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2 Le modèle dynamique 21
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Introduction

Il n’est pas facile d’écrire un document supposé résumer plus de 10 ans
d’activité de recherche. Je vais profiter de cette introduction pour faire une
rapide présentation des différents domaines de recherche auxquels j’ai été
confronté depuis le début de ma thèse pour ensuite expliquer mes choix pour
la rédaction de ma HDR.

En début de ma thèse, dirigée par Christiane Froeschlé et Giovanni Valsec-
chi, j’ai commencé par étudier les indicateurs de stochasticité ce qui a fait
l’objet d’une publication sur les indicateurs rapides de Lyapunov pour des
systèmes dynamiques continus (voir l’annexe A.6). Cette activité m’a per-
mis d’acquérir une certaine expertise sur l’étude de la stabilité numérique
de systèmes dynamiques, ce qui m’a été très utile à plusieurs reprises par la
suite.

Je me suis aussi consacré, toujours dans le cadre de ma thèse, à l’ap-
plicabilité des méthodes de Monte Carlo pour modéliser la dynamique des
comètes de la famille de Jupiter. Ce travail montrait essentiellement l’i-
napplicabilité d’une telle méthode dans ce cadre . L’obtention d’un poste
de mâıtre de conférences à l’université de Lille 1 dans un département de
Mathématiques m’a conduit à collaborer avec Radu S. Stoica sur l’utilisation
de méthodes statistiques pour la modélisation des perturbations planétaires
sur des comètes se trouvant sur des trajectoires quasi-paraboliques (voir l’an-
nexe A.1).

Après mon arrivée à l’université de Lille 1, j’ai également co-encadrer
avec Alain Vienne, la thèse de doctorat effectuée par Julien Frouard, sur la
stabilité à long terme des satellites lointains de Jupiter (voir l’annexe A.2).

C’est donc en 2004, que je suis tombé dans la “marmite” de la dynamique
des comètes du nuage de Oort. Depuis cette date, ce sujet est devenu mon
activité de recherche principale et c’est pourquoi j’ai choisi de rédiger ma
HDR autour de ce sujet. J’ai choisi aussi d’insérer des articles publiés dans
des revues internationales avec comité de lecture pour mettre en valeur ma
recherche dans ce domaine en choisissant les articles qui la synthétisent au
mieux et qui contiennent les résultats principaux. Les autres articles sont
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rapidement présentés dans les annexes A.3 pour ce qui concerne le modèle
et A.4 pour les résultats complémentaires dans ce domaine.

Le chapitre 1 consiste en une présentation du nuage de Oort avec d’une
part la dynamique (section 1.1) et d’autre part les questions encore ouvertes
qui lui sont reliées (section 1.2).

Le chapitre 2 est consacré à la présentation du modèle dynamique que
j’ai conçu. Le modèle des marées galactiques est présenté dans la partie 2.1,
celui des étoiles dans la partie 2.2 et celui des perturbations planétaires dans
la partie 2.3.

Le chapitre 3 présente les principaux résultats obtenus à partir ce modèle
pour ce qui concerne la synergie entre les marées galactiques et les passages
stellaires (section 3.1) et les interactions avec les perturbations planétaires
(section 3.2).

On trouvera enfin dans le chapitre 4 les conclusions et perspectives.



3

Chapitre 1

Tout ce que vous avez toujours
voulu savoir sur le nuage de
Oort sans jamais avoir osé le
demander

1.1 La dynamique

1.1.1 Les premiers pas, avec les étoiles

Tout a commencé en 1932, quand Öpik (1932) mit en évidence que les
perturbations stellaires sur les trajectoires presque paraboliques de comètes
ou de météores avaient pour effet d’accrôıtre considérablement la distance
périhélique 1. Ainsi ces objets se retrouvaient sur des orbites d’où seules
d’autres étoiles pouvaient les éjecter. Öpik en conclut qu’il devait exister un
nuage d’objets se trouvant à plus de 10 000 UA du Soleil. Cependant, pour lui,
les objets de ce nuage étaient essentiellement inobservables puisque les pertur-
bations stellaires étaient efficaces pour augmenter les distances périhéliques
mais pas pour les réduire.

En 1950, Oort (1950) observa, à partir de la distribution de 19 comètes
à longue période connues à cette époque, que la distribution de l’énergie or-
bitale originale 2 de ces comètes montrait un “pic” vers les très petites valeurs,

1. Ces perturbations stellaires sont dues à des passages d’étoiles au voisinage du Soleil.
Il faut remarquer que les étoiles ont des vitesses relatives au Soleil de l’ordre de la dizaine
de kilomètres par seconde, alors qu’une comète se trouvant à 10 000 UA du Soleil sur une
orbite presque parabolique a une vitesse de l’ordre du décimètre par seconde.

2. Dans la suite, les paramètres originaux d’une trajectoire se réfèrent aux éléments
orbitaux avant que la trajectoire ne soit affectée par les planètes
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c’est-à-dire que leur demi-grand axe se trouvait entre 25 000 et 75 000 UA.
Ce pic prit le nom de pic de Oort. Oort remarqua qu’en revanche le pic ne
résistait pas aux perturbations planétaires. Ainsi, il n’apparaissait pas sur la
distribution des énergies orbitales une fois l’effet des planètes pris en compte.

Ces comètes devaient donc venir dans la région planétaire du système
solaire pour la première fois. La valeur de leur demi-grand axe conduit Oort
à émettre l’hypothèse d’une région se trouvant entre 10 000 et 100 000 UA,
contenant un grand nombre de comètes. Cette région prit le nom de nuage
de Oort.

Comme Öpik, Oort prit aussi en compte les effets des passages d’étoiles
au voisinage du Soleil. Mais c’est en considérant que ces effets pouvaient
se traduire aussi par une réduction de la distance périhélique qu’il expliqua
pourquoi des comètes du nuage de Oort pouvaient devenir observables.

A la suite de ces premiers travaux de Oort, les chercheurs ont essayé de
comprendre et de modéliser le mieux possible comment une comète se trou-
vant dans le nuage pouvait devenir observable. Pour cela, le concept de loss
cone (cône de perte), déjà introduit par Oort, a été utilisé (voir Weissman,
1980; Fernandez, 1981, entre autre, pour une illustration de ce concept). Ce
concept repose sur le fait que, statistiquement, les effets des planètes géantes
sur une trajectoire augmentent lorsque le moment angulaire diminue. Pour
une comète se trouvant sur une orbite presque parabolique ce moment an-
gulaire est proportionnelle à

√
q, où q est la distance périhélique. Donc plus

la distance périhélique est petite, plus les effets des planètes sont statis-
tiquement importants. Comme une comète du nuage de Oort a une énergie
orbitale 3 de l’ordre de −10−4 UA−1, dès que la perturbation caractéristique
des planètes sur l’énergie orbitale dépasse 10−4 UA−1 en valeur absolue, on
peut supposer que la comète est éjectée du nuage de Oort (on verra dans
quelle mesure cette idée ne correspond pas à la réalité dans la section 2.3).

D’après différentes simulations (en particulier Fernandez, 1981), le seuil
de 10−4 UA−1 est atteint dès que la distance périhélique passe en dessous de
10∼15 UA. Ainsi, si une comète du nuage de Oort se trouve à une distance
héliocentrique inférieure à 15 UA par exemple (voir Matese et Whitman,
1992), alors elle est éjectée du nuage de Oort, sinon sa trajectoire n’est pas
affectée par les planètes. La région qui contient les comètes du nuage de
Oort ayant une distance périhélique inférieure à 15 UA correspond au loss
cone. On appelle aussi cette région la barrière de Jupiter-Saturne puisque
ce sont essentiellement ces deux planètes qui sont responsables de l’éjection
des comètes. Le flux de comètes observables venant du nuage de Oort peut

3. On utilisera la quantité z = −1/a, où a est le demi-grand axe de la trajectoire de la
comète, comme représentative de l’énergie orbitale.
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alors être étudié en regardant les comètes du loss cone se trouvant à moins
de 5 UA du Soleil.

Jusque dans les années 80, seules les perturbations stellaires étaient con-
sidérées comme capables de remplir de manière efficace le loss cone (voir
par exemple Rickman, 1976; Weissman, 1979; Fernández, 1980; Hills, 1981;
Remy et Mignard, 1985). Les nuages moléculaires ont aussi été considérés, et
le sont encore dans quelques travaux (Jakub́ık et Neslušan, 2008, par exem-
ple). Cependant leurs effets, bien que pouvant être dévastateurs (Biermann,
1978; Napier, W.M., and Staniucha, M., 1982; Clube et Napier, 1982; Bailey,
1983), sont tellement difficiles à paramétrer d’une part, et que de telles ren-
contres sont probablement très rares d’autre part, qu’ils ne sont généralement
pas pris en considération dans les études actuelles.

Pour ce qui concerne les effets des étoiles, il ressort que le flux de comètes
observables dû aux passages d’étoiles peut être divisé en deux parties (voir
en particulier Heisler et al., 1987). La première consiste en un flux de fond,
pratiquement constant dans le temps venant de la partie externe du nuage
de Oort, c’est-à-dire celle dont les comètes ont un demi-grand axe supérieur
à 20 000 UA. La deuxième, principalement mise en évidence par Hills (1981),
consiste en un flux sporadique pouvant être plusieurs ordres de grandeur plus
important que le flux de fond, mais de courte durée et qui contient surtout
des comètes venant de la partie interne du nuage de Oort (demi-grand axe
inférieur à 20 000 AU). On parle alors de douche cométaire. Cette douche
est provoquée par le passage d’une étoile passant très près du Soleil. D’après
Dybczyński (2002), la géométrie de la trajectoire de l’étoile va influencer
la distribution de la direction des aphélies des comètes à longue période
rendues observables lors de la douche. Or on ne distingue pas de tel signe
dans la distribution des comètes à longue période observées, ce qui permet
d’exclure l’hypothèse que nous sommes actuellement en train d’observer une
forte douche cométaire. Cependant d’après Rickman et al. (2008) on ne peut
pas exclure une douche cométaire modérée.

1.1.2 La Galaxie

Suite aux travaux précurseurs de Chebotarev (1966); Smoluchowski et
Torbett (1984); Byl (1983), les effets de la Galaxie sur la dynamique des
comètes du nuage de Oort ont commencé à être pris en considération. Cepen-
dant, si dans ces travaux la Galaxie n’était modélisée que par une masse
ponctuelle, ce n’est que dans les années 80, lorsque le disque galactique fut
modélisé (voir en particulier Byl, 1986; Heisler et Tremaine, 1986; Duncan
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et al., 1987) que la Galaxie obtient toute l’importance qu’elle a aujourd’hui
dans la dynamique des comètes du nuage de Oort.

Les effets de la Galaxie sur une comète du nuage de Oort est une consé-
quence de la très grande distance entre la comète et le Soleil, de telle sorte
que la force gravitationnelle de la Galaxie sur le Soleil est significativement
différente de celle de la Galaxie sur la comète. En ce sens on parle de force de
marées galactiques, que l’on a l’habitude de décomposer en une composante
normale au plan de la Galaxie induite par le disque galactique, et une com-
posante radiale se trouvant dans le plan de la Galaxie induite par le bulbe
galactique et le halo. L’estimation des paramètres intervenant dans le calcul
de ces marées montrent que la composante normale est près d’un ordre de
grandeur plus grande que la composante radiale (Levison et al., 2001).

En négligeant la composante radiale et en moyennant les équations par
rapport au mouvement moyen de la comète (les marées engendrent des effets à
très long terme), alors on obtient un système qui est complètement intégrable
(Heisler et Tremaine, 1986). La dynamique induite par un tel système se
résume alors en un mouvement périodique de l’excentricité et de l’argument
du périhélie alors que le demi-grand axe reste constant. L’inclinaison par
rapport au disque galactique subit aussi des oscillations de telle sorte que
la troisième composante du moment angulaire de la comète

√
a(1− e2) cos i

reste constante.
La période du cycle de l’excentricité est inversement proportionnelle à la

période orbitale de la comète. Ainsi, plus le demi-grand axe est grand plus
la période de ce cycle diminue (mais son amplitude reste constante). Ceci
montre que la moyennisation effectuée pour obtenir le système intégrable
va atteindre sa limite de validité lorsque le demi-grand axe deviendra trop
important (on verra dans les articles publiés que celle limite se trouve aux
alentours de 50 000 UA).

Lorsqu’on utilise le concept de loss cone, pour qu’une comète soit ob-
servable elle doit passer la barrière de Jupiter-Saturne en une seule période
orbitale et être injectée directement dans la région observable (typiquement
moins de 5 UA du Soleil). Or la variation de la distance périhélique augmente
avec le demi-grand axe, ainsi dans un modèle dynamique ne contenant que
les marées galactiques et utilisant le concept de loss cone, seules des comètes
ayant un demi-grand axe supérieur à ≈ 23 000 UA pourront devenir obser-
vables (Fouchard et al., 2011b).

Le modèle intégrable de marées a permis de montrer que la direction
des périhélies des comètes à longue période observées était une conséquence
de l’influence de la composante normale des marées galactiques sur leur ob-
servabilité (Delsemme, 1987). A la même époque, Duncan et al. (1987) ont
montré de manière convaincante que les échelles de temps pour rendre ob-
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servable une comète du nuage de Oort sont beaucoup plus courtes pour les
marées galactiques que pour les effets des étoiles passantes.

Ainsi, dans les années 1990 et 2000, les marées s’imposèrent au détriment
de l’influence des étoiles. Cependant, c’est justement la quasi-intégrabilité
des marées galactiques qui constitue leur première faiblesse, comme on va le
voir.

1.1.3 La synergie

Du fait de la quasi-intégrabilité de la dynamique générée par les marées
galactiques, les régions du nuage de Oort à partir desquelles une comète
peut devenir observable (appelées TAZ, pour Tidal Active Zone) sous l’-
effet des marées possèdent une frontière pratiquement infranchissable. Ces
régions vont donc se vider sans qu’aucun mécanisme ne puisse efficacement
les remplir. Le flux de comètes observables va donc diminuer fortement pour
atteindre un niveau où les injections ne sont dues qu’à la faible perméabilité
de la TAZ ou à un problème de synchronisation qui veut que pour qu’une
comète soit observable elle doit se trouver au voisinage de son périhélie au
moment où son périhélie est dans la région d’observabilité. La probabilité de
ce dernier événement est proportionnelle à l’inverse du carré de la période
orbitale (Fouchard et al., 2010). Finalement on atteindra un flux résiduel en
moins de 2 milliards d’années (Rickman et al., 2008; Fouchard et al., 2011a).

La présence des étoiles change drastiquement la situation. En effet une
très forte synergie existe entre les effets des marées galactiques et ceux des
étoiles (Rickman et al., 2008; Fouchard et al., 2011a,b; Rickman et al., 2012).
Cette synergie peut se décomposer en deux parties : une à long terme di-
rectement reliée au remplissage de la TAZ, et une à court terme due à une
interférence constructive entre les perturbations galactiques et les perturba-
tions stellaires.

La synergie à long terme peut se résumer aux deux points suivants.
• les étoiles garantissent un remplissage de la TAZ de l’ordre de 70%

même sur 5 milliards d’années. Ainsi le flux résiduel n’est jamais atteint.
• le passage d’une unique étoile, préférentiellement massive, est capa-

ble de remplir complètement la TAZ, générant une augmentation du
flux de comètes observables pendant plusieurs centaines de millions
d’années. On parle de bruine cométaire, dans le sens que l’augmenta-
tion est modérée mais de longue durée.

Pour ce qui est de la synergie à court terme, il s’agit d’une synergie
qui a lieu en dehors de tout passage stellaire pouvant induire des douches
cométaires, même modérées. Il s’ensuit que les injections sont donc princi-
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palement dues aux marées galactiques. Les interférences entre les effets des
marées et des étoiles peuvent être autant constructives (les effets vont dans
le même sens) que destructives (les effets sont de sens contraire), mais il se
trouve que le cas constructif domine sur celui destructif, pourvu que la dis-
tribution des énergies orbitales des comètes considérées soit pas trop éloignée
d’une distribution uniforme (Rickman et al., 2008; Fouchard et al., 2011b),
ce qui est en général le cas.

Ainsi la présence de perturbations stellaires permet de changer certaines
caractéristiques du flux même sur du court terme, c’est-à-dire sur la dernière
période orbitale avant l’observabilité. Ces changements peuvent se résumer
aux 2 points suivants.
• Une augmentation globale du flux de l’ordre de 30%, qui est directement

reliée aux interférences constructives.
• La région observable du nuage de Oort, et en particulier le pic de Oort,

sont déplacés vers des valeurs plus petites du demi-grand axe (de ≈
23 000 UA à ≈ 20 000 UA pour le bord interne, et de ≈ 48 000 UA à
≈ 34 000 UA pour le maximum du pic de Oort).

Il faut souligner ici, qu’en considérant une orbite du système solaire au-
tour du centre de la Galaxie plus réaliste que la trajectoire uniforme et circu-
laire, conduit à des marées galactiques qui dépendent du temps. Par exemple
dans Gardner et al. (2011), cette variation périodique des marées induit une
variation du flux de comètes observables de l’ordre aussi de 30%.

1.1.4 Et les planètes

Lorsque les comètes à longue période passent dans la région planétaire du
système solaire, elles subissent les effets des planètes géantes. Une modélisation
précise de ces perturbations est très coûteuse en temps de calcul nécessitant
l’utilisation de méthodes plus rapides mais aussi moins précises. Avant les
années 90, ces perturbations étaient préférentiellement modélisées par une
marche aléatoire en énergie orbitale comme dans Duncan et al. (1987), ou
en utilisant des méthodes de Monte Carlo (Everhart, 1972; Stagg et Bailey,
1989). Le concept de loss cone a aussi été largement utilisé (voir Heisler et
Tremaine, 1986; Matese et Whitman, 1992, entre autres ).

A la fin des années 90, les capacités des ordinateurs ont permis de faire
une modélisation plus précise des perturbations planétaires sur les comètes
du nuage de Oort. Wiegert et Tremaine (1999) ont été les premiers à le faire
de manière précise. Mais leur recherche était principalement consacrée au
“fading problem” (voir la partie 1.2.3 consacrée à ce problème).

La première modélisation complète de la dynamique des comètes du nu-
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age de Oort sur l’âge du système solaire tenant en compte les 3 principaux
perturbateurs (marées galactiques, passages stellaires et les planètes) a été
faite par Emel’yanenko et al. (2007). Leurs travaux ont permis de mettre en
évidence que l’introduction des perturbations planétaires conduisait à une
efficacité plus élevée pour rendre une comète du nuage de Oort observable.
Mais les auteurs n’ont pas poussé plus loin leur analyse.

Ce n’est qu’avec les travaux de Kaib et Quinn (2009) que le rôle des
perturbations planétaires, et plus particulièrement de leur interaction avec
les perturbations galactiques, a pu être mis en évidence.

