %r%a% , (5.15)

where ap is the BRS acceleration of the Earth, F7 is the vector of geodesic rotation and ¢ is a numerical
parameter to distinguish between kinematically non-rotating (¢ = 0) or dynamically non-rotating (¢ = 1) GRS
(e.g., Bretagnon and Brumberg, 2003). Inverse transformation reads

t=(14uLp —I/Lg)u+c_2(Ap+va), (5.16)
e =1 (1—plp+ (1 —v)Lg)(w' +25) + ¢ 2T (u, w), (5.17)
Fi(u, w) = %vava + qaiijj'wk — Ugl(t, xE)'wi —apwu' + %WQaig . (5.18)

Function z%, = 2%, (u) representing the Earth’s motion referred to the GRS coordinate time can be computed
from the BRS—time representation of the Earth’s motion by means of

zp(u) = [+ (1= p)Lp — (1 —v)Lalap(t), (5.19)
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where
t* =(1+pulp —vig)u+c ?A,. (5.20)

Instead of determining ¢* one can just use

lg(t*) = 2lg[(1+ pLp — vLg)u] + ¢ 2 Apvly . (5.21)

By substituting (5.19) into (5.17) one can use also
e =[1—(1—p)lp+ (1 —v)Leglw' + i (t*) + 72T (u, w). (5.22)

The right-hand members of the Newtonian equations of the Earth’s satellite motion and the Earth’s rotation
involve the geocentric position vectors of the disturbing bodies w’ (u). The key point of the technique of this
section is to substitute their expressions resulted from the BRS<+GRS transformation as follows:

wféx(u) = zﬁ(u) — z};(u) + 0_2[Ai(t*, rae) + vEI'AEvi,E], (5.23)

Za(u) = zp(u) = [1+ (1= p)Lp — (1 = v)La][zy (") — 2 (t7)] (5.24)

with vag = v4 — vg. These expressions contain relativistic terms leading to the indirect relativistic perturba-
tions in the right—hand members of the GRS equations of motion and rotation. The extension of this technique
for other planets of the solar system is straightforward.

This technique facilitates greatly the determination of the main relativistic perturbations in the primary
planet coordinate system. To investigate and to apply this technique more widely it seems reasonable to
formulate

Conjecture 4: The main (indirect) relativistic perturbations in the geocentric motion of an Earth satellite
(including the Moon) and in the rotation of the Earth may be obtained by substituting into the Newonian GRS
equations the relativistic four-dimensional BRS+> GRS transformation for the coordinates of the perturbing
bodies (with extension of this technique for any planet of the solar system).

6. Is the linearized (weak—field) GRT metric sufficient for relativistic celestial mechanics and
astrometry?

Nowadays, thanks to the PNA (post—Newtonian approximations) techniques of GRT (general relativity theory)
one has in practical disposition the expansions of the metric coefficients in quasi-Galilean coordinates

ds® = gudztde” ' =ct, Guv = Nuw + hpw (6.1)

oo = 1, Noi = 0, 77ij = —(5”' (62)
for the gravitational N-body field as follows:

hoo = ¢ % hoo+ ¢ * hoo + ¢ Aoo + ¢ C hoo + ¢~ 7 Aoo + O(C_S) ; (6.3)
hoi = ¢ 3 hoi + ¢ hoi + ¢ % Ao +0(c77), (6.4)
hij = C_2hij +c* hij+c_5Az’j +0(c™®) (6.5)

(Greek indices running from 0 to 3, Latin indices running from 1 to 3, ¢ being the light velocity in vacuum).
The A,, terms are due to gravitational radiation of the N-body system presenting a qualitative difference from
the Newtonian N-body problem (see references in Brumberg, 1991). Such advanced expansion is needed in
studying the motion in a strong gravitational field (e.g., the binary pulsar problem). In present applications
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related to the solar system much more restricted approximations are needed. With all h,,, = 0 metric (6.1) be-
comes Galilean (Minkowski) metric of SRT (special relativity theory) yielding the Newtonian equations of light
propagation (motion in a straight line). Retaining in hgo only the first term hgo and rejecting all hg;, hj; one

2
gets the metric giving the Newtonian equations of motion and incorrect approximation for the light propagation
equations. The correct post-Newtonian equations of light propagation are obtained by the metric with hgg, ho;
2 3

and h;;. This metric is called linearized (weak—field) GRT metric and it is quite sufficient for present relativis-
2

tic astrometry based on the post-Newtonian equations of light propagation and post—-Newtonian (generalized
Lorentz) transformations between different four—dimensional reference systems (including the post-Newtonian
theory of the time scales).

It is widely believed that to derive the post-Newtonian equations of material bodies underlying present
relativistic celestial mechanics it is necessary to include in hgg also the non-linear fourth—order term hgq.