Dans cet article, les auteurs illustrent le chemin typique d’une comète du
nuage de Oort devenant observable par une comète du nuage de Oort interne
(a < 20 000 UA) qui pénètre la région planétaire du système solaire, à ce
point une perturbation planétaire envoie la comète dans le nuage externe ou
central (a > 20 000 UA), région à partir de laquelle les marées galactiques
peuvent facilement rendre la comète observable. Les auteurs montrent que
plus de la moitié des comètes observables suivent une telle route. Ce scénario
avait déjà été mis en valeur par Levison et al. (2006) mais dans le cadre de
l’origine des comètes de type Halley.

Cependant, le modèle de Kaib et Quinn (2009) ne tient pas compte
des perturbations stellaires en fin d’intégration alors qu’on a montré dans
Fouchard et al. (2011b); Rickman et al. (2012) qu’elles sont importantes
lors de la dernière période orbitale précédant l’observabilité. Enfin, il existe
d’autres routes conduisant à l’observabilité que l’introduction des perturba-
tions planétaires rend possible mais qui ne sont pas discutées dans Kaib et
Quinn (2009). Cette étude approfondie a été l’objectif de l’article Fouchard
et al. (2013). Les résultats de Kaib et Quinn (2009) sont confirmés, mais
l’introduction de nouvelles routes permet de préciser comment les planètes
agissent en interaction avec les marées et les étoiles.

Ces résultats montrent que la composante interne du nuage de Oort,
longtemps considérée comme non-observable, est en fait la principale source
des comètes à longue période observables.

Pour finir cette partie sur les perturbateurs des comètes du nuage de
Oort, il faut mentionner l’hypothèse qui stipule qu’il existe une planète dans
la partie interne du nuage de Oort. D’après Matese et Whitmire (2011), le
flux de comètes du nuage de Oort observé est statistiquement consistant avec
la présence d’une planète d’une à quatre masses joviennes et orbitant à moins
de 10 000 UA du Soleil. Cependant l’observation d’une telle planète est encore
difficile de nos jours. D’autre part, il faudrait expliquer l’origine d’une telle
planète dans notre système solaire.
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1.2 Les questions ouvertes

1.2.1 Taille, forme, population et masse

Taille et forme

Si on pense au nuage de Oort comme une région du système solaire alors
forcément il existe et correspond à la sphère d’influence gravitationnelle du
Soleil qui s’étend environ jusqu’à 200 000 UA du Soleil (Heisler et Tremaine,
1986) à laquelle on a retiré sa partie la plus interne à moins de quelques
milliers d’UA du Soleil. Mais l’étude du nuage de Oort n’a de sens que si
il contient des objets, et c’est là que les problèmes se posent. Les objets
supposés se trouver dans cette région sont complètement inaccessibles aux
observations. En effet leur présence dans le nuage n’est déduite que de la
forme du pic de Oort, c’est-à-dire de la valeur très élevée du demi-grand axe
d’une grande partie des comètes à longue période.

En conséquence l’objet de pratiquement toutes les études sur la dy-
namique du nuage de Oort, est de pouvoir répondre aux questions suiv-
antes : que contient-il ? quelle forme a-t-il ? quelle dimension a-t-il ? Pour le
moment, c’est-à-dire tant que ces objets ne sont pas observables dans le nuage
de Oort, le seul moyen que l’on a pour essayer de répondre à ces questions
c’est la modélisation de la dynamique et la confrontation des résultats avec
les comètes à longue période observées. Ceci implique une première limita-
tion aux réponses que l’on peut donner : on ne peut déduire de l’information
que sur la partie du nuage de Oort qui est capable de produire des comètes
observables.

En fait la seule quantité sur laquelle il y a un bon accord mais qui n’engage
pratiquement à rien est relative à la frontière externe du nuage. La valeur de
200 000 UA (Heisler et Tremaine, 1986) est généralement admise. Pour ce qui
est du bord interne, les choses commencent déjà à se compliquer. En effet,
la plupart des études placent ce bord à 3 000 UA suite à l’article de Duncan
et al. (1987).

Dans cette étude, ils ont montré qu’au voisinage de 3 000 UA l’échelle
de temps nécessaire aux marées pour changer la distance périhélique d’une
comète est comparable à l’échelle de temps nécessaire aux planètes pour
changer l’énergie orbitale de cette comète. Cependant une composante très
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interne du nuage peut aussi être considérée et contient très probablement des
objets, faisant le lien avec le disque étendu 4 (Brasser, 2008).

Mis à part cette partie très interne du nuage de Oort, celui-ci peut ensuite
être divisé en 3 parties.
• La partie interne contenant les comètes ayant un demi-grand axe inférieur

à 20 000 AU. Cette partie ne produit pas directement de comète ob-
servable, mis à part un flux très faible (Fouchard et al., 2011b) ou
pendant les douches cométaires provoquées par le passage très proche
d’une étoile (Hills, 1981).
• La partie centrale contenant les comètes ayant un demi-grand axe com-

pris entre 20 000 et 50 000 AU. C’est la partie d’où proviennent la
majorité des comètes observables. Les marées galactiques y sont très
efficaces et de plus l’approximation de quasi-intégrabilité de la dy-
namique générée par les marées est fiable dans cette région. Ceci per-
met d’étudier les propriétés quantitatives du flux de manière presque
analytique (Fouchard et al., 2011a).
• La partie externe qui contient toutes les comètes se trouvant au-delà de

la partie centrale. Dans cette région l’hypothèse de quasi-intégrabilité
de la dynamique générée par les marées n’est plus valable. Les marées
et les étoiles sont paradoxalement moins efficaces que dans la partie
centrale pour rendre des comètes de cette région observables. Ceci est
dû à un problème de synchronisation entre le moment où le périhélie
de la trajectoire des comètes se trouve dans la région observable et la
position de la comète sur sa trajectoire. On a vu que la probabilité
d’un tel événement sur un intervalle de temps donné est proportionnel
à l’inverse du carré de la période orbitale de la comète (Fouchard et al.,
2010).

Pour ce qui est de la forme du nuage, il semblerait qu’au delà de 10 000 UA
la direction des vitesses héliocentriques des comètes du nuage doit adopter
une distribution isotropique conduisant à une distribution isotropique de
la direction des périhélies et une distribution des excentricités proportion-
nelle au carré de l’excentricité (Oort, 1950; Hills, 1981; Yabushita et al.,
1982). Pour des valeurs du demi-grand axe plus petites, les plans orbitaux
des comètes du nuage se concentrent vers l’écliptique, gardant une certaine
mémoire de leur plan d’origine (Levison et al., 2001; Emel’yanenko et al.,
2007). D’après Levison et al. (2001) la transition devrait se trouver à 3 000 UA.

Le profil de densité des distances héliocentriques est généralement un

4. Ce disque correspond à des objets se trouvant sur des orbites très excentriques avec
un périhélie proche de Neptune. Leur demi-grand axe peut aller jusqu’à la limite interne
du nuage de Oort. Dynamiquement les objets du disque étendu ont leur demi-grand axe
significativement affecté par Neptune (Gladman et al., 2008).
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résultat de simulations numériques. Actuellement, un profil n(r) ∝ r−3.5 est
souvent considéré dans les études à long terme du nuage (Duncan et al.,
1987; Dones et al., 2004; Brasser et al., 2006; Emel’yanenko et al., 2007).
Cependant il semble que dans des simulations à long terme la distribution se
rapproche d’une distribution uniforme en énergie orbitale (Rickman et al.,
2008; Fouchard et al., 2014b).

Ainsi, l’étude du flux de comètes observables permet surtout d’avoir des
informations sur la partie centrale du nuage de Oort. L’amélioration de la
détermination du demi-grand axe original des comètes observées a conduit à
une modification de la localisation du pic de Oort. Pour Oort il se trouvait
entre 25 000 et 75 000 UA (pour le demi-grand axe), puis la modélisation des
forces non gravitationnelles ont permis de le situer plutôt vers 25 000 UA
(Marsden et Sekanina, 1973), et même 17 000 UA (Królikowska, 2006).

On voit que cette dernière valeur est à l’intérieur de la partie centrale.
En effet, les travaux de Kaib et Quinn (2009) ont montré qu’une majorité
des comètes observables venant de la partie centrale (ou externe) se trouvait
dans la partie interne une période orbitale avant leur injection. Ces résultats,
confirmés par Fouchard et al. (2014a), montrent que la partie “observable”
du nuage de Oort s’étend significativement à la partie interne.

D’autre part, Królikowska et Dybczyński (2010); Dybczyński et Królikowska
(2011) ont montré qu’une large proportion des comètes observables con-
sidérées comme nouvelles, c’est-à-dire n’ayant jamais visité la région planétaire
du système solaire, se trouvaient en fait à moins de 15 UA du Soleil lors de
leur précédent passage au périhélie. Ce résultat remet en discussion le fait
que les comètes du pic de Oort sont nouvelles, puisqu’elles sont déjà passées
dans la région planétaire du système solaire. Lors de ce précédent passage,
elles ont pu subir une perturbation planétaire augmentant le demi-grand axe
permettant alors aux marées galactiques de rendre ces comètes observables
(scénario de Kaib et Quinn, 2009), soit elle n’ont pas reçu de perturbation
planétaire significative mais la distance périhélique a continué à décrôıtre sous
l’effet des marées galactiques rendant ces comètes observables. Ce deuxième
scénario est possible puisque les planètes n’éjectent pas toutes les comètes se
trouvant à moins de 15 UA du Soleil, contrairement à ce qui est considéré
dans le concept de loss cone comme on l’a vu dans Fouchard et al. (2013).
D’autre part ce scénario a été mis en évidence dans Fouchard et al. (2014a).

Ainsi, on voit que notre idée sur la forme du pic de Oort se précise, même
si il faudra probablement attendre les données de la mission GAIA sur le
voisinage stellaire du Soleil, pour effectuer une reconstruction réaliste du pic
de Oort (Fouchard et al., 2011a; Rickman et al., 2012).
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Population et masse

Ce sont les paramètres clef. En effet la population des comètes du nuage de
Oort est une contrainte très forte pour les modèles de formation du système
solaire. Le nombre de comètes dans le nuage de Oort se fait en comparant les
résultats de modèles numériques avec le flux de comètes à longue période ob-
servé. La détermination même de ce flux n’est pas évidente. Everhart (1967)
estime qu’on a 63 comètes nouvelles par an pour des distances périhéliques
inférieures à 4 UA et une magnitude absolue inférieure à 10.9 . Hughes (2001)
estime un flux de 0.53 comètes par an et par unité astronomique ayant une
magnitude absolue inférieure à 6.5. La différence entre ces deux estimations
du flux est significative. D’autant plus que Everhart (1967) a considéré une
incomplétude des comètes observées très forte pour les magnitudes élevées,
alors qu’il semble qu’il existe des ruptures dans la courbe des populations des
comètes existantes pour des magnitudes absolues égales à 6 et 8.6 (Fernández
et Sosa, 2012).

Cependant c’est souvent le flux estimé par Everhart (1967) qui est utilisé
comme base de comparaison. Les estimations donnent alors entre 5 × 1011

à 5 × 1012 comètes dans le nuage central et externe d’après Emel’yanenko
et al. (2007) et Weissman (1996), et une partie interne étant d’une (Dones
et al., 2004) à quatre (Duncan et al., 1987) fois plus massive que les parties
centrale et externe.

Plus récemment Francis (2005) a estimé le nombre de comètes dans la
partie externe du nuage de Oort égale à 5×1011 en se basant cette fois sur le
flux estimé par Hughes (2001). Alors que le modèle de Kaib et Quinn (2009)
donne un nuage interne contenant au plus 1012 comètes en considérant que
toutes les comètes observées étaient initialement dans la partie interne du
nuage. En utilisant les mêmes estimations que Francis (2005), on a estimé
dans Fouchard et al. (2014a) une population totale du nuage de Oort au
environ de 1012 comètes.

Il est délicat de convertir ensuite ce nombre de comètes en masse. En
effet ceci nécessite de faire une estimation de la taille et de la densité des
comètes à longue période, ce qui est particulièrement difficile étant donné
que ces comètes n’ont été observées qu’une seule fois.

En utilisant une masse moyenne de comète de 4 × 1016 g, Weissman
(1996) estime la masse initiale du nuage de Oort égale à 6-7 masses ter-
restres. Mais Francis (2005), en utilisant différentes approximations, montre
que cette masse se trouve entre 2 et 40 masses terrestres.
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1.2.2 Formation

Les comètes du nuage de Oort ne se sont clairement pas formées sur place,
la densité de matière y étant beaucoup trop faible. Elles se sont formées
à partir du disque protoplanétaire dans une région se trouvant entre 5 et
40 UA (Charnoz et Morbidelli, 2007). Les perturbations des planètes géantes
sur la trajectoire des jeunes comètes ont eu pour effet d’augmenter con-
sidérablement leur énergie orbitale, éjectant une partie des comètes dans le
milieu interstellaire mais aussi en injectant une partie d’entre elles dans ce qui
deviendra le nuage de Oort. Les étoiles passantes et les marées galactiques ont
ensuite déplacé le périhélie de ces comètes à l’extérieur de la région d’influence
des planètes géantes permettant à ces comètes de rester dans le nuage pen-
dant des milliards d’années jusqu’à ce que les marées ou les étoiles réinjectent
de nouveau le périhélie dans la région planétaire du système solaire.

Ceci correspond aux grandes lignes de la formation et de la dynamique du
nuage de Oort généralement acceptées. Mais dès qu’on cherche à modéliser les
choses et donc à comprendre en détail ce qui se passe les choses se compliquent
considérablement.

Par exemple, si le périhélie d’une comète se trouve dans la région de
Jupiter et Saturne, alors les perturbations de ces planètes sont telles qu’elles
vont éjecter la majorité des comètes, laissant un nuage de Oort pratique-
ment vide. Fernández (1980) a montré que Uranus et Neptune sont bien plus
efficaces pour placer une comète dans le nuage de Oort mais son modèle fa-
vorisait aussi un tel effet. Ces travaux mettaient déjà en lumière le problème
de la formation du nuage.

La première simulation numérique de la formation du nuage de Oort a été
faite par Duncan et al. (1987). C’est cette simulation qui a amené à considérer
une frontière interne du nuage de Oort au voisinage de 3 000 UA et à un profil
de densité proportionel à r−3.5 (où r est la distance héliocentrique). Dans ce
travail aussi, les auteurs montrent que le rôle d’Uranus et Netpune est plus
important que le rôle de Jupiter et Saturne pour former le nuage de Oort.
Cependant les conditions initiales choisies, avec des comètes sur des orbites
très excentriques, accentuent l’influence d’Uranus et Neptune, mettant en
doute l’efficacité réelle de ces planètes pour la formation le nuage (Dones
et al., 2004).

Dones et al. (2004) ont montré que si les excentricités initiales des orbites
cométaires, se trouvant dans la région des planètes géantes, sont faibles alors
l’efficacité des planètes à construire le nuage de Oort est 3 ordres de grandeur
plus faible que dans Duncan et al. (1987) pour le nuage centrale et externe
et 1 ordre de grandeur plus faible pour la partie interne. Ceci s’explique
par le fait que la majorité des comètes évoluant dans la région d’Uranus et
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Neptune passe en fait dans la région de Jupiter et Saturne qui les éjectent
complètement. Ils obtiennent une efficacité de formation du nuage par les
planètes égale à 5% seulement.

Si les planètes géantes sont aussi peu efficaces pour remplir le nuage
de Oort, alors il devient nécessaire d’avoir un disque protoplanétaire très
massif, bien plus que la masse minimale habituellement considérée pour la
formation de notre système solaire, afin de pouvoir obtenir un nuage avec
suffisamment de comètes permettant d’expliquer le flux actuel de comètes
à longue période observé. Mais si le disque protoplanétaire est trop mas-
sif alors on obtient un migration excessive des planètes ou la formation de
planète supplémentaire (Hahn et Malhotra, 1999).D’autre part, le modèle de
Dones et al. (2004) prévoit une population du disque étendu de l’ordre de
10% de celle du nuage de Oort, alors que la population de ce disque à partir
du flux de comètes de la famille de Jupiter est supposée de 150 à 750 fois
moindre que celle du nuage de Oort d’après les estimations de Duncan et
Levison (1997); Levison et al. (2008).

Afin de construire des modèles plus réalistes, les modèles de formation ont
commencé à prendre en compte le milieu dans lequel se trouvait le système so-
laire au moment de la formation du nuage. Ainsi, Fernandez (1997); Fernández
et Brunini (2000) ont étudié la formation d’un nuage de Oort alors que le
Soleil se trouvait encore dans l’amas d’étoiles dans lequel il est né. Ils ont
montré qu’un environnement galactique dense favorisait la formation d’un
noyau interne du nuage de Oort à moins de 1000 UA. Ce modèle dépend
de plusieurs hypothèses sur les échelles de temps de formation des planètes
géantes et de dissipation de l’amas : l’amas doit se dissiper suffisamment
lentement pour permettre aux planètes géantes de se former et d’éjecter des
planétésimaux dans le nuage de Oort. Mais cette dissipation doit être suff-
isamment rapide pour ne pas détruire le noyau de nuage de Oort construit.

Cependant, en prenant en compte un environnement primordial plus réa-
liste, c’est-à-dire une amas ouvert plongé dans un nuage moléculaire, Kaib et
Quinn (2008) ont montré qu’il est relativement facile de construire un noyau
interne et même d’obtenir des objets comme Sedna. En revanche il est plus
difficile d’obtenir un nuage suffisamment peuplé au-delà de 10 000 UA. Des
résultats similaires ont été obtenus par Brasser et al. (2006) et Brasser et al.
(2008), montrant qu’un environnement galactique initialement dense permet
la formation d’un noyau très interne du nuage de Oort, mais qu’il reste difficile
de construire la partie externe du nuage, même après 4 milliards d’années.
Une solution envisagée par Levison et al. (2010) était de considérer que des
comètes, formées autour d’autres étoiles de l’amas, ont pu avoir été capturées
par le Soleil.

Mais, comme ceci aussi à lieu pendant la phase initiale de la formation du
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système solaire, on doit tenir compte le frottement induit par le gaz encore
présent. Dans ce cas, les perturbations planétaires n’arrivent à placer dans
le nuage de Oort que des objets massifs qui ne ressentent pas les effets du
frottement (Brasser et al., 2007).

Ainsi, il semble que la partie externe du nuage doit se former après la
dissipation du gaz. Le modèle de Nice (Gomes, 2005) qui permet d’expliquer
le bombardement tardif des planètes telluriques, pourrait être alors le maillon
manquant à la formation de la partie externe du nuage de Oort.

Dans ce modèle, le bombardement tardif s’explique par une migration des
planètes géantes à partir de positions plus proches du Soleil que leur position
actuelle sous l’effet d’interaction avec un disque de planétésimaux se trouvant
juste au delà de l’orbite de Neptune. Lors de la migration Jupiter et Saturne
traversent la résonance 2 :1 provoquant une forte instabilité du disque de
planétésimaux.

Ainsi, le nuage de Oort se serait formé en deux étapes : la première lorsque
le Soleil se trouvait encore dans l’amas l’ayant vu nâıtre et en présence du gaz,
étape pendant laquelle un noyau très interne se serait formé ; et la deuxième
à partir du bombardement tardif, donc une fois l’amas et le gaz dissipé, ayant
permis la formation du nuage au-delà de 10 000 UA. Cette approche a été
celle suivie par Brasser (2008).

En se focalisant sur la deuxième étape, Brasser et Morbidelli (2013) mon-
trent que l’excentricité initialement plus élevée de Uranus et Neptune, per-
met à ces planètes d’avoir un contrôle plus solide sur la dynamique des objets
dans leur voisinage, leur permettant de placer ces objets dans le nuage de
Oort plutôt que de les envoyer sous le contrôle de Jupiter et Saturne qui les
éjectent. Ainsi, l’efficacité des planètes à construire un nuage de Oort externe
au bout de 4 milliards d’années passe à 7% et le rapport entre la population
du nuage de Oort et celle du disque étendu est voisin de 12. D’autre part,
en estimant au mieux le flux de comètes nouvelles venant du nuage de Oort
et le flux de comètes de la famille de Jupiter venant du disque étendu pour
des magnitudes totales supposées correspondre à des objets de taille similaire
(pour une même taille, une comète de la famille de Jupiter à une magnitude
totale plus faible qu’une comète à longue période (Fernández et al., 1999;
Sosa, 2011)) Brasser et Morbidelli (2013) obtiennent un rapport de popula-
tion entre le nuage de Oort et le disque étendu se trouvant entre 10 et 98, avec
une valeur nominale égale à 44. Près d’un facteur 4 plus grand que le facteur
12 trouvé à partir des simulations mais dont les barres d’erreur contiennent
ce facteur 12.

Le problème n’est donc pas encore résolu, même si cette formation en deux
étapes donne des résultats prometteurs. L’amélioration des modèles ainsi
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que la réduction des barres d’erreur par de futures observations permettront
probablement de préciser le scénario ayant mené à un nuage de Oort tel qu’on
le suppose aujourd’hui.

1.2.3 “Fading problem” et origine des comètes de type
Halley

Fading problem

Oort (1950) avait remarqué que pour reproduire, à partir d’un modèle,
une distribution en énergie orbitale des comètes à longue période qui soit
similaire à celle observée alors il était confronté à deux problèmes : (i)
il devait considérer une probabilité ad hoc de désintégration d’une comète
à chaque passage au périhélie égale à 0.014, (ii) il y avait 5 fois trop de
comètes dans le fameux pic de Oort. Il stipula que les comètes du pic de
Oort sont des comètes qui viennent pour la première fois au voisinage du
Soleil. Ainsi leur capacité de dégazage n’a pas encore été altérée par des pas-
sages précédents. La diminution du dégazage lors des passages suivants peut
être due à plusieurs facteurs : rupture ou désintégration de la comète, dis-
parition de la matière volatile, formation d’une croûte, etc.. La conséquence
est que lors des passages au périhélie suivants, les comètes deviennent plus
difficilement détectables. C’est ce qu’on appelle le “fading problem” ou le
problème de l’extinction.

Wiegert et Tremaine (1999) ont essayé de trouver une loi d’extinction
en cherchant à faire correspondre au mieux les distributions des élément or-
bitaux des comètes observables obtenues à partir d’un modèle numérique
avec la distribution des comètes observées. Ils obtiennent la meilleure cor-
respondance entre les deux distributions en considérant une loi d’extinction
telle que la proportion de comètes encore observables après m passages au
périhélie est proportionnelle à m−0.6.

Cependant, une telle loi est obtenue en essayant de faire correspondre
le résultat de simulations numériques avec les observations. Elles ne sont
donc pas forcément représentatives de l’évolution physique des comètes en
regroupant sous le même phénomène de fading des évolutions pouvant être
très différentes.

Weissman (2011) montre justement que le mécanisme dominant de fading
est une destruction du noyau cométaire (destruction pas encore bien comprise
d’ailleurs). La formation de croûte à la surface de la comète semble aussi avoir
un rôle assez important mais moindre.

Ce problème reste encore ouvert faute en particulier d’informations physiques
fiables sur les comètes à longue période.
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Origine des comètes de type Halley

Les comètes de type Halley font partie des comètes à courte période
(période inférieure à 200 ans). Cette classe de comètes est ensuite divisée
en deux classes, les comètes de la famille de Jupiter ayant un paramètre
de Tisserand 5 par rapport à Jupiter supérieur à 2, et les autres comètes qui
sont dites de type Halley. Cette séparation suivant le paramètre de Tisserand
est proche d’une séparation suivant la période orbitale (≈20 ans) mais elle
permet en plus de souligner l’importance de Jupiter pour les comètes de la
famille de Jupiter (Carusi et al., 1987).

Si on considère une origine commune pour ces deux familles à partir
d’orbites presque paraboliques, alors on obtient une proportion de comètes
de type Halley beaucoup plus grande que celle de la famille de Jupiter ; ce
qui est en contradiction avec les observations.

Ainsi, une origine différente a été supposée pour les comètes de type Hal-
ley, et pour les comètes de la famille de Jupiter. Il est maintenant bien accepté
que les comètes de la famille de Jupiter viennent du disque étendu (Duncan
et Levison, 1997). En revanche, l’origine des comètes de type Halley reste une
question ouverte. Une origine dans le nuage de Oort pose problème du fait
de la distribution des inclinaisons. En effet la distribution des comètes dans
le nuage est isotrope. Ensuite, pour qu’une comète du nuage de Oort devi-
enne une comète de type Halley elle doit interagir avec les planètes géantes
sans être éjectée. Ainsi, une telle origine devrait produire une majorité de
comète rétrograde, alors que c’est l’inverse qui est observée(Levison et al.,
2001). Une hypothèse a été d’introduire de nouveau des lois de fading, mais
sans solution satisfaisante. Levison et al. (2001) ont alors montré que ces
comètes pouvaient venir d’une composante interne du nuage de Oort aplatie
sur l’écliptique permettant alors d’obtenir une distribution d’inclinaison sim-
ilaire à celle des comètes de type Halley connues.

Cependant, Levison et al. (2006) montrent qu’en fait ce scénario n’est
pas satisfaisant. En effet, cette composante interne du nuage de Oort aplatie
sur l’écliptique doit se trouver à moins de 3 000 UA du Soleil pour que la
structure de disque ne soit pas détruite par les marées galactiques. Mais à de
telles distances les marées sont aussi très inefficaces pour réduire la distance

5. Ce paramètre est une approximation de la constante de Jacobi du problème de deux
corps restreint et circulaire. Il est égale à

T =
aJ
a

+ 2

√
a

aJ
(1− e2) cos i

, où a, e, i sont respectivement le demi-grand axe, l’excentricité et l’inclinaison de l’orbite
de la comète par rapport à l’écliptique, et aJ est le demi-grand axe de Jupiter.



périhélique d’un comète suffisamment rapidement pour qu’elle puisse devenir
une comète de type Halley avant que Neptune ou Uranus ne l’éjecte.

Un autre scénario a été proposé par Levison et al. (2006) : les comètes de
type Halley viendraient en fait du bord externe disque étendu. Le demi-grand
axe de ces comètes augmente sous l’influence des planètes, à tel point que
les marées galactiques deviennent suffisamment importantes pour réduire la
distance périhélique de la comète jusque dans la région des planètes géantes.
A ce point, une perturbation planétaire réduit considérablement le demi-
grand axe permettant ainsi d’obtenir une comète de type Halley. D’après
Levison et al. (2006) 0.01% des comètes du bord externe du disque étendu
deviennent des comètes de type Halley.

Le point faible de ce scénario est qu’il conduit à une ré-évaluation de la
population du disque étendu rentrant en contradiction avec les observations
et avec les estimations basées sur le flux de comètes de la famille de Jupiter.
Cependant, comme ces comètes de types Halley viendraient du bord externe
du disque étendu qui est moins assujetti à ces contraintes, il semble que ce
scénario reste possible.

D’autre part, il est dans tous les cas possible de produire des comètes de
type Halley directement à partir du nuage de Oort. Et ce flux supplémentaire
doit être pris en considération pour estimer finalement la structure initiale
du disque étendu et du nuage de Oort. D’autant plus qu’une partie signi-
ficative des centaures, et en particulier ceux ayant une grande inclinaison,
viennent très probablement du nuage de Oort. Or, les centaures représentent
une population d’objets dynamique transitoire, entre le lieu d’origine et les
comètes à courte période (de type Halley ou de la famille de Jupiter).

Quoiqu’il en soit, le faible nombre de comète de type Halley observées par
rapport au nombre de comètes de la famille de Jupiter constitue un problème
similaire à celui du fading problème pour les comètes à longue période : une
comète de type Halley devant s’éteindre beaucoup plus rapidement qu’une
comète de la famille de Jupiter. Pour résoudre ce problème, Emel’yanenko
et al. (2013) proposent une origine commune aux comètes de type Halley et
aux comètes de la famille de Jupiter. Les comètes de type Halley et la moitié
des comètes de la famille de Jupiter seraient passées par le nuage de Oort, avec
une distance périhélique initiale fortement concentrée vers la zone externe de
la région planétaire du système solaire et une activité actuelle étant d’autant
pus importante que la distance périhélique initiale était élevée.

Ce modèle permettrait aussi de mettre en évidence qu’une grande partie
des centaures viendraient du nuage de Oort. Ce qui a aussi été montré par
Brasser et al. (2012) pour les centaures ayant une inclinaison élevée.
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Chapitre 2

Le modèle dynamique

2.1 Construction du modèle de Marées Galac-

tiques

Le modèle de marées galactiques est un modèle hybride constitué :
(i) d’un mapping, dont le domaine de validation est limité en demi-grand

axe et excentricité suivant la précision souhaitée ;
(ii) d’un intégrateur simplectique, dont le domaine de validation a été

limité pour des problèmes de convergence ;
(iii) d’un intégrateur numérique classique à pas variable (RADAU 15,

Everhart, 1985) qui est utilisé pour les cas limites (orbite pratiquement
parabolique, voire hyperbolique).

La construction du modèle est faite dans l’article Breiter et al. (2007) et
son implémentation dans le modèle final dans Fouchard et al. (2007a) inséré
ci-après.
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Abstract. In this paper we present several fast integrators and mappings which
model the orbital perturbations of Oort cloud comets, caused by the Galactic tide.
The perturbations computed with these models are compared with those obtained
using an accurate numerical integration using Everhart’s RA15 code. In order to have
the best compromise between the computing velocity and precision, it is shown that
it is necessary to use a hybrid model i.e. a combination of two algorithms, according
to the values of the semimajor axe a and the eccentricity-e of the considered comet.

10.1 Introduction

The present paper follows the accompanying Chap. 9, in which we investi-
gated different algorithms to compute the orbital perturbations of Oort cloud
comets caused by passing stars. In this chapter, we present several fast in-
tegrators and mappings which modelise the effects of the galactic tide. The
results computed with these methods are compared with those obtained using
a numerical integration of the equations of motion.
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To model the normal and radial components, with respect to the galactic
plane, of the galactic tide different methods and mappings are developed in
Sect. 10.2. First of all in Sect. 10.2.1 we give the equations of motion of a
comet perturbed by the galactic tide. Then the following models are described,
namely:

• A symplectic and regularised integrator (Sect. 10.2.2)
• Some averaged Hamiltonian models using, according to the value of the or-

bital eccentricity e, either the Delaunay elements or the “Matese elements”
and, for each model, mappings based on the respective Taylor development
(Sect. 10.2.3);

• A Lie–Poisson averaged model (Sect. 10.2.4).

In Sect. 10.3 the results of calculations performed using the different models
are compared to those obtained by numerical integrations. This comparison
allows us to build models which use a composition of two different kinds of
integrators in order to increase the velocity of the integrations minimising the
loss of accuracy (Sect. 10.4). Section 10.5 is devoted to the conclusions.

10.2 Models of Galactic Tide Effects on Cometary Orbits

10.2.1 The Cartesian Model

To establish the equations of motion, we consider two different heliocentric
frames. The first one is a rotating frame with the x̂′–axis in the radial direction
pointing towards the galactic centre, the ŷ′-axis pointing transversely along
the local circular velocity and ẑ completing a right-handed system. The fixed
frame (x̂, ŷ, ẑ) is such that it coincides with the rotating frame (x̂′, ŷ′, ẑ) at
time t = 0 while keeping its axial directions fixed (see Fig. 1 of [8]).

Let us define Ω0 as the angular velocity about the galactic centre, assuming
the Sun to follow a circular orbit (since the motion of the Sun around the
galaxy is clockwise in both our frames, Ω0 is negative, i.e. the vector is directed
along −ẑ). If φr is an angle in the galactic plane measured in the rotating frame
from x̂′, and φ the corresponding angle measured in the fixed frame from x̂
at time t, we have the relation: φ = φr + Ω0t (see Fig. 1 of [8]). All the final
results will be presented in the fixed frame.

The force F per unit of mass acting on a test particle orbiting the Sun
under the influence of the galactic tide is given by (see [10]):

F = −μM�
r3

r + (A−B)(3A+B)x′x̂′ − (A−B)2y′ŷ′

−[4πμρ� − 2(B2 −A2)]zẑ , (10.1)

where x′, y′, z are the coordinates of the comet in the rotating frame, r is the
Sun–comet vector of length r, A and B are the Oort constants and ρ� is the
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local density of the galactic disk in the solar neighbourhood. In the remaining
part of the paper we will assume ρ0 = 0.1M� pc−3 [12] and an angular velocity
of the Sun around the galactic centre Ω0 = B − A = −26 km s−1kpc−1, with
the approximation A = −B.

The unit of mass is the solar mass (M� = 1), the unit of time is the year,
and the unit of length is the astronomical unit (AU). As a consequence, the
gravitational constant μ is equal to 4π2.

Let G1, G2 and G3 be defined by

G1 = −(A−B)(3A+B)

G2 = (A−B)2 (10.2)
G3 = 4πμρ� − 2(B2 −A2) .

Then, with the chosen values of A, B and ρ0, one has

G2 = −G1 = 7.0706 × 10−16 yr−2 ,
G3 = 5.6530 × 10−15 yr−2 ,
Ω0 = −√G2 .

(10.3)

One may note that the relation G2 = −G1 is a particular case which cor-
responds to a flat rotation curve of the galaxy, i.e. to a constant tangential
velocity of the stars around the galactic centre whatever the star distance to
the galactic centre. Numerical experiments have shown that another choice
of Oort constants A and B consistent with the observations does not affect
the long-term dynamics of the Oort cloud comets [9]. Consequently, some of
the models presented here will use the relation G2 = −G1 in order to simplify
the equations.

The general equations of motion in Cartesian coordinates are

d2x

dt2
= −μM�

r3
x− G1x

′ cos(Ω0t) + G2y
′ sin(Ω0t)

d2y

dt2
= −μM�

r3
y − G1x

′ sin(Ω0t) − G2y
′ cos(Ω0t) (10.4)

d2z

dt2
= −μM�

r3
z − G3z ,

where x, y, z are the coordinates of the comet in the fixed frame [thus x′ =
x cos(Ω0t) + y sin(Ω0t) and y′ = −x sin(Ω0t) + y cos(Ω0t)]. Equations (10.4)
will be referred to as the Cartesian model, also denoted RADAU. The RADAU
integrator described by [7] is used at the 15th order, with LL = 12, to integrate
(10.4). This integrator was chosen because it is fast, reliable and accurate
compared to other non-symplectic integrators.

10.2.2 Regularised Symplectic Integrator

This method was first introduced in [5]. For a detailed description of the
method one should read the original paper, only the key points are presented
here. In the following we recall the key steps.
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Hamiltonian in Cartesian Variables

From (10.1) the complete Hamiltonian is given by

H = H0 + H1 (10.5)

H0 = 1
2

(
X2 + Y 2 + Z2

)
− μ

r
, (10.6)

H1 = 1
2

(
G1x

′2 + G2y
′2 + G3z

2
)
, (10.7)

where (X,Y, Z)T is the velocity vector of the comet in the fixed frame.
Introducing the first equation of system (10.3) explicitly, we can rewrite

H1 as
H1(x, y, z, t) = 1

2 G2

[
(y2 − x2)C − 2xyS

]
+ 1

2 G3z
2 , (10.8)

where
C = cos (2 Ω0t), S = sin (2 Ω0t) . (10.9)

It is well known that in cometary problems one cannot expect to meet
moderate eccentricities of orbits; some kind of regularisation will become un-
avoidable if a fixed step integrator is to be applied. One of the standard reg-
ularising tools is the application of the so-called Kuustanheimo–Stiefel (KS)
transformation that turns a Kepler problem into a harmonic oscillator at the
expense of increasing the number of degrees of freedom [16]. The approach of
[6] is used to set the KS variables in the canonical formalism.

KS Variables

Leaving aside the in-depth quaternion interpretation of the KS transformation
given in [6], we restrict ourselves to the basic set of transformation formulae,
treating the KS variables as a formal column vector. In the phase space of the
KS coordinates u = (u0, u1, u2, u3)

T and KS momenta U = (U0, U1, U2, U3)
T,

the former are defined by means of the inverse transformation

x = (u2
0 + u2

1 − u2
2 − u2

3)/α,

y = 2 (u1u2 + u0u3)/α , (10.10)
z = 2 (u1u3 − u0u2)/α ,

where α is an arbitrary parameter with the dimension of a length. A dimension
raising transformation cannot be bijective, so the inverse of (10.10) is to some
extent arbitrary. Following [6] we adopt

u =

√
α

2 (r + x)
(0, r + x, y, z)

T
, (10.11)

for x ≥ 0, and

u =

√
α

2 (r − x)
(−z, y, r − x, 0)

T
, (10.12)
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otherwise. A remarkable property of this transformation is that the distance
r becomes a quadratic function of ui, namely

r =
√
x2 + y2 + z2 =

u2
0 + u2

1 + u2
2 + u2

3

α
=

u2

α
. (10.13)

The momenta conjugate to u are defined as

U =
2

α

⎛
⎜⎜⎝

u0X + u3Y − u2Z
u1X + u2Y + u3Z

−u2X + u1Y − u0Z
−u3X + u0Y + u1Z

⎞
⎟⎟⎠ . (10.14)

The inverse transformation, allowing the computation of R = (X,Y, Z)T,

R =
1

2 r

⎛
⎝

u0U0 + u1U1 − u2U2 − u3U3

u3U0 + u2U1 + u1U2 + u0U3

−u2U0 + u3U1 − u0U2 + u1U3

⎞
⎠ , (10.15)

can be supplemented with the identity

u1U0 − u0U1 − u3U2 + u2U3 = 0 . (10.16)

In order to achieve the regularisation without leaving the canonical for-
malism, we have to change the independent variable from t to a fictitious
time s and consider the extended phase space of dimension 10, with a new
pair of conjugate variables (u∗, U∗). Thus, in the extended set of canonical
KS variables, the motion of a comet is governed by the Hamiltonian function

M =
4u2

α2
(K0 + U∗ + K1) = 0 , (10.17)

where K0 and K1 stand for H0 and H1 expressed in terms of the extended
KS variables set. The transformation just presented is univalent, hence the
respective Hamiltonians will have different functional forms, but equal values:
H0 = K0, H1 = K1. Restricting the motion to the manifold of M = 0 is of
fundamental importance to the canonical change of independent variable; in
practical terms we achieve it by setting

U∗ = −K0 − K1 , (10.18)

at the beginning of the numerical integration.
Splitting the Hamiltonian function M into the sum of the principal term

M0 and of a perturbation M1, we have

M0 = 1
2 U2 + (4U∗/α2)u2 , (10.19)

M1 =
4u2

α2
H1(x, y, z, t) . (10.20)
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Although nothing prohibits u∗ and t from differing by an additive constant,
we do not take advantage from this freedom and will therefore use the symbol
t in most instances instead of the formal u∗. In the next section we provide
equations of motion generated by M0 and M1 alone; the complete equations
of motion can be quickly obtained by adding the respective right-hand sides.