Indeed, the post—Newtonian equations of motion of a test particle in a given gravitational field resulting from
the geodesic principle (motion on a geodesic line) demand hgo (e.g., Section 2.2.3 of Brumberg, 1991). The

derivation of the equations of motion in the post—Newtonian N-body problem by the PNA techniques also
demands this term.

Nevertheless, it may be reminded that as far back as 1957 Infeld (1957) suggested to derive the post—
Newtonian equations of the N-body problem from the variational principle for the GRT field equations. This
technique turned out to be the most economical one not demanding the use of hgg. In doing so Infeld used

the mass tensor with ¢— functions. In (Brumberg, 1972) the same technique was applied in combination with
the Fock mass tensor for ideal liquid. The possibility to use just the GRT linearized metric for relativistic
celestial mechanics simplifies greatly the use of GRT in practical astronomy. Based on the variational principle
all practical tools of relativistic celestial mechanics such as EIH (Einstein-Infeld-Hoffman) equations of N-body
problem, equations of motion of a test particle in a given field of gravitating masses, equations of rotational
motion of celestial bodies, etc., may be derived just from the linearized metric. Very regretfully, this idea
was forgotten (rather frequent case in any science in all times). This idea was reminded in (Brumberg, 1997)
indicating that the IAU Resolutions of 1991 fixing hoo and hij should be extended by adding hoi (and not hoo).

But both hOZ and hoo terms were explicitly mdlcated in the IAU (2000) Resolution B1 (IAU, 2001) on reference
systems and time scales Moreover, hoo term 1s combined with hoo term by introducing generalized (relativistic)

potential instead of ‘out-of-date’ Newtoman potential.

Trying to revive the idea by Infeld and to show its practical prospects the author presented to Celestial
Mechanics and Dynamical Astronomy journal a paper under the title of this section. This title seemed to be
too polemic to the reviewers and has been replaced by a more moderate title (Brumberg, 2007). In what follows
we reproduce the basic formulations of this paper.

The starting point is the GRT field equations

RM — LR = —kT™ (k = 87Gc™?) (6.6)
expressed in terms of the Ricci tensor R*”, scalar curvature R, metric tensor g"* and mass tensor
ATH = (?p* + p* Il + p)uru” — pg"” . (6.7)

The representation (6.7) is due to Fock (1955) with the invariable rest mass density p* satisfying the equation
of continuity, potential compressional energy II, pressure p and 4-velocity u*

dx# ds p

b = — — e p—— dH:
u ds vV—gp pdro’ P

5dp” (6.8)

p being the rest mass density.
The field equations (6.6) may be derived from the condition of stationarity of some scalar invariant. This
variational principle may be presented in the form

et ds
) = 214 M)p— |dQ = .
/{167rG gJ+c*(1+e¢ )pdazo 0 (6.9)
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with changing g,, provided that the variations of g,, and their first derivatives vanish on the boundary of the
4—domain of integration dQ2. Here J denotes

J=g" (g8, -5, 17 ), (6.10)
I'7;, being the Christoffel symbols (Fock, 1955; Brumberg, 1972) Here and everywhere below the partial derivative
with respect to some coordinate is denoted by a comma accompanied by the appropriate index. Einstein
summation rule is applied everywhere assuming the summation over any twice repeated Greek or Latin index.
It may be noted that J as a function of g#¥ and derivatives dg*” /0z® is Lagrangian for the left—side of the field
equations (6.6).

Since the elementary 4—volume is dQ = cdt d3z it seems reasonable to rewrite this principle

6/Ldt:0 (6.11)

to treat L as the Lagrangian of the N—body problem equations (see Infeld and Plebansky, 1960 for mathematical
reasoning). Needless to say, this may be done in the post-Newtonian and post-post-Newtonian approximations
n (6.3)—(6.5) but not for the radiation approximation when the equations of motion cannot be presented in the
Lagrange form due to the presence of the radiative (dissipative) terms. Changing the sign one gets from (6.9)

and (6.11)

L=-— /{16 G\/_J+c (1—1—0_21_[),067— Pz (6.12)

the integral is to be considered as the sum of integrals taken over the volumes of the bodies.

One may note that due to the geodesic principle the derivative ds/dz° leads to the Lagrangian ¢?(1—ds/dz°)
of the geodesic equations of a test particle in a given field. It will be seen below that both parts of the integrand
in (6.12) contain explicitly hoo but with opposite signs resulting in cancelling this term in the integrand as a

4

whole.
The well-known general solution of the linearized field equations (the linearized metric) in arbitrary quasi-
Galilean coordinates reads (e.g., Brumberg, 1991)

ds? =(1- 0_22U) Adt? + 2(0_34Ui + ao; + aio) cdt da'+
+ [—(1 + 0_22U)(5ij +a;; + ajyi] datdz’ (613)

with Newtonian potential U/ and vector—potential U satisfying the equations

Uss = —4nGp, U’ = —4xGpv' (6.14)
with integral representations
/ )
U:G/ LN G/ P d3’ (6.15)
|r —1/| |r — 1
One may add to it the relation '
cUo+U5=0. (6.16)

In (6.13) a, are four arbitrary functions of z°, 2!, z?, 23 (vanishing for the case of harmonic coordinates). In

dealing with these functions ag is to be regarded as a third—order function and a; as second—order functions.
The coordinate conditions with non—zero a; are used now very seldom. But together with harmonic choice
ag = 0 one may often meet the so called SPN (standard post-Newtonian) gauge with

0, harmonic gauge

1, SPN gauge (6.17)

— — .2 —
a; =0, ap =c¢ VX, y_{

and

1
Xss =U, X:§G/pl|r—r'|d33:' (6.18)



resulting to

hoi = 4U" + vex o; - (6.19)
In this approximation one has also the density relation
pr=pll—c?(3*+30)+.. ] (6.20)

Now it is possible to return to (6.12) to find the Lagrangian L of the post-Newtonian N-body problem in
harmonic coordinates (or SPN coordinates considering that function ag does not affect the post-Newtonian
equations of motion). By using expansions (6.3)—(6.5) in the post-Newtonian approximation and taking into
account (6.13) one finds in result of some algebraic manipulations (Brumberg, 1972) the post-Newtonian La-
grangian

L :/p{[%vz + U+ 0_2(%'04 + %’U2U + %U‘? — AU — %}}00)]‘1‘
+ [=3U +e7H(=U% + 200" = fev' oi + 5 hoo)] +
+I[-1+ 72 (30° +U)]}d3:n. (6.21)

As mentioned above the expression in the first square brackets resulting from ds/dz° represents the Lagrangian
of the geodesic motion equations of a test particle in a given field. The expression in the second square brackets
results from the first term of the integrand of (6.12). Adding of these two expressions results in remarkable
simplification of the Lagrangian of the post-Newtonian N-body problem, i.e. cancelling hgo terms. The terms

dependent on the internal structure of the bodies may be treated as in (Brumberg, 1972) by using

- p, [Mdp
pll = pIlI* — ¢ ?p (30 +3U) +..., IW'=-=+ [ —, (6.22)
P 0o P
IT* being the Newtonian value of II. Taking into account that such internal structure terms result only in
re—definition of parameters (e.g., introducing ‘effective’ masses, etc.) and omitting for the sake of simplicity
such terms we have finally

L= Z:/Ap[%v2 + iU+ (Evt + 20U - JUP - U — %cvixyoi)] P (6.23)
A

with summation over all gravitating bodies labelled A, B, C| ... .

Integration in (6.23) may be performed by the standard technique by Fock separating U, U?, x into internal
and external parts with respect to body A and expanding the external parts in the vicinity of body A (Fock,
1955; Brumberg, 1972). In particular, for the model of point masses there results the well-known Lagrangian
of the EIH (Einstein-Infeld-Hoffman) equations

mamp - mamp
L :Z{gmﬂj +3G > e 2[§mA(vg)2 +1i6 Y Eo (3v§,+
A B#A B#£A

1 mamp(my +m
—|—3VJ29—7VAVB—(VAI‘AB)(VBI'AB)2—) —%GZ Z A B(QA B)_
TaB BZA TaB

— %Gz E Z mATTlBTTlC( ! + ! + ! )]} (6.24)

r r T T T T
B£A C#A,B ABTAC BAVTBC CATCB

with r4p = x4 — Xp, va = X4, x4 denoting the position vector of body A. Assuming in the EIH equations
one of the N masses to be zero one gets the equations of the restricted N — 1 problem (motion of a test particle
in the field of N — 1 gravitating bodies).

In present practice the non—point structure of the bodies is taken into account only at the Newtonian
level in the Newtonian parts of the post—Newtonian equations of motion. To take into account the non—point
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structure at the post—Newtonian level (mainly for advanced research study) it is to be reminded that such body

characteristics (rotation velocity, multipole moments, etc.) should be considered in a body reference system. In

so doing it is sufficient to use the post-Newtonian theory of reference system transformations in the equations

obtained in a global reference system (e.g., Bretagnon and Brumberg, 2003) not demanding hgg (both in a global
4

system and a local body-related system). It involves relativistic contributions to the parameters occurring in U
and U*. The post-Newtonian equations of rotation of bodies also may be derived from the variational principle.
Now it is possible to improve the first results obtained in this way in (Michalska, 1960a,b).