Keplerian Motion

The principal virtue of the KS variables consists in their ability to trans-
form the Kepler problem into a four-dimensional oscillator with a constant
frequency

ω = 2

√
2U∗

α
. (10.21)

In addition one gets the equation for the fictitious time s, that may be
written as:

ds

dt
=

α

4 r
. (10.22)

Thanks to the introduction of α, the fictitious time s has the dimension
of time and if we assume

α =
2μ

|U∗| , (10.23)

orbital periods in s and t will be equal.
For U∗ > 0, the map Φ0 representing the solution of the Keplerian motion

can be directly quoted from [2]. If Δ is the fictitious time step, then

Φ0,Δ :

⎛
⎝

u
U
U∗

⎞
⎠ →

⎛
⎝

u cosωΔ + Uω−1 sinωΔ
−uω sinωΔ + U cosωΔ

U∗

⎞
⎠ . (10.24)

Moreover, if v = Φ0,Δu and V = Φ0,ΔU are the final values of variables,

Φ0,Δ : t → t+
2 Δ

α2

(
u2 +

U2

ω2

)
+ 2

uTU − vTV

α2ω2
. (10.25)

One may easily check that the sum u2 +U2ω−2 is invariant under Φ0 and
it can be replaced by v2 + V2ω−2 in practical computations of the Kepler
equation (10.25).

It may happen, however, that U∗ < 0 (when the motion is hyperbolic for
instance). A simple modification of Φ0 in that case amounts to take

ω = 2

√
−2U∗

α
, (10.26)

and replacing (10.24) and (10.25) by
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Φ0,Δ :

⎛
⎝

u
U
U∗

⎞
⎠ →

⎛
⎝

u coshωΔ + Uω−1 sinhωΔ
uω sinhωΔ + U coshωΔ

U∗

⎞
⎠ , (10.27)

and

Φ0,Δ : t → t+
2 Δ

α2

(
u2 − U2

ω2

)
− 2

uTU − vTV

α2ω2
. (10.28)

Similarly to the elliptic case, u2 − U2/ω2 is invariant under Φ0.

Galactic Tide

The Hamiltonian M1 has the nice property of being independent of the mo-
menta. Thus a half of the equations of motion have right-hand sides equal to
zero, and the remaining right-hand sides are constant.

Accordingly, all KS coordinates are constant, the physical time t does not
flow, and the momenta are subjected to a linear “kick”:

Φ1,Δ :

⎛
⎜⎜⎝

u
t
U
U∗

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

u
t

U − ΔF(u, t)
U∗ − ΔF ∗(u, t)

⎞
⎟⎟⎠ . (10.29)

Mixing Cartesian and KS variables for the sake of brevity, we can represent
F and F ∗ as

F =
8 H1

α2
u +

4u2

α2

∂H1

∂u
(10.30)

F ∗ =
4 u2

α2
Ω0 G2ξ3 , (10.31)

where

∂H1

∂u
= −G2 ξ2

∂x

∂u
+ G2 ξ1

∂y

∂u
+ G3 z

∂z

∂u
(10.32)

ξ1 = yC − xS,

ξ2 = xC + yS, (10.33)
ξ3 = (x2 − y2)S − 2 x y C .

Symplectic Corrector

One of the advantages offered by the integrators introduced in [11] is a simple
definition of a symplectic corrector—an extra stage that improves the accu-
racy in perturbed motion problems. The symplectic corrector is defined as a
solution of the equations of motion generated by

Mc = {{M0, M1} , M1} , (10.34)
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where { , } is the canonical (or “symplectic”) Poisson bracket in the phase
space spanned by u, t,U, U∗. Observing that M0 is quadratic in U and linear
in U∗, we easily obtain

Mc(u, t) =

3∑

i=0

(
∂M1

∂ui

)2

= F2 . (10.35)

The solution of the equations of motion derived from Mc results in

Φc,Δ :

⎛
⎜⎜⎝

u
t
Uj
U∗

⎞
⎟⎟⎠ →

⎛
⎜⎜⎜⎜⎝

u
t

Uj − 2 Δ
(
∂F
∂uj

)
· F

U∗ − 2 Δ
(
∂F
∂t

)
· F

⎞
⎟⎟⎟⎟⎠

. (10.36)

In spite of a formally simple form, (10.36) involve rather complicated ex-
pressions for the second derivatives of M1, because

∂F

∂uj
· F(u, t) =

3∑

i=0

∂2M1

∂ui∂uj

∂M1

∂ui
, (10.37)

∂F

∂t
· F(u, t) =

3∑

i=0

∂2M1

∂ui∂t

∂M1

∂ui
. (10.38)

One may find a detailed method to compute the Hessian matrix of M1 in
[5].

Laskar–Robutel Integrators

The composition methods of [11] differ from usual recipes because, regardless
of the number of “stages” involved in one step, they all remain second-order
integrators according to the formal estimates. However, if the Hamiltonian has
been split into a leading term and a perturbation having a small parameter
ε as a factor, the truncation error of the integrator is max(ε2 h3, ε hm) where
m is the number of stages involved in one step. The second term of this sum
is similar to classical composition methods errors, and the first can be quite
small for weakly perturbed problems. At the expense of the ε2 h3 term in the
error estimate, the authors were able to avoid backward stages that degrade
numerical properties of usual composition methods. The use of a corrector
improves the integrator by reducing the truncation error: its first term drops
to ε2 h5.

Following the recommendation of [11], and after having performed numer-
ical tests (see [5]), the best integrator is obtained using the following compo-
sition for each single step of size h:
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Φh = Φc,q ◦ Φ1,d1 ◦ Φ0,c2 ◦ Φ1,d2 ◦ Φ0,c3 ◦
◦Φ1,d2 ◦ Φ0,c2 ◦ Φ1,d1 ◦ Φc,q , (10.39)

where
d1 = h/12, d2 = (5/12)h ,

c2 = (1/2 −
√

5/10)h, c3 = h/
√

5 ,

q = −h3(13 − 5
√

5)/288 .

(10.40)

This integrator will be referred as LARKS.

LARKS Step Size Choice

The Hamiltonian error of LARKS, based on the above composition, is propor-
tional to ε2h4 (see [5]). Observing that ε ∝ ar2, where a is the semi-major axis
of a comet, and r is the Sun–comet distance, we look for the step size selection
rule that gives a similar precision for a wide range of initial conditions. This
can be achieved if the product

K = ε2h4 (10.41)

has similar values for all comets to be studied. Thus, finding some optimum
step size ho for a given semi-axis ao, and then launching the integration for a
different semi-axis a1, we adjust the step size and use

h1 = ho

(
ao

a1

)3/2

, (10.42)

when the orbit is elliptic (a1 > 0) and using a1 instead of r. For a hyperbolic
orbit the step size is adjusted through

h1 = ho

(
a
3/2
o

|a1|1/2r

)
. (10.43)

In the test described in this section, we set ho as 1/20 of the Keplerian
period implied by ao = 50, 000 AU and adjusted the step according to (10.42)
or (10.43) for other orbits. For elliptical orbits, in order to avoid numerical
resonance between the step size and the orbital period [19], we do not use a
step size larger than 1/20 of the Keplerian period, even if it might be allowed
by (10.42).

Stop Time for LARKS

The fact that the fictitious time s is the independent variable is an inevitable
issue associated with the use of the KS variables regularisation. What happens
if one wants to obtain the state of a comet at some particular final epoch of
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the physical time t? This problem appears if one wants to stop the integration
as close as possible to a precise value Tf of the real time.

A method which turns out to be effective, whatever the dynamics, is the
following. Let f be the function defined by f(s) = t − Tf . Thus the problem
is to solve f(s) = 0. Let fp and sp be the values of f and s before some step,
and fa and sa be the values after this step. The integration stops as soon as
fa > 0. From this point, the method is built according to an iterative process
which evaluates fp, sp and fa, sa, such that the solution ss is always between
sp and sa.

For each step, one computes the derivatives dfp and dfa of f in sp and sa,
respectively, using (10.22) and (10.13). Consequently, one can easily compute
the equation of the tangent to f in sp and sa. Let sm be the value of s for
which the two tangents intersect. If sm is not between sp and sa, the next
guess sg of the solution ss is computed using a linear approximation of f or
a bisection method between sp and sa. The choice is made according to the
method which makes the most important reduction of the interval [sp, sa].
Otherwise, if sm is between sp and sa, then the next guess sg is given by the
intersection of the tangent at f in sp (resp. in sa) with the abscissa axis if it
lies between sp and sm (resp. between sm and sa).

One stops the iterative process as soon as f(sg) is close enough to 0, that
is tg − Tf ≈ 0, where tg is the value of the real time obtained for sg.

Stop at Perihelion for LARKS

In the framework of Oort cloud comets dynamics, it may be necessary to sus-
pend the integration of a comet at its perihelion. When an integrator like
RADAU is used, then the step size is very small when the comet passes
through its perihelion, thus it is quite easy to stop at the cometary peri-
helion only by checking the evolution of the Sun–comet distance. This is not
the case for LARKS, which may have a large step size even when the comet
is at its perihelion, hence the evolution of the Sun–comet distance is not
sufficient.

However, when a comet is near its perihelion, one may neglect the per-
turbative part due to the galactic tide. Consequently, as it has been already
noted, the motion in the KS variables is simply a harmonic oscillator. Using
this property it is very easy to stop the integration exactly at the cometary
perihelion. Indeed, if (u,U) are the KS variables of a comet, then u · U = 0
when the comet is at its perihelion. Thus, let (up,Up) be the KS variables be-
fore some step and (ua,Ua) after this step. When up ·Up < 0 and ua ·Ua > 0
it means that the comet went through its perihelion during the step. When
U∗ > 0, using (10.24), the step length h which should be performed from
(up,Up) to the exact perihelion is given by

h =
1

2ω
tan−1

(
2ωup · Up

ω2u2
p − U2

p

)
. (10.44)
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When U∗ < 0, using (10.25), the step length is given by

h =
1

4ω
log

(
1 +X

1 −X

)
, (10.45)

where
X =

2ωup · Up

ω2u2
p + U2

p

. (10.46)

10.2.3 The Hamiltonian Models

In this section we will give the Hamiltonian equations of motion derived from
the average Hamiltonian, using two sets of variables according to the value of
the orbital eccentricity e (see [9]).

The Hamiltonian Model with Delaunay Variables

The complete Hamiltonian given by

H = − μ

2a
+ G1

x′2

2
+ G2

y′2

2
+ G3

z2

2
(10.47)

may be written using the Delaunay’s variables: L =
√
μa, G =

√
μa(1 − e2),

H = G cos i, � = M , g = ω and h = Ω, where a, e, i, M , ω, are the
cometary semi-major axis, eccentricity, inclination, mean anomaly, argument
of perihelion and longitude of node (all the angles being measured in the fixed
galactic frame). The mean anomaly being a fast variable with respect to the
other ones, the Hamiltonian is averaged over �.

Then, one writes the averaged Hamiltonian equations of motion, which
gives:

〈
dL

dt

〉
= 0 (10.48)

〈
dG

dt

〉
= −5L2

2μ2
(L2 −G2)

{
cos g sin g

[
G3

(
1 − H2

G2

)

+(G1 sin2 hr + G2 cos2 hr)
H2

G2
− G1 cos2 hr (10.49)

−G2 sin2 hr

]
− (G1 − G2)(cos2 g − sin2 g) coshr sinhr

H

G

}

〈
dH

dt

〉
=

L2

2μ2
(G1 − G2)

{
5(L2 −G2)

H

G
cos g sin g(cos2 hr − sin2 hr)

+ sinhr coshr (10.50)

·
[
G2 −H2 + 5(L2 −G2)

(
cos2 g − sin2 g

H2

G2

)]}
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〈

dg

dt

〉
=
L2G

2μ2

{
G3

[
1 − 5 sin2 g

(
1 − L2H2

G4

)]

+(G1 cos2 hr + G2 sin2 hr)(1 − 5 cos2 g) (10.51)

−5(G1 sin2 hr + G2 cos2 hr)
L2H2

G4
sin2 g

+5(G1 − G2) cos g sin g coshr sinhr(G
2 + L2)

H

G3

}

〈
dh

dt

〉
=

L2

2Gμ2

{
(G1 sin2 hr + G2 cos2 hr − G3)

[G2 + 5(L2 −G2) sin2 g]
H

G
− 5(G1 − G2) (10.52)

(L2 −G2) cos g sin g coshr sinhr

}
,

where hr = h− Ω0t at time t.
The quantity L, i.e. the semi-major axis, is obviously conserved since the

mean anomaly does not appear in the averaged Hamiltonian. Furthermore, one
may note that, when the radial component of the tide is neglected, i.e. when
G1 = G2 = 0, then H is conserved. In this case the dynamics is completely
integrable. Many papers were devoted to this peculiar case: for instance [1, 3,
10, 14, 15].

The Hamiltonian Model with Matese Elements

When e � 1, (10.49)–(10.52) become singular. In order to remove this sin-
gularity, we adopt the variables: L, Θ = Hb, H , M , θ = b and λ = l, with
Hb = −

√
μa(1 − e2) cosα and H =

√
μa(1 − e2) cos i. Here b and l are the

latitude and longitude of perihelion of the comet, and α is the angle between
the orbital plane and the plane orthogonal to the galactic plane and pass-
ing through the perihelion and the galactic poles, measured from the south
galactic pole to the cometary velocity (see Fig. 1 of [9]).

This set of elements will be referred to as Matese elements since it first
appeared in [15]. Similar elements have been used elsewhere in the literature in
order to remove the singularity at e = 1: see [18] for elliptic collision orbits and
[17] for hyperbolic collision orbits. The Matese elements are slightly different
from those used in the quoted papers, but the procedure to define them is
similar. These can be shown to be canonical.

One substitutes x′, y′ and z by the Matese elements in (10.47), and aver-
ages with respect to the mean anomaly. Then, the Hamiltonian equations of
motion are:
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〈

dL

dt

〉
= 0

〈
dΘ

dt

〉
=

L2

2μ2

[
cos θ sin θ(−4Θ2 + 5L2)(G1 cos2 λr + G2 sin2 λr)

−G1

(
Θ cos θ cosλr +H sinλr

sin θ

cos2 θ

)

·
(

Θ sin θ cosλr +H sinλr
1

cos θ

)

−G2

(
Θ cos θ sinλr −H cosλr

sin θ

cos2 θ

)

·
(

Θ sin θ sinλr −H cosλr
1

cos θ

)

+G3
sin θ

cos3 b
(5(Θ2 − L2) cos4 θ + 4H2)

]

〈
dH

dt

〉
=
L2(G1 − G2)

2μ2 cos2 θ

[
(−4Θ2 cos2 θ − 4H2 + 5L2 cos2 θ) cos2 θ cosλr sinλr

+(Θ cos θ sin θ sinλr −H cosλr)(Θ cos θ sin θ cosλr +H sinλr)]
〈

dθ

dt

〉
=

L2

2μ2 cos2 θ

{
−4Θ cos4 θ

(
G1 cos2 λr + G2 sin2 λr

)

+G1(Θ cos θ sin θ cosλr +H sinλr) cos θ sin θ cosλr

+G2(Θ cos θ sin θ sinλr −H cosλr) cos θ sin θ sinλr

+G3Θ cos2 θ(1 − 5 sin2 θ)
}

〈
dλ

dt

〉
=

L2

2μ2 cos2 θ

{
−4H cos2 θ

(
G1 cos2 λr + G2 sin2 λr

)

+G1 sinλr(Θ cos θ sin θ cosλr +H sinλr)

−G2 cosλr(Θ cos θ sin θ sinλr −H cosλr) − 4G3H sin2 θ
}

The singularity at cos θ = 0 is evident, but these equations show that the
singularity at e = 1 has indeed disappeared.

The Mappings

The two above averaged models are already faster than the Cartesian model
(see [8]). However, in order to enhance their efficiency, one may consider the
truncated Taylor development of their solution. More precisely, one writes any
of the averaged models in the form:

dx

dt
= f(xr) , (10.53)

where x is the vector defined by the Delaunay or the Matese elements, and
the subscript r means that the longitude is measured in the rotating frame.
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Then, the truncated Taylor development at order N of the solution of this
equation is

x(T + ΔT ) = x(T ) +
N∑

n=1

dnx

dtn

∣∣∣∣
T

ΔT n

n!
+ O(ΔTN+1) , (10.54)

where the subscript T indicates that the quantities are computed at time T .
Taking ΔT equal to one orbital period of the comet (which is consistent

with having averaged the Hamiltonian) this development provides us an easy
way to derive mappings of different orders.

Experiments have shown (see [18]) that the mappings of order 3 give the
best compromise between precision and velocity. However, one should be very
careful in using these mappings, due to the singularities of the two averaged
models. Indeed, the effects of the singularity when e = 1 for the model using
the Delaunay variables and the singularity when cos b = 0 for the model
using the Matese variables are enhanced when one uses the truncated Taylor
development of their solution.

It turns out that the mapping using the Delaunay elements may be safely
used for eccentricity smaller than 0.999, otherwise the mapping using the
Matese elements is more precise. The composition of this two mappings will
be referred as the MAPP model.

10.2.4 The Lie–Poisson Model

This model is described in detail in [5]. One should refer to this paper for a
full description of the method.

Equations of Motion

The integrators presented in the previous sections solve the equations of mo-
tion in the fixed reference frame, where the radial component of the galactic
tide is explicitly time-dependent. Our second method can be more conve-
niently discussed in the rotating heliocentric reference frame (x̂′, ŷ′, ẑ). The
present model uses also the first equation of (10.3) explicitly, which simplifies
the results drastically.