To conclude it is to be noted once again that for high accuracy research (strong gravitational field, high
accurate relationship between proper time and coordinate time, etc.) one should know hgo (and even more

4
advanced terms) in the expansions of the metric coefficients. But the results obtained half a century ago
(Infeld, 1957) and reminded here clearly show that for post-Newtonian celestial mechanics and astrometry
there is no need in it.

It might seem that this conclusion is in contradiction to the TAU (2000) Resolution B1 (IAU, 2001) on
reference systems and time scales claiming the necessity of hgp term. As stated above this term is relevant

4
for the geodesic principle and PNA techniques implicitly envisaged by this resolution. In this respect it is of
interest that the original ETH technique (unsurpassed by its elegance) demands not only hgo but also h;; and
4 4

hoi- No one resolution can restrict the search for more compact and more efficient techniques to solve problems.
5

It is of interest also that one of the principal PPN (Parametrized Post-Newtonian) formalism parameters
3 enters into hgo (extending formally the Eddington-Robertson metric for one-body problem). If the basic

equations of rglativistic celestial mechanics were derived from the very beginning without this term then this
parameter might not been introduced into equations of motion at all. The GRT variational principle underlines
once again the compactness of GRT as compared with alternative theories of gravitation.

Needless to say, all practical GRT tools such as EIH planetary equations, equations of Earth’s satellite and
lunar motion, Earth’s rotation equations, algorithms of reference systems transformations, etc., are well known
now but it is of importance that all these tools might be obtained based on a very simple metric.

The foregoing discussion enables one to answer positively the question put in the title and to formulate

Conjecture 5: The linearized (weak—field) GRT metric is sufficient for post-Newtonian celestial mechanics
and astrometry permitting to obtain the post—-Newtonian equations of motion and rotation of celestial bodies.

Combination of Conjectures 4 and 5 results in rather simple structure of post-Newtonian celestial mechanics.
Planetary motions in the solar system are investigated in BRS using the linearized GRT metric and EIH
equations. The problems of satellite motion and planetary rotation may be treated using the Newtonian
equations added by relativistic terms due to the primary (within the one-body problem) and performing the
transformation between BRS and local (primary) RS to take into account the relativistic indirect third—body
perturbations.

To conclude this section it may be noted that relativistic celestial mechanics being much younger than New-
tonian celestial mechanics and anticipating soon its first centenary has in its history many unjustly forgotten
ideas. One of them was considered is this section. Another interesting idea by Infeld related with the derivation
of the EIH equations is the possibility to present the GRT N-body equations in purely Newtonian form by
using adequately chosen coordinates (Infeld, 1953; Brumberg, 1972). Such coordinates are not quasi-Galilean
coordinates (involving, in particular, the coordinate function a of the first order) and the description of astro-

nomical observations (light propagation) in such coordinates might be rather cumbersome. Nevertheless, the
exploration of this idea is of interest. The currently employed relativistic hierarchy of quasi—Galilean reference
systems 1is very effective practical tool but in no way this is the only possible way of research. The present
developments in relativistic celestial mechanics and astrometry seems to be too pragmatic and self-restricting,
especially if supported by TAU resolutions (Brumberg and Groten, 2001).

15



7. Solar system dynamics in the cosmological background

The motion of the solar system bodies is regarded in relativistic celestial mechanics (and so more in Newtonian
celestial mechanics) almost always under assumption of the isolated existence of the solar system, i.e. by
neglecting the cosmological background. This assumption is quite justified within the present observational
results. But each time when there are some hints of discrepancies in the discussion of observations (e.g., time-
quadratic terms in the planetary longitudes) the influence of the cosmological background is reminded as one
of the possible sources of such discrepancies.

The investigation of this question was started by McVittie (1933) and continued by Jarnefelt (1940, 1942)
by considering the one-body problem in the expanding Universe (the Schwarzschild problem in the cosmological
background). The problem was treated as a mathematical one. The corresponding results were formulated in
terms of coordinates rather than in terms of physically measurable quantities (the techniques of relativistic
reduction of observations were not elaborated by that time). In monograph (Brumberg, 1991) this problem was
outlined in relation with the equations in variations for the spherically symmetrical background metric but the
inadequate choice of coordinates involved the unnecessary mathematical difficulties. The satisfactory treatment
of this problem based on the discussion of observations and the use of an adequate mathematical techniques
seemed to be done for the first time in (Krasinsky and Brumberg, 2004). The conclusion is that within the
present precision level the cosmological background (the expansion of the Universe) does not affect the motion
of the planets and the reason of the possible observational discrepancies might be anything else. This problem
needs to be further investigated. We give below the key formulas for this investigation.

Equations in variations for the spherically symmetrical metric:

The starting point is the GRT (general relativity theory) field equations (Brumberg, 1991)
G* + Agh” = —s(TH + TH), (7.1)

where 7" is the background field mass tensor, T#” is the perturbation field mass tensor, G*” denotes the
Einstein tensor, A is the cosmological constant, and x = 87G/c?, G being the gravitational constant. The
metric form is represented by

ds® = Juodztda” Juv = Nuw + hpw (7.2)

with background metric tensor g,, and perturbations h,,. The background isotropic metric for A = 0, T*¥ = 0
for the spherically symmetrical field can be represented by

Noo = A, Tom = 0, Nmn = _Bémn ) (73)
1 )
00 0om mn mn
— — — E—— 4
=g 0, n T (7.4)

A and B being functions of the radial coordinate distance r and time ¢ to be determined from the background
field equations. The field equations (7.1) can be rewritten with Ricci tensor R, in form

Ry = ~k(T5, +T}) + Agy (7.5)
with

2

T and T being invariants of the mass tensors T#” and T*, respectively. Therefore, the equations in variations

for the field equations (7.5) read (Brumberg, 1991)

* 1 * 1
7;“/ = 7;11/ - §guuT; Tu}/ = T,ul/ - _g,uVTa (76)

Ry = —kTy, — k6T, + Aguw (7.7)

with
6T = Ta(90p) — Taw(Nap). (7.8)
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Under the coordinate conditions
hO0,0 + hss,O - 2hOs,s = 0, hOO,m - hss,m + ths,s =0 (79)

the equations in variations for the background metric (7.3) are reduced to

hoo ss — hoo,00 = 2Loo, (7.10)
hOm,ss — 2LOm s (711)
B B B
hmn EX _hmn = 2Lmn (_ - 1)h mn — T4 h m,0n h n,0m 712
; 1 ,00 + 2 00, A( om,0n + hon,om) ( )
with contraction
B

hrr,ss + hOO,ss =2L + 2ZL00 (713)

and the right-hand member functions
Lyw = B(&Ty, + k07,5, — Aguw + Quu) (7.14)

Qv being non-linear contributions in Ricci tensor components given by (4.3.24)— (4.3.26) of (Brumberg, 1991).
Equations in variations (7.10)—(7.12) are to be solved by iterations with respect to hy,. At each step of iteration
the right-hand members 2L, are known. Then, equation (7.10) is the wave equation with constant coefficients.
The equation (7.11) is the Poisson equation. Equation (7.12) has the form of the wave equation with variable
coefficient B/A (for example, for the background Schwarzschild metric this coefficient may be reduced to a
function of r alone). But for A = B this equation simplifies to be also the wave equation with constant
coefficients. That’s why it is reasonable to use the background cosmological solution (7.3) in the conformally
Galilean coordinates ensuring the condition A = B (in contrast to the Robertson-Walker metric in comoving
coordinates with A = 1 and B being a function of r and t).

The background field equations:
The background solution is constructed here for simplicity with the simplest mass tensor

dxt dx”

pe 4T
T = Pds ds

(7.15)

p being the density of the matter (dust matter without pressure). With the aid of (7.3) and (7.4) it leads to

. 1 dx* dz® . :
Too(nap) = pA <§ + ng) ) Tom(Nap) = —ABPE ds

X ) (7.16)

1
* ) = pB _5mn B—
T (Nlap) = p <2 +B———
These expressions together with the components of the background field Ricci tensor (3.1.14) of (Brumberg,
1991) enable one to get the background field equations as follows:

1 1 3 3
Agg——A A, +—A,B,—3B —AoB — BBy =
ss g Aedst opAsBe—3Boo+ o7 AoBo+ gpBoBo
1 da® dz*
1 2 9 dz® dz’
QBOZ—i_ZA,ZB,O—i_EBZBO = —-2AB Ts ds (7.18)



1
— Bk — 0ix B s + ﬁ(A,iB,k +ArB; — 6k A B+ 6B oBo)+

1 B 1
—(3BiBgx +6ixBsB,)— — | A;x — dix B ik AoBo —
—1-23(3 iBE+ 0B, ) A( ik k ’00+2A kA oBo

1
— A Ay =
24" ")

dat dx*

= B’kp (i + 2B——— | .
P < bt ds ds )

The cosmological background (the isotropic models) in comoving coordinates (A4 = 1):

In comoving coordinates one has

dz? dz™
A=1 —=1 =0.
’ ds ’ ds 0
Under these conditions the field equations (7.17)-(7.19) admit the solution
2
B=——% r? =gtz

(15 32y
k being a real constant. Function @ dependent only on time is determined by the equations

a
_ 1.2
—=—gckp,

ai + 2a” + 2kc* = %azcszp.