The Hamiltonian function for a comet subjected to the galactic tide in the
rotating frame is given by

H = H0 + H1 , (10.55)

H0 =
1

2

(
X ′2 + Y ′2 + Z2

)
− μ

(x′2 + y′2 + z2)1/2
, (10.56)

H1 = Ω0 (y′X ′ − x′ Y ′) + 1
2

(
G2 (y′2 − x′2) + G3 z

2
)
, (10.57)

where (x′, y′, z) and (X ′, Y ′, Z) are the position and velocity of the comet in
the rotating frame.
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As in Sect. 10.2.3, one may average the Hamiltonian H with respect to the
mean anomaly �. The averaged Hamiltonian 〈H1〉 is now expressed in terms
of the Laplace vector e and a scaled angular momentum vector h instead of
canonical elements as the Delaunay or the Matese ones. Their components are
related to the Keplerian orbit elements

e ≡

⎛
⎝
e1
e2
e3

⎞
⎠ = e

⎛
⎝

cosω cosΩr − c sinω sin Ωr

cosω sin Ωr + c sinω cosΩr

s sinω

⎞
⎠ , (10.58)

h ≡

⎛
⎝
h1

h2

h3

⎞
⎠ =

√
1 − e2

⎛
⎝

s sin Ωr

−s cosΩr

c

⎞
⎠ , (10.59)

where e is the eccentricity, s = sin i, c = cos i. Recalling that in the rotating
frame the momenta X ′ and Y ′ are not equal to velocities dx′

dt and dy′

dt (this
fact can be immediately deduced from the canonical equations dx′

dt = ∂H/∂X ′

and dy′

dt = ∂H/∂Y ′), we assume that the usual transformation rules between
Keplerian elements and position/velocity are used with the velocities directly
substituted by the momenta. With this approach the Keplerian motion in
the rotating frame is described by the means of orbital elements that are all
constant except for Ωr which reflects the frame rotation

(
dΩr

dt = −Ω0

)
.

Using the “vectorial elements” h and e, letting n stand for

n =

√
μ

a3
, (10.60)

and changing the independent variable from time t to τ1, such that

dτ1
dt

=
G3

n
, (10.61)

one obtains the averaged Hamiltonian 〈H〉, given by

〈H〉 = n a2
[
5
4 e

2
3 + 1

4h
2
1 + 1

4h
2
2+

+ ν
(
− 5

4 e
2
1 + 5

4 e
2
2 + 1

4h
2
1 − 1

4h
2
2 − nΩ−1

0 h3

)]
, (10.62)

where, all the constant terms have been dropped and, using the usual approx-
imation Ω0 = −√G2, we introduced a dimensionless parameter

ν =
Ω2

0

G3
=

G2

G3
. (10.63)

The vectorial elements can be used to create a Lie–Poisson bracket

(f ; g) ≡
(
∂f

∂v

)T

J(v)
∂g

∂v
, (10.64)
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with the structure matrix

J(v) =

(
ĥ ê

ê ĥ

)
. (10.65)

The “hat map” of any vector x = (x1, x2, x3)
T is defined as

x̂ =

⎛
⎝

0 −x3 x2

x3 0 −x1

−x2 x1 0

⎞
⎠ . (10.66)

This matrix is known as the vector product matrix, because

x̂ y = x × y . (10.67)

Using the Lie–Poisson bracket (10.64) we can write equations of motion
for the vectorial elements

v = (h1, h2, h3, e1, e2, e3)
T (10.68)

in the non-canonical Hamiltonian form

v′ = (v; K) , (10.69)

where derivatives with respect to τ are marked by the “prime” symbol and
the scaled Hamiltonian

K = − 〈H〉
n a2

. (10.70)

Writing (10.69) explicitly, we obtain

h′
1 = −5

2
(1 − ν) e2 e3 +

1 − ν

2
h2 h3 +

n ν

Ω0
h2 , (10.71)

h′
2 =

5

2
(1 + ν) e1 e3 − 1 + ν

2
h1 h3 − n ν

Ω0
h1, (10.72)

h′
3 = ν (h1 h2 − 5 e1 e2), (10.73)

e′
1 = −4 + ν

2
h2 e3 +

5

2
ν h3 e2 +

n ν

Ω0
e2, (10.74)

e′
2 =

4 − ν

2
h1 e3 +

5

2
ν h3 e1 − n ν

Ω0
e1, (10.75)

e′
3 =

1 − 4 ν

2
h1 e2 − 1 + 4 ν

2
h2 e1. (10.76)

Substituting ν = 0, the readers may recover the correct form of the galactic
disk tide equations published in [3, 4]. Equations (10.71)–(10.76) admit three
integrals of motion: apart from the usual conservation of the time-independent
Hamiltonian K = const, two geometrical constraints
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h · e = 0, h2 + e2 = 1 , (10.77)

are respected thanks to the properties of the Lie–Poisson bracket (10.64).
Indeed, both quadratic forms are the Casimir functions of our bracket, i.e.

(h · e; f) = (h2 + e2; f) = 0 , (10.78)

for any function f , hence in particular for f = K.

Lie–Poisson Splitting Method

The Hamiltonian K can be split into a sum of three non-commuting terms

K = K1 + K2 + K3, (10.79)

K1 =
5

4
ν e21 − 1 + ν

4
h2

1 , (10.80)

K2 = −5

4
ν e22 − 1 − ν

4
h2

2 , (10.81)

K3 = −5

4
e23 +

n ν

Ω0
h3 . (10.82)

Each of the terms Ki is in turn a sum of two components that commute,
because it can be easily verified that (ej ; hj) = 0 for all j ∈ {1, 2, 3}. In these
circumstances, we can approximate the real solution

v(τ) = exp (τ L) v(0) , (10.83)

where Lf ≡ (f ; K), using a composition of maps

Ψi,τ : v(0) → v(τ) = exp (τ Li) v(0) , (10.84)

where Li f ≡ (f ; Ki) for i = 1, 2, 3. Each Ψi,τ is in turn a composition of two
maps

Ψi,τ = Ei,τ ◦Hi,τ = Hi,τ ◦ Ei,τ , (10.85)

generated by the ei and hi related terms of Ki.

The Contribution of K1

The two terms of K1 generate equations of motion

v′ =
(
v; 5

4 ν e
2
1

)
= 5

2 e1 ν

(
0 Y1

Y1 0

)
v , (10.86)

and

v′ =
(
v; − 1

4 (1 + ν)h2
1

)
= − 1

2 h1 (1 + ν)

(
0 Y1

Y1 0

)
v , (10.87)
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where

Y1 =

⎛
⎝

0 0 0
0 0 −1
0 1 0

⎞
⎠ . (10.88)

The composition of these two maps results in

Ψ1,τ : v →
(

M1 N1

N1 M1

)
v , (10.89)

where

M1 =

⎛
⎝

1 0 0
0 c11c12 −c11s12
0 c11s12 c11c12

⎞
⎠ , N1 =

⎛
⎝

0 0 0
0 s11s12 s11c12
0 −s11c12 s11s12

⎞
⎠ . (10.90)

ψ11 = 5
2 e1 ν τ and ψ12 = 1

2 (1 + ν)h1 τ , (10.91)

introducing

cij = cosψij , sij = sinψij . (10.92)

The Contribution of K2

The equations of motion derived from the two terms of K2 are

v′ =
(
v; − 5

4 ν e
2
2

)
= 5

2 ν e2

(
0 Y2

Y2 0

)
v , (10.93)

and
v′ =

(
v; − 1

4 (1 − ν)h2
2

)
= 1

2 (1 − ν)h2

(
0 Y2

Y2 0

)
v , (10.94)

where

Y2 =

⎛
⎝

0 0 1
0 0 0

−1 0 0

⎞
⎠ . (10.95)

Composing the two maps we obtain

Ψ2,τ : v →
(

M2 N2

N2 M2

)
v , (10.96)

where

M2 =

⎛
⎝
c21c22 0 −c21s22

0 1 0
c21s22 0 c21c22

⎞
⎠ , N2 =

⎛
⎝

s21s22 0 c22s21
0 0 0

−c22s21 0 s21s22

⎞
⎠ , (10.97)

ψ21 = 5
2 ν e2 τ and ψ22 = − h2 (1 − ν)

2
τ . (10.98)
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The Contribution of K3

The equations of motion derived from the two terms of K3 are

v′ =
(
v; − 5

4 e
2
3

)
= 5

2 e3

(
0 Y3

Y3 0

)
v , (10.99)

and
v′ =

(
v; h3 n ν Ω−1

0

)
= −n ν

Ω0

(
0 Y3

Y3 0

)
v , (10.100)

where

Y3 =

⎛
⎝

0 −1 0
1 0 0
0 0 0

⎞
⎠ . (10.101)

Composing the two maps we obtain

Ψ3,τ : v →
(

M3 N3

N3 M3

)
v , (10.102)

where

M3 =

⎛
⎝

c31c32 c31s32 0
−c31s32 c31c32 0

0 0 1

⎞
⎠ , N3 =

⎛
⎝
s31s32 −c32s31 0
c32s31 s31s32 0

0 0 0

⎞
⎠ , (10.103)

ψ31 =
5

2
e3 τ and ψ32 =

n ν

Ω0
τ . (10.104)

10.2.5 The Lie–Poisson Method of Order 2

The composition methods of [11] cannot be used for our Lie–Poisson splitting
method, because the Hamiltonian function has been partitioned into three
terms. Moreover, none of the terms can be qualified as a small perturbation.
In these circumstances, the principal building block can be a “generalised
leapfrog”

ΨΔ = Ψ1,Δ/2 ◦ Ψ2,Δ/2 ◦ Ψ3,Δ ◦ Ψ2,Δ/2 ◦ Ψ1,Δ/2 . (10.105)

This Lie–Poisson method, called LPV2, is a second-order method with a local
truncation error proportional to the cube of the step size Δ3. Although we
use LPV2 as a final product in this paper, it can be used as a building block
for higher-order methods. A collection of appropriate composition rules can
be found in [13].

In practice, the step size Δ will be set equal to one orbital period.
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10.3 Comparisons Between the Different Models

In order to compare the reliability and speed of the integrators we performed
the following experiment: 400, 000 sets of initial orbital elements were ran-
domly chosen in a specified range, under the condition that their respective
distribution is uniform, i.e.

• The initial semi-major axes in the range 3000 ≤ a0 ≤ 105 AU, with distri-
bution uniform in log10 a0

• The initial eccentricity in the range 0 ≤ e0 ≤ 0.9999, with a uniform
distribution

• The initial inclination i0 such that −1 ≤ cos i0 ≤ 1, with a uniform distri-
bution

• The initial argument of the perihelion, the longitude of the ascending node
and the initial mean anomaly (where needed) in the range from 0 to 2π,
with a uniform distribution

Using this set of elements, we integrated the equations over one cometary
period using LARKS, LPV2, MAPP and compared the results with those
obtained with the Cartesian model.

For the stopping time in LARKS, the method described at the end of
Sect. 10.2.2 until |Tf − t| < 10−3 yr was used.

The relative error in the comet position Ep was defined as

Ep =

∣∣∣∣
qmod − qR

q0

∣∣∣∣ , (10.106)

where qmod and qR denote the value of the perihelion distance at the end of
the integration of one period computed by the tested integrator and by the
RADAU, respectively, and q0 is the initial value of the perihelion distance.

Then, the e0–log10 a0 plane is divided into 60 × 70 cells. In each cell we
record the maximum value Emax reached by the error Ep for the initial con-
ditions belonging to the cell.

The results obtained for the three models are shown in Fig. 10.1. The
MAPP and the LPV2 models, both used with a step size equal to the unper-
turbed Keplerian period, are equivalent as far as the accuracy is concerned.
Indeed, the best analytical fit of the level curve Ep = 0.01 is given by:

ac = 104.748±0.004(1 − e)0.182±0.006 , (10.107)

for the MAPP model, and

ac = 104.751±0.003(1 − e)0.185±0.005 , (10.108)

for the LPV2 model. These two equations may be considered as identical
within the error bounds of the exponents.

For both models the error is essentially due to the averaging of the equa-
tions of motion with respect to the mean anomaly. Conversely, the LARKS
method is highly reliable in the whole phase space domain under study, since
the error never exceed 0.01. The effect of the time step selection rule (10.42)
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Fig. 10.1. Maximum error Ep [(see 10.106)] in each cell of the e0–a0 plane for the
models MAPP (top left), LPV2 (top right) and LARKS (bottom). The solid line
curves correspond to Ep = 0.01 and the dotted curves are the best fits of the level
curves

is clearly visible above a0 = 50, 000 AU; the reliability of LARKS is almost
conserved when a0 increases.

Speaking about the computation times required to perform all the inte-
grations, the MAPP, LPV2 and LARKS needed 5.5, 1.8 and 99 s, whereas
the RA15 integration took 1820 s. That is, LPV2 is three times faster than
MAPP, and almost 40 times faster than LARKS, and LARKS is almost 20
times faster than RA15.

10.4 Hybrid Integrators

10.4.1 Definition

In order to have the best compromise between velocity and precision, one can
consider hybrid models which use the fastest accurate model according to the
values of the cometary eccentricity and semi-major axis.
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In [9] the hybrid model MAPP + RADAU was introduced and applied to
reproduce the effects of the galactic tide on the dynamics of 106 comets over
5 Gyr. This hybrid model was such that MAPP was used below the analytical
fit of the Ep = 0.01 level curve given by (10.107), otherwise RADAU was
used.

This hybrid model became obsolete since [5] where LPV2 and LARKS have
been introduced. Indeed, the hybrid model LPV2 + LARKS, where LPV2 is
used below the analytical fit of the Ep = 0.01 level curve given by (10.108),
is much faster than MAPP + RADAU and has the same accuracy. In the
special case of a galactic potential such that A �= −B, i.e. G2 �= −G1, LARKS
is easily generalisable whereas LPV2 is not. Thus in such a case the hybrid
model MAPP + LARKS may be used.

Let us consider the integration of a comet with a hybrid model, say
LARKS + LPV2. The oscillation of the eccentricity with time may lead to
repeating shifts between the use of LARKS and the use of LPV2. However,
when LARKS is used the semi-major axis oscillates with a period equal to the
orbital period of the comet (this may be easily understood from the fact that
in the Hamiltonian formalism, the mean anomaly and L =

√
μa are conjugate

coordinates), whereas it is a constant of motion when LPV2 is used. Indeed,
for the LPV2 model the mean anomaly cancels out.

Since LPV2 is applied for an integer number of orbital periods, one may
just record the value of the mean anomaly at the beginning of a sequence
where LPV2 is used, and restore the mean anomaly value at the end of the
sequence. Consequently, when one shifts from LPV2 to LARKS, the memory
of the original orbit is conserved, as far as the averaging is neglected.

However, a shift from LARKS to LPV2 occurs for an arbitrary value of
the mean anomaly, thus it occurs for an arbitrary value of the semi-major axis
in the interval of its oscillations. Consequently, from one such shift to another
one, the LPV2 model will be applied to different averaged orbits since the
semi-major axis is different. After many shifts, a drift on the semi-major axis
value may be observed.

An easy way to remove this drift is to allow the shift between LARKS and
LPV2 only when the comet is exactly at its perihelion. Indeed, in this way,
the shift occurs always at a precise time of the semi-major axis oscillation,
thus the memory of the real orbit may be conserved when many shifts from
LARKS to LPV2 are performed.

10.5 Conclusion

Different models of the galactic tide have been presented. The first one, called
LARKS, is a symplectic integrator which uses the Kuustanheimo–Stiefel (KS)
transformation to regularise the equations of motion. This model turns out
to be reliable over the whole phase space and almost 20 times faster than
a non-symplectic integrator using Cartesian coordinates (RADAU). The two
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other models are based on the averaging of the equations of motion with
respect to the mean anomaly. One, which is called MAPP, which uses the
Taylor development at order three of the solutions of the averaged equations of
motion. In this case the equations are written using the Hamiltonian formalism
with two different sets of canonical variables according to the value of the
eccentricity. The second averaged model, called LPV2, considers the equations
of motion using the normalised Laplace and angular momentum vectors. Then
a Lie–Poisson integrator of order 2 is used by splitting the Hamiltonian into
three parts.

As regards the accuracy, these two models are equivalent, but they are
reliable only in a limited domain of the phase space. These models are both
faster than LARKS, but LPV2 is three times faster than MAPP and 40 times
faster than LARKS. The main advantage of MAPP is that it is more didactic.
MAPP is also more general since it may consider any kind of radial component
of the tide—but with the assumption that the tide is axi-symmetric—whereas
LPV2 requires G2 = −G1.

The best hybrid model can be defined as a combination between the use
of LPV2 and LARKS according to the value of the cometary eccentricity
and semi-major axis. For instance, if one wants a confidence level of 1% on
the perihelion distance variation over one cometary period, one may use the
analytical equation given by

ac = 104.751(1 − e)0.185 (10.109)

to define the upper frontier of the domain where LPV2 may be used.
If one wants a confidence level of 0.1% one may consider the value

ac = 104.570(1 − e)0.176 (10.110)

as the upper limit of the domain where LPV2 may be used. However, the
use of (10.110) will slow down the integrations since it reduces the domain of
application of LPV2. It may be also softer to use RADAU rather than LARKS
for hyperbolic orbits or when the semimajor axis is greater than 100 000 all.
Indeed the loss in computation time will be small whereas the accuracy of
LARKS is less guaranteed. The above hybrid model may be used for any
long-term simulations of the Oort cloud comets dynamics under the effects of
the galactic tide.
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46 Chapitre 2. Le modèle dynamique

2.2 Construction du modèle de perturbations

stellaires

Les perturbations des étoiles passant au voisinage du Soleil sur les tra-
jectoires des comètes, lorsque le demi-grand axe est significativement élevé,
a été pris en compte par Öpik (1932), avant même que Oort (1950) ne fasse
l’hypothèse de l’existence du nuage portant son nom. Sachant que les vitesses
relatives des étoiles par rapport au Soleil sont bien plus élevées que les vitesses
héliocentriques des comètes lorsqu’elles se trouvent à leur aphélie, les pertur-
bations stellaires ont été modélisées en considérant : (i) les effets des étoiles
se traduisent par une impulsion appliquée à la vitesse héliocentrique de la
comète lorsque l’étoile passe à son périhélie ; (ii) on considère que les mouve-
ments héliocentriques des étoiles sont rectilignes et uniformes ; (iii) et l’im-
pulsion est calculée à partir d’une trajectoire infinie de l’étoile vers le passé
et vers le futur.

Ces trois hypothèses conduisent à la construction de l’impulsion classique
définie dans Rickman (1976). Ce modèle a été amélioré en suivant les propo-
sitions faites par Dybczynski (1994) qui supprime l’hypothèse de trajectoire
rectiligne et uniforme et celle d’une impulsion calculée à partir d’une trajec-
toire infinie.