From these equations it follows

c2

k—:%cQ.‘fp—HZ, H="2
a

a? ’

H being the Hubble constant. One has also

2aqi+ a® + ke =0,

p+3Hp=0.
This Robertson—Walker metric reads:
a2
ds? = dz°dz® — ﬁdmsdl‘s .
(1+ gkr?)
With a new ”time” argument 7
0o _ . ¢ da
dz” = adp, n=—; H_a_zd_ﬂ

it describes explicitly three well-known cosmological models (with arbitrary linear constant g):

Closed model: k=1

2q ) c sin g
=2q(1 - t=—(n-— H= ————
a = 2q(1 — cosn), . (n — sinn), 24 (1 —cosy)?’
Flat model: k =0 9
q c _
a=qp, t=z-n7, ==,
¢ q
Open model: £ = —1
¢ sinh 5

2
a = 2q(coshn — 1), t:—q(sinhn—n), H=
c
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(7.19)

(7.20)

(7.21)

(7.22)

(7.23)

(7.24)

(7.25)

(7.26)

(7.27)

(7.28)

(7.29)

(7.30)

(7.31)



The cosmological background (the isotropic models) in conformally Galilean coordinates (A = B):

In this case the field equations (7.17)—(7.19) result in

3 o2 1 dx® da*
A,ss — 3A700 + ZA’OA’O =2A Kp <§ + AEK (732)
3 dz® da’
2A 0 + —A ;A g = —2A%kp— 7.33
ot 7o ds ds (7.33)
dzt dz*
—2A ;1 — 0 A s + iA A r+6irA o = Az,‘fp Oip + 2A rer (734)
) ) A ) ) ) ds dS
admitting the general expression for all three values of k
4 0y 4
q z
A= (1 - 3) + <—) Oro, d=k(zsz® —2%2%) + ¢dko, q = const . (7.35)
q
The expression of the Hubble constant for this case reads
q
1+ = 2
c 2c
H=v=k< d o+ bk (7.36)
z

d q
(1 - d)
Indeed, taking the derivatives of A from (7.35) and substituting them into the left-hand members of (7.32)-
(7.34) one gets for k # 0

2 2 Lk 3.k
—12 (1 - 2) kL <1 —ri—) = A%p (1+2Adidi> ,

d d3 d? ds ds
o4 (12 Y 2 L g0p0 = 9 43,, %0 4
24(1 d)k‘dsll— 2Af$pd8 7o
(AR DS N2 2 L gigh — 42, (6 40492 42
—12 (1= 2) ka4 24 (1= 3) k2 Latak = A% (G +24°- 2 )
These equations are satisfied by the solution (7.35) for A together with
12 dz* zH
kp=—k— 4 Ny P (7.37)

e-9 " -y

determining the density and the velocity of the dust matter (for £ = —1 this solution coincides with the Fock
(1955) solution).
Applying the same procedure for k = 0 one gets from (7.32)—(7.34)

06 04 5.k 3.k
z z° dx” dx

ds ds
0 dz® dz?
= Kp——
Pds ds
02 08 0% ;. i gk
z z z° dx' dx
120, — = — o; 22— .
kq4 qgﬁp( kE+ & ds ds)

One comes again to the solution for A from (7.35) together with

(7.38)



This value of p corresponds to the critical density

as seen from (7.24).
In conformally Galilean coordinates the equation (7.26) takes the form

ds
)= —3Hp —
P pd;l‘O’
where
ds \* A
) TT g

In dealing with the conformally Galilean metric one may note a useful relation

ds v —k

20@7(1_%)2

d

Reduction of the Robertson-Walker metric to the conformally Galilean form:

(7.39)

(7.40)

(7.41)

(7.42)

Two different algorithms of such reduction are given below. The first one similar to the Fock (1955) represen-
tation for the open model involves complex coordinates for the closed model. The second algorithm involving

only real coordinates is based on problem 19.8 of (Lightman et al,, 1975).
Algorithm 1:
Introducing spherical coordinates by means of

zl =rcospsinf, z?=rsinpsinf, z®=rcosf
one can represent the Robertson—Walker metric in form
2 2 2 1 2, .2102
ds* =a*(n) |dn° — —————=(dr® + r°dQ7)
(15 3kr?)
with
dQ? = d6? + sin? 6dy? .
The transformation of the radial coordinate
1— Lkr?
2277; 5 d2274r27’
1+ gkr (1 + %/ﬂa)
implying
1— Lkp?)? 2
1—k22:< ! 5 1—{—%/?7’2:7
(14 kr?) 1+ V1 — kX2

transforms (7.43) into
ds* = a*(n) | dn® — dx — x2dQ?
1— kX2 '