Le modèle construit dans Rickman et al. (2005) permet de tenir compte
au mieux de la trajectoire de l’étoile. La perturbation est toujours modélisée
sous forme d’une impulsion appliquée à la vitesse, et à la position de la comète
dans ce cas, à l’instant du passage de l’étoile à son périhélie. Cette impulsion
est calculée de manière séquentielle en utilisant un pas constant en anomalie
vraie du corps le plus proche de l’étoile (Soleil ou comète). Ceci permet
d’avoir un pas variable en temps, diminuant lorsque l’étoile se rapproche de
l’un des deux objets.

Si la distance minimale entre l’étoile et le Soleil ou la comète devient trop
petite, alors le calcul séquentiel devient très lent et le calcul de l’impulsion se
fait alors en effectuant une intégration numérique avec l’intégrateur classique
RADAU 15 (Everhart, 1985).

La mise en place du modèle ainsi que les tests sur son efficacité et fiabilité
sont présentés dans l’article Rickman et al. (2005), et son implémentation
dans le modèle final dans Fouchard et al. (2007b).
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Abstract. In this chapter we present different approximate models of computing
the perturbations on the Oort cloud comets caused by passing stars. All these meth-
ods are checked against an accurate numerical integration using Everhart’s RA15
code. A random sample of stellar passages, simulating those suffered by the solar
system, but extrapolated over a time of 10(10) years, is created. For each model we
measured the errors and their dependence on the encounter parameters.

9.1 Introduction

A good knowledge of the present structure of the Oort cloud is one of the clues
to understand the formation of the solar system. There is a wide consensus
on the fact that the Oort cloud was formed by the residual planetesimals
scattered by the giant planets during the period of their formation. Moreover,
it is important to follow carefully the history of comets which originated in
the Oort cloud, to be able to estimate the total population and the mass of
the entire cloud.

There are three major external perturbers which influence the Oort cloud
comets and inject them into the planetary region. These are the stellar pertur-
bations, the galactic tidal forces and giant molecular clouds (GMCs). Although
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a penetrating encounter of the solar system with a GMC is a rare event, it may
have considerable effects [18]. However, due to the rarity and the poor knowl-
edge of the circumstances of such encounters [1], they are generally omitted
from studies of Oort cloud dynamics.

We concentrate our study on the effects of the two other external per-
turbers, namely passing stars and the galactic tide. While stellar perturba-
tions occur at random and may be treated as a stochastic process, the galactic
tidal force is a quasi–integrable perturbation which acts continuously, chang-
ing the cometary orbital elements and in particular the perihelion distance. As
shown by many authors [3, 9, 20] the fraction of the population of Oort cloud
comets that can become observable would be very small if only the effect of
the galactic tide was at work.

Passing stars can randomize the whole population and may cause strong
temporary enhancements of the flux of observable comets called comet showers
[15], while the galactic tide produces the main part of the steady flux of Oort
cloud comets towards the observable region (e.g. [16, 21]). Thus for a general
understanding of the origin of LP comets, both pertubers, i.e. passing stars
and galactic tide must be modelled.

To get a realistic model of the Oort cloud it is necessary to follow the
dynamics of a very large number of test particles (�106, to sample as well as
possible the available parameter space), over time scales equal to the age of
the solar system. Therefore, one has to develop reliable methods that model
both the galactic tide and the stellar close encounters with the lowest possible
computational cost.

In the present chapter we investigate different algorithms to compute the
orbital perturbations of Oort cloud comets caused by passing stars. The re-
liability and validity of these methods are checked against pure numerical
integrations. In an accompanying paper (Chap. 10) we present several fast
integrators and mappings that model the effects of the galactic tide. Again,
the results computed with those methods will be compared to those obtained
using a numerical integration of the equations of motion.

9.2 Modelling the Stellar Pertubations

As underlined previously, passing stars may perturb the orbits of Oort cloud
comets. Oort [24] considered stellar perturbations as the only source of per-
turbations that change cometary orbits and inject them into the observable
region. However, it has later been shown that the galaxy is another major per-
turber of cometary orbits. According to Hills [15] stellar perturbations ensure
a constant flux of comets with a ≥ 2 × 104 AU towards the planetary region.
As found by Dybczyǹski [7], star perturbations through the Oort cloud may
induce the asymmetry of the distribution of observable comets (see also [8]
and citations therein). Moreover Hills [15] showed that a close or penetrating
stellar passage through the Oort cloud may deflect large numbers of comets
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to orbits that enter the planetary region forming what are known as comet
showers.

To estimate stellar perturbations Oort [24] used the so-called impulse ap-
proximation, introduced in [25] to investigate the influence of stellar encoun-
ters on a cloud of meteoroids or comets. This approximation allows to obtain
analytical solutions using simplifying assumptions, namely:

• The star velocity is constant and the motion follows a straight line;
• The star velocity is large enough that the comet and the Sun can be

considered to be at rest during the stellar passage.

This approximation was used in a large number of papers (e.g., [2, 15, 21, 27,
32]) and has been found to be useful as a quick estimator in numerical Monte
Carlo simulations of cometary orbital evolutions (e.g., [5, 12, 13, 16, 17, 22,
26, 28, 31]).

However, some concern over the accuracy of the method arises from simple
considerations. For instance, the particularly important, very large impulses
tend to be associated with the slowest stellar encounters, for which the as-
sumption of a high stellar speed is not verified, or with very close passages
to either the Sun, in which case the neglect of the hyperbolic deflection may
lead to large errors, or the comet, where the neglect of even a slight cometary
motion may change the results considerably.

The impulse approximation was briefly discussed in [23] in a work that
concerned planets rather than comets, and in which an improvement for the
case of a very close encounter star–Sun, which took into account the hyperbolic
deflection of the stellar trajectory, was introduced.

Later on, Dybczyński [6] introduced a new, improved variant of the im-
pulse approximation that is applicable to any time interval and allows a higher
accuracy by treating the stellar orbit exactly. The advantage over the classi-
cal impulse approximation was convincingly demonstrated, but there was no
discussion of the errors arising from the neglect of the motion of the comet
during the stellar passage.

Eggers and Woolfson [10] have shown that for comets moving relatively
fast, the impulse approximation breaks down. They developed a sequential
method, in which the star path is split up and several partial impulses are
computed along the stellar orbit assumed to be rectilinear. The authors found
that this method is in good agreement with numerical integrations and also
10–100 times faster; they also suggested that their method may be improved
by applying a sequential treatment to Dybczyński’s method.

In this chapter we present such a method, that was introduced for the
first time in [29]; the comet moves along its changing orbit receiving several
impulses from the star which describes a hyperbolic orbit. Our method, the
classical impulse approximation, and Dybczyński’s algorithm are studied by
comparing their results with those obtained in purely numerical integrations
of the motion equations for a random sample of stellar encounters, simulating
the ones expected for the solar system during 1010 yr. Each star is allowed to
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interact with 40 comets placed on Oort cloud orbits with given semi-major
axis (a0) and perihelion distance (q0).

In Sect. 9.3 we describe the sample of stellar encounters which may interact
with the comets. Section 9.4 is devoted to present the different algorithms,
while the results of the computations are presented in Sect. 9.5. Finally the
conclusions are given in Sect. 9.6.

9.3 Stellar Encounters

Our purpose is to study the errors introduced by the different algorithms
as a function of the encounter parameters. We use a distribution of stellar
parameters that is as realistic as possible, and to this purpose we have created
a random sample of stellar encounters experienced by the solar system during
1010 yr, according to the frequency distribution given in [14]. The upper limit
for the solar impact parameter is 4 × 105 AU, and we use the 13 stellar
categories listed in Table 9.1 of [28] with their corresponding data, for which
the total encounter frequency is 10.525 π−1 pc−2Myr−1. The total number of
encounters in our random sample is thus 395,813.

The stellar speed of a given encounter is computed in the same fashion as in
[28]. We combine the apex velocity vectorially with a peculiar velocity vector
that is randomly chosen from a 3D gaussian distribution with the prescribed
dispersion. The direction of motion of each star is distributed uniformly, since
the Oort cloud may be modelled as spherically symmetric; in this way, with
respect to a random orientation of the cometary orbit, the stellar encounters
are always isotropically oriented. Figure 9.1 shows the frequency distribution
of our encounter sample in the parametric plane of approach velocity V ∗ and
solar impact parameter b∗.

Table 9.1. Computing time spent with different methods for calculating stellar
perturbations

a0 (AU) 104 3 × 104 105

IEM (s) 5 × 104 2.3 × 104 1.7 × 104

CIA (s) 44 45 44
DIA∗ (s) 37 37 37
DIA (s) 130 131 116
SIA50 (s) 7 646 8 246 9 172
SIA250 (s) 1 470 1 557 1 764
SIA500 (s) 779 932 912
SIA1000 (s) 476 476 500

The method used is indicated in the left column, and the four SIA calculations are
distinguished by the choice of the initial time step. The three columns to the right
correspond to different choices of the initial semi-major axis, as indicated in the top
line.
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V

b

Fig. 9.1. The (V ∗, b∗) plane is split into equal boxes, and the colour coding shows
the number of stellar encounters in each box on a log scale as indicated to the right.
Isodensity curves marked by the corresponding numbers are also shown

Our data set for each combination (a0, q0) consists of 395,813 stellar en-
counters, experienced one by one by a sample of 40 comets. For each new star,
each comet is put back into its initial orbit with the same starting value of the
mean anomaly. The random timing of the encounters means that, each time,
the comets find themselves at random orbital positions as the star passes.

9.4 The Dynamical Models

In order to estimate the errors of the different methods of computing stellar
pertubations we have to compare their results with those obtained with an
accurate numerical integration. To this purpose, the Newtonian equations of
motion of the comet and the star are integrated in a heliocentric reference
frame, using the RA15 [7] integrator. RA15 is a variable step integrator with
an external control of the accuracy specified as an input parameter (LL).
The value LL = 12 was found sufficient to guarantee a high accuracy of the
resulting stellar perturbations.

As explained in [29], since our numerical integration is not extended over an
infinite path before and after closest approach, we have performed numerical
experiments in order to find the optimal choice of the limiting start and end
distance dlim. We found that dlim =

√
b∗2 + r2lim with rlim = 1.0 × 106 AU is

large enough to define the limiting distance in our study of different dynamical
models [29]. In the remainder of this paper, the reference model to compute
stellar perturbations, denoted by IEM (integration of the equations of motion),
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consists of an integration using RA15 with LL = 12 that starts and ends when
the Sun–star distance is equal to dlim.

9.4.1 The Classical Impulse Model

In this case, which we hereafter denote by CIA (classical impulse approxima-
tion), the comet is held fixed with respect to the Sun, while the star passes
with constant velocity along the straight line defined by the impact parameter
b∗, a unit vector b̂

∗
that defines the direction of closest approach and the ve-

locity vector V∗ of the star with respect to the Sun. The impulse of the comet
relative to that of the Sun caused by the time-integrated stellar attraction is
computed from

Δv =
2GM∗
V ∗

{ b̂c

bc
− b̂∗

b∗

}
; (9.1)

adding this value of Δv to the heliocentric velocity of the comet at the orbital
position in question, one obtains a new orbital velocity and thus new values
of the orbital elements. Figure 9.2 illustrates the geometry considered.

The CIA computes the perturbation for a time span extending to infinity
before and after closest approach; some of the differences between the results
of CIA and IEM may result from this. However, this contribution to the
total difference should be small, just like the contribution to the perturbation
experienced outside dlim. In principle, (9.1) may be modified to account for
a finite time interval (see [6, 27]), but the result would be a large increase of
the computing time. Since the principal advantage of the CIA is its speed, the
use of such a procedure would hence be self-defeating.

9.4.2 Dybczyński’s Impulse Approximation

In this case, which we denote by DIA, the comet is held fixed with respect to
the Sun, while the star describes the part of its heliocentric, hyperbolic orbit

Sun
Comet

A

B

rc

V*

*

b*

bc

Star

Fig. 9.2. Geometry of a stellar passage considered for the classical impulse approx-
imation
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that is contained within our limiting distance.1 Just like the parameters of the
straight line of the CIA, this hyperbola is uniquely defined by the parameters
of the stellar encounter. Given the position and velocity vectors of the comet
with respect to the Sun, the hyperbola characterizing the relative star–comet
motion can also be uniquely defined.

As in the case of the CIA, we have to select a position of the comet along
its orbit, and once again we pick the one that the unperturbed comet would
have at the time of the stellar perihelion passage. Since we choose this time
to be the same for the CIA and DIA, the positions of the comet are also the
same.

As shown in [6], in a heliocentric frame of reference where the x-axis is
anti-parallel to the stellar velocity vector, the y-axis is parallel to b̂∗ and the
z-axis completes a right-handed system (this will be referred to as the ‘impact
frame’), the impulse vector of the comet relative to the Sun is given by

Δvx = (acΔvcξ + bcΔvcη)
1

cc
− (asΔvsξ + bsΔvsη)

1

cs
,

Δvy = (acΔvcη − bcΔvcξ)
bs − yc
ccbc

− (asΔvsη − bsΔvsξ)
1

cs
, (9.2)

Δvz = (acΔvcη − bcΔvcξ)
−zc
ccbc

,

where as, bs and cs are the semi-axes and focal distance of the heliocentric
hyperbola (c2s = a2

s + b2s ), and ac, bc and cc are the same quantities for the
cometocentric hyperbola. All the cometocentric quantities are computed tak-
ing into account the heliocentric velocity of the comet. This is an arbitrary
choice that deviates from description given in [6], but the results are thereby
slightly improved.

The cometary position is described by yc and zc, and the various Δv
quantities are given by

Δvsξ =
−GM∗
bsV∞

(sinϑs2 − sinϑs1) ,

Δvsη =
−GM∗
bsV∞

(cosϑs1 − cosϑs2) , (9.3)

Δvcξ =
−GM∗
bcV∞

(sinϑc2 − sinϑc1) ,

Δvcη =
−GM∗
bcV∞

(cosϑc1 − cosϑc2) ,

where G is the gravitational constant and M∗ is the stellar mass, V∞ = V ∗ is
the stellar speed at infinity and ϑ is the true anomaly of the star with respect
to the Sun or the comet, the indices ‘1’ and ‘2’ denoting the beginning and
1 Dybczyński’s method is more general, allowing any time interval to be considered,

but this is our choice for comparing the results with the IEM.
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end of the computation, respectively. All these quantities are easily computed,
and thus the impulse vector is found from the above equations. A great sim-
plification of (9.2) and (9.3) results from considering an infinite time interval
like for the CIA, as explained in [6]. We have applied this procedure in some
runs for comparison purposes, and we denote these runs by DIA*.

9.4.3 The Sequential Impulse Approximation

In this case, which we denote by SIA, the comet is allowed to move along its
osculating orbit between the steps of a predefined sequence. At the beginning
of the calculation, the star is placed at its proper position at distance dlim

from the Sun. For each step a preselected time interval is used to compute the
corresponding change in the true anomaly (Δϑ) of the star’s heliocentric or
cometocentric orbit, depending on which object is closest to the star. Thus,
during the whole calculation, a variable time step is used with the property
that it always corresponds to Δϑ for the orbit of the object that is closest to
the star. As a result the time step varies roughly in proportion to the square
of the minimum distance from the Sun or comet to the star.

We stress that – in principle – the SIA is capable of any level of precision,
but both the precision and the CPU time are determined by the method and
choice of parameters to choose the step length. As shown in Sect. 9.5, we have
found the above procedure to be appropriate for practical needs.

In practice, the SIA is constructed as follows. After selecting an initial
time step Δt0, we first compute the initial star–comet distance dc0 and the
true anomaly step size of the heliocentric orbit of the star:

Δϑs =
V ∗b∗

d2
lim

Δt0 . (9.4)

For each step, we start from the heliocentric position and velocity of the comet
and the star in the above-described impact frame. The time is t. The following
sequence is then stepped through:

• We compute the cometocentric orbital parameters of the star from the
positions and velocities, and we find the values of the asterocentric true
anomalies of the Sun (ϑs1) and the comet (ϑc1).

• We find which body, the Sun or the comet, is closer to the star. If it is the
Sun, we compute the time step Δt from ϑs1 and Δϑs given by (9.4). If it
is the comet, we compute the cometary true anomaly step from

Δϑc =
V ∗bc
d2
c0

Δt0 (9.5)

and compute the time step Δt from ϑc1 and Δϑc given by (9.5).
• In the former case, if the Sun is closer to the star, we compute the true

anomalies at the end of the step from ϑs2 = ϑs1+Δϑs, and ϑc2 = ϑc(t+Δt).
In the latter case, if the comet is closer to the star, these anomalies are
found from ϑs2 = ϑs(t+ Δt) and ϑc2 = ϑc1 + Δϑc.
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• We apply Dybczyński’s formulae (9.2) and (9.3) to obtain the heliocentric
impulse vector of the comet.

• We compute the heliocentric position and velocity vectors of the comet
at the middle of the step and add the heliocentric impulse vector to the
velocity.

• The heliocentric position and velocity vectors of the comet and the star
are computed at the end of the step, thus preparing for the following step.

The calculation ends when the star reaches the heliocentric distance (dlim)
after closest approach.

Two important general remarks may be made on the above computation:
(1) all the hyperbolic true anomalies are computed via the eccentric anomalies
and (2) the inversions of the Kepler equations are made using (4) and (12) of
[4] in the elliptic cases, and the hints given in [30] for the hyperbolic cases.

We have used several values for the initial time step Δt0 in an attempt to
compare them internally as well as with other methods and decide about the
best choice.

9.5 Results

9.5.1 Computing Times

We consider the sample of 395,813 stellar encounters previously defined act-
ing on 40 cometary orbits, having the same initial semi-major axis (a0) and
perihelion distance (q0). Computations of the stellar perturbations have been
performed using a particular method, for three different values of a0 with al-
ways the same q0 = 100 AU. Table 9.1 summarizes the total computing times
spent on a 2.8 GHz XEON. The different SIA calculations are distinguished
by the following initial time steps: 0.5 × 105 yr for SIA50, 2.5 × 105 yr for
SIA250, 5× 105 yr for SIA500 and 1× 106 yr for SIA1000. Thus, the numbers
used in the acronyms give the time step in thousands of years.

IEM calculations take more time for smaller values of the cometary semi-
major axis, because this makes it more likely for the comet to be close to
perihelion during the stellar passage. Since most stellar encounters are distant
(see Fig. 9.1), it is in fact the cometary perihelion passages that dominate the
use of CPU time. This effect is not seen for SIA, which works directly with
the cometary orbital elements, and whose time step is independent of the
Sun–comet distance—see (9.5) and (9.7).