A new variable y determined by differential relation

ax?
— = dy\?
1—ky2 X
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(7.44)

(7.45)

(7.46)



or in explicit form

siny, k=41 (closed model)
Y= X, k= 0 (flat model) (7.47)
sinhy, k=—1 (open model)
enables one to rewrite (7.45) as
ds* = a*(n) (dn® — dx* — $*(x)dQ?) . (7.48)

The final reduction to the conformally Galilean metric
ds? = A(c*dt? — dr? — r?dQ?) (7.49)
is provided by the transformation
et = =k dcos(Vkx) + nddo, r=dY, d = qexp(v/—kn, (7.50)

implying ¢?dt? — dr? = d?(dn? — dx?) and
- — _ _ 2 ? 2
A= a=—kd (1 ) + gqn*dxo, (7.51)

q being a real constant. Needless to say, cosiy = cosh x. It is easy to see that the form (7.49) with (7.51) is
identical to the previous found solution with (7.35).

Algorithm 2:
Starting from (7.48) it is possible instead of (7.50) to transform 7 and x by means of

1 1
u:§(77+x), v:§(77—x), (7.52)
reducing (7.48) to
ds* = a*(4du dv — X2dQ?). (7.53)

Now u and v are changed to new variables @ and § in a similar manner

@ = g(u), B = g(”): U= f(a)’ v = f(ﬁ) (7'54)
so that
du= f'(a)de,  f'(a)=[¢'(u)]7",

accent denoting the derivative with respect to the corresponding argument. Hence, the metric (7.53) transforms
to

22

ds? = a’f'(a)f'(B) |4dadf — ——————dQ?| . 7.55
(@) f'(8) P78 (7.55)

The function g is to be chosen to provide the condition for the conformally Galilean metric

¥? 9
——=(a—f 7.56
Flap@ = (720
or more specifically

g'(wg' (V)% = [g(u) - g(v)]*, (7.57)

Y. being considered as dependent only on the difference v — v. For any £ = +1, 0, —1 this equation is satisfied
by
g(u) = tan(\/Eu) + u ko (7.58)

with evident replacing taniwu = tanh u. The metric (7.55) becomes

a2

2 _
= T ka1 1 55

[4dadB — (o — B)2dQ2). (7.59)
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Finally, the transformation
1 - 1 -
o= %(Ct—kf), 8= %(ct—F) (7.60)

reduces (7.59) to the conformally Galilean metric of the type (7.49)

ds? = A(c2di? — di® — #2dQ?) (7.61)
with
~ a2
A= qQ—D , (7.62)
2 2 k om | k2 o
By using
o =g(n) (7.64)
there results B
ct
2 o ; (7.65)
a = s o= ——"1= -5 - .
q\/1+k02(1—|—\/1—|—k02) B 22— 72
442

The equivalence of (7.49) and (7.61) may be easily seen from the expressions of ¢, # from the one part, and ¢, r
from the other part, in terms of n and x. By comparing these expressions one gets

#=vD % r (7.66)

and
¢°D
Adt? — dit = ¢* D(dn? — dx?) = d—z(c2dt2 — dr?) (7.67)
(this formula corrects a misprint in (12.51) of Brumberg, 2005).
Hence,
2
D -
A= % A (7.68)

demonstrating the equivalence of (7.59) and (7.61). In what follows the form (7.61) will be used with no
specification for A and with omitting tilde over A, ¢ and 7.

Solar gravitational field at the cosmological background

Let the variations of the background gravitational field of the expanding Universe be caused by a spherical
massive body (the Sun) located at the spatial origin r = (x¥) = o. Investigating a quasi—circular motion of a
test particle in this field (Schwarzschild problem at the cosmological background) one may see if the expansion
of the Universe affects the motion of the Solar system bodies (Krasinsky and Brumberg, 2004). For this purpose
it is sufficient to have the simplest, just quasi-Newtonian solution of equations (7.10)—(7.12) by restricting in
(7.14) only by the first term, i.e. L,, = kBT, . Then the disturbing mass tensor 7#* may be taken in the form

v p dx® dx* dzv

- /—g ds dx0 dz°

(7.69)

with the density
p= Mid(r), (7.70)
d(r) being delta—function (Infeld and Plebansky 1960). For the background metric (7.3) one easily finds

1 A 2 -1/2 A 2
BT, = ~VAj (— - 2—2) <— + %) ,

2 B B¢
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—-1/2 ’Ui

A 2
BT(;' = —\/Zﬁ <§ - U—) -

c? c

B A 2\ P14 w2 vt vl
BT = 2 5(2 -2 = L P 771
K \/ZP<B 02) [2 <B 02) it c c] (7.71)

In integrating the equations (7.10)—(7.12) for the fixed material point in the conformally Galilean background
with A = B one may put

Loo = 47V Amé(r),  Loui=0, Ly = 4m/Amd(r)d;; (7.72)
with GM
m=— (7.73)

Hence, by neglecting the retardation terms one may present the approximate solution of (7.10)—(7.12) in form
2m 2m
hoo = ——V A, hoi =0, hij = ——VAdjj, (7.74)
r r

resulting to

ds? = <A - Q_m\/Z) Adt? — <A+ Q—m\/Z> de*dz® . (7.75)
r

r

Equations of motion of a test particle in the field (7.75) with the coordinate time ¢ as an argument follow from
equations (4.3.38) of (Brumberg, 1991) for the general metric (7.3). By retaining only the main terms one has

i 1 2508 2 -1 -4 62 C2
2= QA(.Z‘ 2 —c*)(A;+ e Agzt) — QAhOO’Z — 2A2Ayshms + ... (7.76)
or else )
GM . A .
P =——z'— — 2. (7.77)

VAr3 2A

In reducing (7.76) to (7.77) the last term in the right-hand member of (7.76) is neglected due to the presence of
the derivatives A ; much smaller as compared with A. For the same reason cA o in (7.77) is replaced just by A.
Considering the motion of the test particle for some limited interval of time ¢ — {5 one may use approximation

A= Ag+ Aot —to), (7.78)
using as a small parameter the ratio (¢ — tg)/T where

44
T=22. (7.79)
Ag

Then, equation (7.77) reads

. M* t—t C2 M
;iZ:_G <1—2 To)xz_—éi‘l M= —. (7.80)

3

It is seen that the main effect of these equations may be interpreted as the variability of the constant of
gravitation

G 2
o= 7 (7.81)

On the other hand, in polar coordinates in the plane of motion 23 = 0
a2l = rcos A, 2? = rsin A
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these equations read

. : t—to\ 1 2 . 1d . 2 .
—rA? = -GM* [1-2 — - = ——(rPA) =—-=rA 82
P—r G ( T )72 T rdt(r ) TrA (7.82)
or else ,
: t—1 : t—1
rz)\:nazexp<—2 TO)’ A:n(%) (1—2 TO)’
n2aq* t—1g n2aq® t—1p 2
P = 1-4 — 1-2 — =7 .
o () (o) 2, -
a being an arbitrary constant with n?a® = GM*. These equations admit an approximate solution
t—1p : t—1p
= 1-2 A= 142 .84
r=a < T ) , n ( + T ) , (7.84)

involving the quadratic term in the mean longitude

n

6)\T

(t —t0)*. (7.85)
This is just a coordinate—form solution. To get the physically meaningful relativistic effects it is necessary in
general to perform the relativistic reduction of observations using the solution of the equations of the light
propagation. These equations follow again from equations (4.3.38) of (Brumberg, 1991) under the substitution

Bi*a® = ?A + c2hoo + 2¢ hod® + hyyi” * (7.86)

resulted from the condition ds? = 0 for the light propagation. By restricting only by the main terms one has
for A=B

M =

GM
el

In our case it is sufficient it is sufficient to express the longitude A of the moving particle in terms of the proper
time 7 of this particle. From (7.75) it is seen that within the first order with respect to the small parameter of

this problem the proper time 7 reads
dr t— to
— =\/Ag[1+2 .
7 v Ag < + T ) (7.88)

demonstrating that the quadratic term (the only one significant term) in the mean longitude (7.85) does not
exist as a measurable effect in dA/dr. Tt follows from this that within the present—day observational precision
there is no observable effect in the motion of the solar system bodies due to the cosmological background
(Krasinsky and Brumberg, 2004).

However, this treatment is only one of the initial steps toward the global problem of the influence of
the cosmological background. In particular, it may be of interest to correlate this approach with the exact
solution for the one-body problem in an expanding universe by McVittie (1933) and Jarnefelt (1940, 1942) or
to apply the equations in variations for the conformally Galilean background field (A = B) for more wide class
of perturbations. The main question seems to be in checking

m 4 M 8 k3
2™ + R ) (7.87)

Conjgecture 6: The cosmological background does not affect qualitatively the motion of the solar system

bodies.

8. Conclusion

In looking through the issues of Celestial Mechanics and Dynamical Astronomy journal of the recent years it
is seen that present celestial mechanics has not so much common with celestial mechanics of the second half of
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the last century. The aim of the present paper is to show that the problems and the techniques of that period
are not quite exhausted and they still might be of interest and benefit even in new surroundings. It concerns
both Newtonian and relativistic celestial mechanics.
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