Both CIA, DIA* and DIA are extremely quick estimators compared with
IEM, and DIA* is just as fast as CIA. Both of these are ∼500 times faster
than IEM, while DIA is only ∼200 times faster owing to the calculation of
sines and cosines of true anomalies in (9.3). SIA is significantly slower, though
this depends on the choice of the initial time step. SIA50 is practically useless,
being only a little faster than IEM, but SIA500 and SIA1000 work at least
20–30 times faster than IEM for typical Oort cloud orbits. In fact, for a stellar
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encounter with a typical speed of 30 km/s, the time required to describe a
rectilinear path of 2 × 106 AU is about 300,000 yr. This generally means only
one step for SIA1000 and just a few for SIA500. Of course, the number of
steps grows much larger for very slow and/or close stellar encounters.

9.5.2 Error Statistics of the Models

For each set of cometary elements a0 and q0, the set of ∼16×106 perturbations
computed by IEM is divided into four quartiles (Q1, Q2, Q3 and Q4), each
containing the same number of perturbations (∼4 × 106) and such that the
25% smallest perturbations are in Q1, etc. For each model under study and
each perturbation in Qi (i = 1, 4), an error EQi is computed as

EQi =
ΔqIEM − Δqmod

〈|ΔqIEM|〉i
(9.6)

for i = 1, 2, 3, and

EQ4 =
ΔqIEM − Δqmod

max(|ΔqIEM|, 〈|ΔqIEM|〉i)
, (9.7)

for i = 4. Here ΔqIEM and Δqmod are the perturbations computed by IEM and
the model under study, respectively, and 〈|ΔqIEM|〉i is the arithmetic mean of
the |ΔqIEM| included in Qi.

In [29], it has been shown (see Table II of [29]) that the majority of the per-
turbations of Δq are very small, but the tail of the perturbation distribution
extends to very large values. Moreover the models have also been compared
against each other (see Table III of [29]). The main results are the following:
(1) whatever the model, the average of EQ is always very small, which indi-
cates that none of the models tend to introduce any systematic bias into Δq;
(2) SIA1000 is not much better than DIA except for a0 = 105 AU; (3) while
the results obtained with DIA∗ are practically the same as the CIA results,
the model DIA is distinctly better than CIA, implying that a large part of
the CIA errors arise from the consideration of an infinite time interval.

9.5.3 Dependence of the Errors on the Encounter Parameters

To analyse how errors are distributed over the encounter parametric plane, we
have divided this plane into cells and studied the error statistics in the cells
individually. In Fig. 9.3 we present the results for the case of a0 = 3×104 AU
with the CIA, DIA and SIA500 models. We divided the encounter sample
into four equal parts corresponding to the quartiles of the |Δq| distribution as
computed by IEM. The left and right panels show the Q1 and Q4 quartiles,
respectively, and from the population density level curves we see how the Q4

sample preferentially populates the cells with smaller impact parameters and
smaller approach velocities—as expected from (9.1).
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Fig. 9.3. Colour diagram of the model errors in the as,min(b∗, bc) plane. The plane
is divided into 20×30 cells. Cells on the same line are gathered until a population of
at least 20 stellar passages is reached. The colour indicates the value of 10log|EQi|
that is surpassed by 10% of all the errors |EQi| computed in each cell. For the cross-
hatched cells this value is larger than 1. Diagrams to the left correspond to Q1

and diagrams to the right correspond to Q4. For each quartile, the isopopulation
curves of the corresponding stellar encounters are also shown, indicating the numbers
falling in each individual cell. The unit for both axes is AU
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The colour coding is chosen to represent the 90th percentile, i.e. the value
of |EQ| that is surpassed by 10% of the population in the cell. The orange–red
colour range indicates errors larger than 100%.

Our first observation is that such conditions are commonplace for CIA and
DIA in the first quartile, whenever the stellar approach velocity is relatively
small, while they do not occur at all for the SIA500 model. Next we note that
these very large relative errors are confined to Q1 rather than Q4, so that the
actual errors in absolute terms are quite small. This is indicative of a compo-
nent of the errors that is not proportional to the size of the perturbation, and
thus becomes relatively important as the perturbations approach zero. Since
mainly CIA and DIA are affected, we conclude that neglecting the cometary
motion must be an important part of the problem.

For practical purposes it may be more interesting to study the errors of
the largest perturbations as shown in the right-hand panels of Fig. 9.3. In this
case the CIA and DIA errors occasionally reach the 100% level for the slowest
encounters. By contrast, the SIA500 errors are always vanishingly small. It is
noteworthy that the largest CIA and DIA errors in Q4 do not occur for the
closest encounters but for relatively distant ones with very low velocities—a
detailed example will be discussed in Sect. 9.5.4.

A detailed study of the smallest impact parameters of our sample (see
Fig. 9.4) shows that DIA yields much better results than CIA—especially for
impact parameters less than a few thousand AU.

Neither CIA nor DIA competes in accuracy with SIA500 for these close
encounters. However, for impact parameters <1000 AU the computing time
is larger with SIA500 than using IEM. Hence, if a high accuracy of the stellar
perturbations is desired, one should use IEM for such very rare and close
encounters, while a lot of computing time may be saved by using SIA500 or
SIA1000 in the rest of the encounter parameter plane.

Changing the value of a0 to either 1 × 104 or 1 × 105 AU does not affect
the above results very much. The use of CIA or DIA for the inner core of
the Oort cloud, where a0 < 1 × 104 AU, especially for stars passing at low
velocities, does not appear advisable.

9.5.4 Example of a Stellar Passage

In order to illustrate the differences between the models, one stellar passage
will now be considered in detail. This example was chosen among those pas-
sages that CIA and DIA failed to reproduce. Figure 9.5a shows the geometry
of the encounter in the plane of the stellar trajectory. The upper part of the
figure lists the ecliptic elements of the stellar and cometary orbits. M0 is the
mean anomaly of the comet when the star is at its perihelion; bc is the value
of the cometary impact parameter at the time when the star passes perihelion
and taking the heliocentric velocity of the comet into account, as computed
for the DIA model; and minM0(bc) is the minimum value of bc on a sequence
of encounters where M0 varies between 0◦ and 360◦ (see below).
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Fig. 9.4. Same as Fig. 9.3, but limited to minimum impact parameters less than
104 AU. All these data are contained within the lowest cells of Fig. 9.5

Also shown are the perihelion distance perturbations using the different
models. Clearly, SIA500 and IEM are almost equivalent. In order to check if
the discrepancy between DIA or CIA and IEM is due to the place where the
comet is fixed during the stellar passage (which may yield a large difference
when strong perturbations are involved), Fig. 9.5b gives the final perihelion
distance of the comet, as M0 varies between 0◦ and 360◦.

Clearly, this encounter cannot be well reproduced by DIA or CIA. This
is not due to a close encounter, since both b∗ and bc are always larger than
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Fig. 9.5. (a) Above: Ecliptic orbital elements of the star and the comet; bc is the
comet–star impact parameter of the encounter shown, and minM0(bc) is the mini-
mum cometary impact parameter for the stellar passages used to plot part (b). To
the right, perturbations of the perihelion distance computed with different models.
Below, left panel: Cometary orbit during the stellar passage using IEM (full black
line), and cometary positions computed by SIA500 (grey asterisks) joined by a grey
dashed line, in the plane of the stellar trajectory. Right panel: Stellar trajectory
and cometary orbit computed by IEM in the same plane. (b) Final perihelion dis-
tance versus cometary mean anomaly M0 at the time of the perihelion passage of the
star using IEM (full grey curve), SIA500 (dashed black curve), DIA (dot-dashed grey
curve) and CIA (dotted grey curve). Horizontal line: initial value of the cometary
perihelion distance; vertical line: value of M0 used in part (a)
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48,000 AU, but rather to the small stellar velocity (2.44 km/s). Note from
Fig. 9.5a that this causes the comet to perform almost a whole revolution
around the Sun during the encounter. It is obvious that keeping the comet
fixed at any point in its orbit cannot yield a good approximation to the inte-
grated perturbation. Moreover, due to the large encounter distance, the hyper-
bolic deflection of the stellar trajectory is negligible, as is the variation of the
stellar velocity—hence the CIA and DIA yield practically the same results.

There is an interesting difference between close and distant encounters in
the time interval during which the main part of the perturbation builds up.
For a close encounter, this is very short, and the motion of the comet is not of
prime importance. But for a distant one, if it is very slow like in Fig. 9.5, the
motion of the comet is indeed important and may destroy the accuracy of a
one-step method. Thus we may explain why the CIA and especially DIA errors
are the largest for slow, distant encounters, while for the close encounters in
Fig. 9.4 they are not extremely large. Even if the point where one assumes
the comet to reside in such a case may not be the best one, keeping the comet
fixed is not a bad assumption.

9.6 Conclusions

In terms of computer time the CIA and the DIA are extremely quick es-
timators, since they are respectively �500 and �200 faster than IEM. The
computing time of SIA depends on the initial time step as well as the accu-
racy. For a step choice of 5 × 105 or 1 × 106 yr the computations are 20–30
times faster than IEM at the expense of some little loss in accuracy, but the
accuracy is significantly better than CIA and DIA. However, for small impact
parameters (see Fig. 9.4) the CIA and DIA are not good estimators.

Moreover, for even a distant encounter, when the star velocity is very low
the CIA and DIA give wrong results, since the comet is assumed to be fixed
during the encounter. CIA (as found previously by Eggers and Woolfson) and
DIA are not suitable for the inner core of the Oort cloud.

For simulations of the Oort cloud, CIA gives a reasonably good approxi-
mation for a very small computation time, but DIA works significantly better
at almost the same amount of time.

The SIA should be used when modelling the inner core of the Oort cloud
and the scattered disk. Our choice, according to the best compromise between
accuracy and speed is the SIA500, taking into account that when the impact
parameter of the star with the Sun or the comet is smaller than 1000 or 2000
AU the IEM is faster than the SIA500.
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2.3 Construction du modèle de perturbations

planétaires

Lorsqu’on s’intéresse au flux de comètes nouvelles, c’est-à-dire les comètes
qui arrivent pour la première fois dans la région planétaire du système solaire,
il est fréquent de modéliser les perturbations planétaires par le concept de
loss cone. Ce concept, déjà introduit par Oort (1950) stipule que l’effet des
perturbations planétaires est tel qu’il existe une région définie par le moment
angulaire des comètes, dans laquelle les comètes sont éjectées dès leur premier
passage au périhélie, alors qu’en dehors de cette région les planètes n’ont pas
d’effet.

Pour des comètes se trouvant sur des trajectoires presque paraboliques
comme celles venant du nuage de Oort, ceci revient à définir un seuil qc de la
distance périhélique tel que si la distance périhélique d’une comète est telle
que q < qc alors la comète est éjectée lors de son passage au périhélie, sinon
sa trajectoire n’est pas affectée par les planètes.

Ceci est évidemment une simplification assez grossière. Afin de mieux
tenir compte de l’effet des planètes tout en minimisant le temps de calcul
pour déterminer ces perturbations planétaires, on a considéré les 4 planètes
géantes sur des orbites circulaires (et donc les planètes ne se perturbent pas
entres elles). Dès qu’une comète passe à une distance héliocentrique inférieure
à rC alors on considère qu’elle est affectée par les planètes. Comme pour les
étoiles, cet effet est calculé sous la forme d’une impulsion appliquée à la
trajectoire de la comète lorsqu’elle se trouve à son périhélie 1. Le calcul de
l’impulsion se fait alors sur la portion de trajectoire de la comète se trouvant
à une distance héliocentrique inférieure à rL.

Les tests effectués pour la mise en place de notre modèle nous ont conduit
à choisir rC = 50 AU et rL = 100 AU. La mise en place de la méthode,
ainsi qu’une preuve numérique de l’inexactitude du concept de loss cone sont
présentés dans l’article Fouchard et al. (2013).

1. En fait, tous les calculs se font dans un repère barycentrique mais pour faciliter la
compréhension, on continue d’utiliser un vocabulaire se référant à un repère héliocentrique.
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a b s t r a c t

This paper is the first in a series, where we aim to model the injection of comets from the Oort Cloud so
well that the shape of the energy distribution of long-period comets (i.e., the distribution of reciprocal
semi-major axis) together with the observed rate of perihelion passages can be used to make serious
inferences about the population size and energy distribution of the cloud. Here we explore the energy
perturbations caused by the giant planets on long-period comets with perihelia inside or near the
planetary system. We use a simplified dynamical model to integrate such perturbations for large samples
of fictitious comets and analyse the statistics of the outcomes. After demonstrating the sensitivity of
derived parameters to the sample size, when close encounters are involved, we derive a map of the
RMS energy perturbation as a function of perihelion distance (q) and the cosine of the inclination (i),
which compares well with the results of previous papers. We perform a critical analysis of the loss cone
concept by deriving the ‘‘opacity’’ (chance of leaving the Oort spike by planetary perturbations per
perihelion passage) as a function of q and cos i, concluding that the often made assumption of full opacity
for q < 15 AU is seriously in error. While such a conclusion may also have been drawn from earlier studies,
we provide the first full, quantitative picture. Moreover, we make a preliminary investigation of the long-
term evolution of long-period comet orbits under the influence of planetary perturbations, neglecting the
external effects of Galactic tides and stellar encounters. This allows us to make predictions about the
production of decoupled objects like Halley-type comets and Centaurs from the injection of Oort Cloud
comets, as well as of a related population of transneptunians deriving from the Oort Cloud with perihelia
well detached from the planets.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

When plotting a histogram of original reciprocal semi-major
axes 1/ao of long-period comets (i.e., as found by integrating the
near-perihelion osculating orbit backward until a time before the
comet entered the planetary system), one finds a strikingly narrow
peak near the parabolic limit (Oort, 1950). This so-called Oort spike
is a signature of the distant comet reservoir known as the Oort
Cloud and the dynamical processes which inject comets from this
reservoir into observable orbits. For many years, the uncertainties
of the calculated 1/ao values along with the insufficient statistical
sample have made it very difficult to draw detailed conclusions
about this dynamics or the energy distribution of Oort Cloud
comets from the shape of the Oort spike. One particular problem

has been that comet orbit solutions have been known to be af-
fected, in general, by non-gravitational effects. Those effects are
much easier to recognise for short-period comets by linking several
observed apparitions than for single-apparition, long-period com-
ets. Purely gravitational solutions have been the rule, but there
has been no proof of the absence of non-gravitational effects in
the general case of real comet motions.

Among early work we note the one of Marsden and Sekanina
(1973), who discovered that the distribution of 1/ao gets more
dominated by the Oort spike, the larger the perihelion distances
one considers. This effect was also found by Marsden et al.
(1978) for a total sample of 200 original orbits, which the authors
divided into quality classes according to the mean error of the
osculating 1/a, the length of the observed arc, and the number of
perturbing planets in the solution. These quality classes are still
used, and their utility was proven by the fact that the Oort spike
stands out for quality class I (the best) but not for class II (Marsden
et al., 1978). It was also found that the mean 1/ao varies linearly
with the reciprocal perihelion distance 1/q and becomes negative
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for the largest values – something that the authors ascribed to the
likely effect of unmodelled non-gravitational effects for comets
with small perihelion distances. The smallest 1/q groups led to
an average original semi-major axis of ao ’ 25,000 AU.

Following the discovery of the importance of Galactic tides for
comet injection in the 1980s, it was established that the efficiency
of this mechanism for reducing perihelion distances grows rapidly
with semi-major axis (e.g., Heisler and Tremaine, 1985). Also, the
concept of the loss cone or ‘‘loss cylinder’’ (Oort, 1950), corre-
sponding to orbits within the Oort spike with perihelion distances
small enough to be emptied by planetary perturbations during one
perihelion passage, received new attention (Hills, 1981). On the
basis of orbit integrations by Fernández (1981) (see also Duncan
et al., 1987), the border of the loss cone has been taken as
qmax = 10–15 AU.

The very efficient removal of new comets from orbits crossing
or approaching those of Jupiter or Saturn is known as the Jupiter–
Saturn barrier. Within this picture, the injection of new comets
by the Galactic tides requires semi-major axes larger than approx-
imately 30,000 AU (Fernández, 2005). But, likely due to the realisa-
tion that comet injection also involves the effect of passing stars,
the fact that this may be larger than the mean semi-major axis of
new comets has not been generally considered a major problem.

Recent years have seen some important progress, however.
While it was earlier found that non-gravitational orbit solutions
very often led to indeterminate results or no improvement of the
residuals, new methods and better data have led during the last
decade to a new situation. Królikowska (2006) found that allow-
ance for non-gravitational perturbations leads to improved fits in
many cases, and that the resulting 1/ao values are systematically
shifted in the positive direction – thus leading to smaller semi-
major axes. This conclusion was first drawn for comets with rela-
tively small perihelion distances (Królikowska and Dybczyński,
2010), but Dybczyński and Królikowska (2011) showed that as
many as one quarter of the comets with q > 3 AU also suffer signif-
icant non-gravitational effects. They also found by backward inte-
grations that many comets have reached their current perihelia,
not by injections across the Jupiter–Saturn barrier but by having
left their preceding perihelia in the depth of the loss cone on orbits
within the energy range of new comets, thus contributing to the
Oort spike. This appears to indicate the need for a re-evaluation
of the concept of new comets and the interpretation of the Oort
spike.

There has been progress in dynamical simulations too. Kaib and
Quinn (2009) discovered a previously unnoticed route from the
inner core of the Oort Cloud into observable orbits in the Oort spike
by a gradual, slow decrease of perihelion distance due to the Galac-
tic tides until perturbations by Saturn or Jupiter kick the comet out
into the energy range of new comets – a mechanism that
Dybczyński and Królikowska found adequate to explain some of
their results.

Finally, in our own work, we have drawn attention to the syn-
ergies that exist between Galactic tides and passing stars, when
it comes to comet injection across the Jupiter–Saturn barrier. Much
of this concerns the long term evolution of the cloud, but in
(Rickman et al., 2008) we showed that the modelled Oort spike,
resulting from a combination of tides and stars, extends to signifi-
cantly larger 1/ao than the one using tides only. There is also a
difference in the modelled injection flux, which could affect the
derivation of the number of comets in the Oort Cloud from the ob-
served new comet flux. But it is clear from the above discussion
that a realistic modelling of the Oort spike has to take the planetary
perturbations into account rather than using the crude loss cone
concept as in our previous work. At the same time, we see a real
possibility to compare – for the first time in some detail – the pre-
dictions of simulations with the observed orbit distribution. This is

the aim of the work to be presented in this paper and forthcoming
ones.

This paper is devoted to an exploration of the planetary pertur-
bations of 1/a experienced by long-period comets with perihelia
inside or near the planetary system. In Section 2 we will describe
our model and define its parameters. In Section 3, we will charac-
terise and discuss the distributions of energy perturbations. In
Section 4 we will present our results concerning the definition of
the loss cone. In Section 5 we investigate the long term dynamical
evolutions caused by planetary perturbations. Finally, Section 6 is
devoted to a discussion of our results, and a summary of our
conclusions.

2. Planetary perturbation model

As indicated above, our scope is to implement the present plan-
etary perturbation model into a global model of Oort Cloud comet
dynamics, where both the galactic tides and stellar effects are also
represented. This model rests on the assumption that the effects of
the planets, the tides and the stars are decorrelated, at least statis-
tically. Consequently, we are allowed to apply the planetary per-
turbations as an impulse, i.e., only the orbital parameters of the
comets are changed whereas the time is fixed. This impulse should
naturally be applied when the comet is at its perihelion. Neverthe-
less, the computation of the impulse requires some numerical
integration. This integration is performed as follows.

A restricted problem of six bodies is considered: the Sun, Jupi-
ter, Saturn, Uranus, Neptune and the comet. The planets move on
circular and coplanar heliocentric orbits with radii equal to the
present semi-major axes and longitudes at t = 0 taken from a cur-
rent epoch. It involves two technical parameters: rC is the critical
value of the barycentric distance that a comet has to pass in order
for any planetary perturbation to be computed, and rL is the limit-
ing barycentric distance defining the orbital arc around perihelion
that we use for integration of the planetary perturbations. Since
rC < rL, the practical implementation into our Monte Carlo simula-
tions is as follows. Each time a comet arrives at peribaryon at a
barycentric distance less than rC, it is shifted backward on its
Keplerian barycentric orbit to a barycentric distance equal to rL.
The restricted 6-body problem is then integrated in the barycentric
frame using RA15 (Everhart, 1985), until the comet reaches a
barycentric distance equal to rL in its outbound motion, reaches
an apobaryon, or suffers an impact. Finally, in the first case, the co-
met is shifted backward on its new, Keplerian barycentric orbit to a
point (normally, peribaryon), from where the further motion may
be followed using external perturbers. From now on, in this paper,
all orbital elements referred to are barycentric. But we will use the
more intuitive terms aphelion and perihelion instead of apobaryon
and peribaryon.

This model has the advantage of being very simple and fast,
since during the integration only the comet will affect the step size
of the integrator. It requires, however, two parameters (rC and rL),
which should be chosen properly. To this purpose, we have built
a synthetic sample of planetary perturbations, integrating comets
on initial, parabolic orbits using the restricted 6-body problem.
The initial inclination and argument of perihelion are taken equal
to 0�, 45�, 90�, 135� or 180�. For each set of values, one experiment
is made. The longitude of the ascending node is initially equal to
zero, and the perihelion distance is distributed over a regular grid
with 800 values between 0 and 80 AU. For each value of the peri-
helion distance, 104 different times of perihelion passage are
randomly chosen between 0 and 104 years. The time of perihelion
passage will thus essentially randomise the phases of the planets.
Each comet is initially placed at a barycentric distance equal to
103 AU.
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Keeping in mind that the initial orbital energy z = �1/a (of the
barycentric orbit) is zero for all the comets, while the integration
is performed, the barycentric distances rk at which the absolute
value of the orbital energy becomes greater than 10�k AU�1 are re-
corded individually, for k = 5, . . . , 8. For each initial perihelion dis-
tance, we may compute the mean, minimum and maximum of the
rk values obtained from the 104 initial orbits with different times of
perihelion passage.

In Fig. 1, those values of rk are plotted versus the initial perihe-
lion distance for initial inclination equal to zero. It can be seen that
the cumulative variations of barycentric orbital energy suffered
beyond r = 100 AU do not exceed 10�7 AU�1. We have checked that
this threshold is well obeyed for all the initial inclinations and
arguments of perihelia under study (an example for initial inclina-
tion i = 90� and initial argument of perihelion x = 45� is given in
Fig. 2). Consequently, we choose rL = 100 AU as the limiting dis-
tance from which our restricted 6-body problem will be integrated.

In order to choose rC, for each initial perihelion distance, inclina-
tion and argument of perihelion we consider the root mean square
r(Dz), the maximum (maxjDzj) and the 99th percentile (jDzj99) of
the 104 perturbations of orbital energy computed for the respective
values. Fig. 3 shows, for each initial inclination and for an initial

argument of perihelion equal to zero, the variations of r(Dz) (black
lines), maxjDzj (red1 lines), and jDzj99 (orange lines) with the initial
perihelion distance. In Fig. 4 we present the corresponding results
for x = 45�.

Even though comets with q > rC also suffer planetary perturba-
tions Dz, we aim to keep these below some practical minimum.
To this end we prescribe that, for q > rC, comets must be unlikely
to be ejected by planetary perturbations from the Oort Cloud in a
5 Gyr time span, i.e., that the random walk in orbital energy stays
within jzj on the average. Comets with orbital energy z will suffer
at most N = 5 � 109 � jzj3/2 planetary kicks in the approximation of
constant energy. Considering their perihelion distance to be fixed
during this time span, at each perihelion passage the typical size
of an energy change is equal to the value of r(Dz) relevant to the
perihelion distance, and for N perihelion passages, we expect the
total energy change to have a typical size of

ffiffiffiffi

N
p

rðDzÞ. Conse-
quently, our aim is to have rðDzÞ < jzj=

ffiffiffiffi

N
p

. For z = �10�3 AU�1

we get jzj=
ffiffiffiffi

N
p
� 2:5� 10�6 AU�1, and for z = �10�4 AU�1 we get

jzj=
ffiffiffiffi

N
p
� 1:4� 10�6 AU�1.

Alternatively, we may look at comets with semi-major axes in
the Oort spike, i.e., within a � 30,000–40,000 AU. These comets
have jzj � 25–30 � 10�6 AU�1. But they will not stay with the same
q for more than a few revolutions due to the effect of the tides and
passing stars. Hence, our requirement for these comets is for the
single-revolution sigma to be no larger than 10�6 AU�1. This
threshold is similar to the one found above for z = �10�4 AU�1, so
we will use the latter to determine rC.

The blue lines plotted in Figs. 3 and 4 correspond to this thresh-
old value. The worst case is obviously the one for i = 0�, and we see
that r(Dz) < 1.4 � 10�6 AU�1 for q > 50 AU, approximately. Inde-
pendent of the argument of perihelion, we verify that the same
condition applies. Consequently, rC = 50 AU is a threshold that
fulfils our requirement. Hereafter, the values rL = 100 AU and
rC = 50 AU will be used.

For comparison with previous work we note that Duncan et al.
(1987) took rL = 150 AU, and Kaib et al. (2011) used rL = 300 AU as
the map switching distance between RMVS (Levison and Duncan,
1994) and WH (Wisdom and Holman, 1991) in their new orbit
integration package.

3. Perturbation distributions

Let us now discuss Figs. 3 and 4, which use the synthetic pertur-
bation sample, in some more detail. For the smaller perihelion dis-
tances, where close encounters are possible, we see an interesting
behaviour. For q < 30 AU, the maximum and root-mean square
curves for coplanar orbits show an important amount of random
noise, and the patterns of this noise are similar for both curves.
Obviously, the root mean square value is dominated by the maxi-
mum perturbation in the corresponding interval. In fact, we see
that the root mean square is generally close to the 99th percentile
of the distribution for the sample size that we are using.

This behaviour reflects a situation, where nearly all the orbits
receive tiny perturbations in the absence of very close encounters
with the giant planets, while our samples tend to include one or
few very close encounters as well. The latter dominate the root
mean square by the sheer size of the perturbations, and since they
are very few, we are under-sampling this dominant subset of the
population.

A similar situation is seen in the non-coplanar cases, which ex-
hibit high peaks at particular perihelion distances, where close
encounters are possible. Also in these cases the height of the root

Fig. 1. Mean (black lines), minimum (lower bound of coloured areas) and
maximum (upper bound of coloured areas) values of rk (k = 5–8, see text for detail)
versus initial perihelion distance for initial inclination equal to zero. The red,
orange, yellow and green fields correspond to k = 8, 7, 6, 5, respectively. When fields
of different colours overlap, we display the colour of the lower field, so that the
upper bounds are always visible. The blue line corresponds to a barycentric distance
of 100 AU.

Fig. 2. Same as Fig. 1 for initial inclination i = 90� and initial argument of perihelion
x = 45�.

1 For interpretation of colour in Figs. 1–8 and 10–13, the reader is referred to the
web version of this article.
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mean square peak follows that of the maximum peak and is close
to the peak of the 99th percentile. We note in passing that, in Fig. 4,
the high peaks are not located strictly along the planetary semi-
major axes, but rather slightly below. This is because close encoun-
ters occur at the nodes of the cometary orbits. If x – 0� or 180�, the
perihelion is not located at a node, and consequently for such a
comet, close encounters with a planet may occur if the perihelion

is located somewhat inside the semi-major axis of the planet. This
value of the perihelion distance is independent of the inclination,
as can be seen on the figure. Moreover, a set of secondary peaks
is seen inside Jupiter’s orbit, and in these cases it is the distance
of the outer node that coincides with a planetary semi-major axis.

The problem of accurately modelling perturbations when very
close planetary encounters are possible is of course of crucial

Fig. 3. For different initial inclinations and an argument of perihelion equal to zero, the variations of r(Dz) (black lines), maxjDzj (red lines) and jDzj99 (orange lines) with the
initial perihelion distance are shown. The horizontal blue lines mark the value of 1.4 � 10�6 AU�1.

Fig. 4. Same as Fig. 3 for an argument of perihelion equal to 45�.
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importance in the study of the dynamics of comets, and has been
addressed in a number of papers. For example, in discussing the
dynamics of Jupiter family comets, Fouchard et al. (2003) found
that if the perturbation samples used to derive the statistical
features of the perturbation distribution are not large enough,
the results depend on the specific sample chosen – only beyond
a certain sample size do the statistics become independent of the
sample. This happens because, in the latter case, even the domain
of initial conditions leading to extreme perturbations (which are
the ones that determine the values of quantities like r and the larg-
est percentiles) is adequately represented in the sample.

Let us note here that the size of our synthetic sample, even
though very large, is not enough to probe the extremely large per-
turbations properly for all the giant planets. Therefore, we caution
the reader that the values of statistical parameters shown in the
graphs are not the same as one would get with a quasi-infinite
sample size. We will return to this point below, whenever a poten-
tial problem arises.

Some authors (e.g., Zhou et al., 2002) have suggested that the
statistical evolution of the cometary energy follows a Lévy random
walk; strictly speaking, this statement is not true, since it would
imply that the maximum energy perturbation imparted by a
planetary close encounter to a comet is unbounded, contrary to
the findings of Everhart (1969) (see also Carusi et al., 1990;
Valsecchi et al., 2000). As just said, it happens only for (practically)
limited sample sizes that the distribution of energy perturbations
behaves ‘‘as if’’ the process was a Lévy flight.

For coplanar orbits, prograde or retrograde, close encounters are
possible at any perihelion distance smaller than the semi-major
axis of the planet, and the statistics is dominated by these close
encounters. On the other hand, for q < 30 AU, and non-coplanar
orbits, close encounters with a giant planet are possible only for
one perihelion distance determined by the argument of perihelion.
This value is independent of the inclination, as shown by Figs. 3
and 4. Between the peaks seen in those close encounter regions,
long range perturbations dominate the dynamics. We note that
their effect decreases with perihelion distance and inclination. This
is particularly evident for q > 30 AU, where no close encounters are
possible at all.

In the rest of this paper we leave aside the synthetic sample dis-
cussed above. In particular, in Section 5 we will investigate, how
planetary perturbations alone affect a population of Oort Cloud
comets with perihelia inside the planetary region. For this purpose,
an initial sample of 106 comets is integrated considering only plan-
etary perturbations. The initial semi-major axis is 20,000 AU for all
the comets, the perihelion distances are uniformly distributed on
the interval [0,50 AU], the cosines of the ecliptic inclination are
uniformly distributed on [�1,1], and the other angles have a uni-
form distribution between 0� and 360�. The phases of the planets
are obtained from those at the present epoch by shifting to each
time of perihelion passage, when planetary perturbations should
be applied.

All the comets suffer at least one energy kick, since their initial
perihelion distances are smaller than rC. Considering the first kick
imparted to the comets, we thus have a sample of 106 planetary
perturbations distributed uniformly in perihelion distance q and
cosine of the inclination cos i.

Let us first compare our set of perturbations with previous stud-
ies. Using a sub-sample of 135,000 perturbations and removing the
case for which the comets enter the Hill sphere of any planet, we
are able to compute the mean standard deviation r(Dz) of the orbi-
tal energy using the same perihelion distance and inclination boxes
used by Fernández (1981). The results are shown in Fig. 5. The
agreement with the historical Fig. 1 of Fernández (1981) and
Fig. 1 of Duncan et al. (1987) is very satisfactory. One has to note
that the selection made on the perturbations by removing the close

encounters stabilises the behaviour of the standard deviation with
respect to the sample of comets used. Indeed, with 135,000 pertur-
bations, and even with 106 perturbations, the standard deviation
would otherwise be driven by the rare but strongest perturbations
coming from such encounters.

The second study one should compare with, is the distribution
function fit given by Everhart (1968) (his Eq. (12)) for the orbital
energy perturbations. In order to compare with this function, three
sets of perturbations were selected, containing all the comets, i.e.,
whatever is the inclination, with original perihelion distance be-
tween 1.04 and 2.08 AU for the first set, between 2.08 and
3.12 AU for the second, and between 3.12 and 4.16 AU for the third
set. The thresholds are used in order to use the parameters in-
volved in the function fit listed by Everhart (1968). Each sample
contains slightly more than 20,000 comets. Fig. 6 shows the distri-
bution of the perturbation of the normalised orbital energy
Z = z � aJ/MJ, where aJ and MJ are the semi-major axis and the mass
of Jupiter (in AU and solar masses) for the three sets and, for each
set, the two distribution function fits obtained for the bounding
values of the perihelion distance.

Our empirical distributions are well contained between the two
fits computed with the parameters for the lower (red curves) and
upper (blue curves) bounds for perturbations larger than 5 � 10�4

AU�1 in absolute value. For smaller perturbations, the agreement is
not as good, since our distributions always peak around zero,
whereas the function fits show a double-peaked feature symmetri-
cal with respect to zero (except for perihelion distance
q = 1.04 AU). The distributions obtained by Everhart (1968) also
had such a feature. These dips at zero are likely an artifact of the
procedure followed by Everhart, using in particular a shift
from heliocentric to barycentric orbits, and vice versa, at only
r ’ 20–35 AU.

Let us now consider our entire set of 106 perturbations. We split
the (q, cos i) plane into 50 � 20 cells of equal size. For each cell we
compute the root mean square r(Dz) of the orbital energy pertur-
bations, caused by the planets during the first perihelion passage of
the comets. The results are shown in Fig. 7. We observe that, con-
sidering highly inclined orbits, there is an increase of the typical

Fig. 5. Standard deviation of the perturbations of the orbital energy z, removing the
comets that enter a planet’s Hill sphere. Six different ranges of inclinations are used:
[0�,30�], . . . , [150�,180�] indicated by the colours red, orange, yellow, green, light
blue and blue, respectively.
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perturbation size for perihelion distances close to the semi-major
axes of the giant planets. This appears to reflect the fact that, for
such orbits, the range of the argument of perihelion that allows
close encounters is broader than otherwise. Consequently, the fig-
ure appears to be more ‘‘noisy’’ around the semi-major axes of the
planets, since r(Dz) is strongly affected by eventual close encoun-
ters with the planets. For perihelia outside Neptune’s orbit, the
perturbations range from 10�5 AU�1 to values smaller than
10�7 AU�1, being stronger for smaller inclinations and perihelion
distances.

The black level curve corresponding to 10�4 AU�1 (i.e., the
width of the Oort spike) goes from q � 13 AU for cos i � 1 to
q � 6 AU for cos i � �1. This is an indication that the inclination
independent threshold of 15 AU, usually defining the border of
the loss cone, may be overestimated. Finally, for perihelia inside
and near Jupiter’s orbit, we note that the planetary perturbations
are able to inject a large fraction of the comets into orbits with
semi-major axis smaller than 1000 AU (this corresponds to the
region enclosed by the white 10�3 AU�1 level curve) in a single
perihelion passage.

4. Opacity of the Solar System

Splitting the (q, cos i) domain into rectangular cells, we may
compute the fraction of comets in each cell that is lost from the

Oort Cloud after the first planetary kick. This leads to our definition
of the opacity factor P (the same as was called ‘transparency factor’
by Dybczyński (2005)). A comet may be considered as lost from
the Oort Cloud, if either its orbital energy becomes less than
�10�4 AU�1 (an ‘‘inward’’ transfer, for which the probability is
denoted Pin), or if it grows larger than �10�6 AU�1 (‘‘outward’’
transfer, which almost always means ejection from the Solar
System, for which the probability is denoted Pout). We thus have
P = Pin + Pout. Note that the thresholds for the size of planetary per-
turbations contributing to Pin and Pout are both approximately
equal to 5 � 10�5 AU�1.

In Fig. 8, we show the dependence of P, Pin and Pout first on the
perihelion distance, and then on the cosine of the inclination with-
in different ranges of q. We first note the nearly equal contribu-
tions of Pin and Pout to P, which result from the fact that all our
initial orbits are located in the middle of the Oort spike with
z = �5 � 10�5 AU�1. Concerning the variation with perihelion dis-
tance, P decreases smoothly from a maximum at about 95% near
q = 0 toward zero near Uranus’ orbit (there are two maxima at
1.5% and 1% – too slight to be seen in the figure – near the Uranus
and Neptune semi-major axes, respectively).

P is smaller than 27% for perihelion distance greater than 10 AU.
Recalling that the loss cone concept is applied using P = 1 (all the
comets are removed from the Oort Cloud) for q < 15 AU (some-
times 10 AU is used instead) and P = 0 (no comets are removed)
for q > 15 AU, the behaviour of P found here demonstrates how
far this usage is from reality. As regards the dependence on the
cosine of the inclination, clearly P is smaller for retrograde orbits
than for prograde ones in any range of perihelion distance. For
q > 8 AU, the asymmetry between prograde and retrograde orbits
is very strong with P decreasing toward zero when cos i tends to
�1.

A global picture of the behaviour of P in the (q, cos i) plane is
shown in Fig. 9. Again, the smooth variation of P with respect to
both q and i is evident.

Returning to the loss cone problem, this primarily arises from
replacing a continuously decreasing function P(q) by a step func-
tion. The assumption of P = 0 for q > 15 AU is well verified, but
using P = 1 in the q interval from 10 to 15 AU is a poor approxima-
tion, since we find that it decreases from 27% to nearly zero, and
moreover, it is strongly inclination dependent. Very large values
of P are found only for q < 5 AU (commonly identified with obser-
vable comets).

Fig. 6. Distributions of the perturbation of Z for three different sets of perturbations (see text for details). The red and blue curves correspond to the distribution functions
given by Eq. (12) of Everhart (1968) using the lower (resp. higher) bound of the perihelion distance interval.

Fig. 7. RMS value of Dz, displayed by colour coding, versus the initial (q, cos i). The
log-scale used for the colour coding is shown on the right. The level curves for
r(Dz) = 10�4 and 10�3 AU�1 are also shown (black and white lines, respectively).
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In Fig. 10 we show the distribution of original orbital energy for
observed Oort spike comets according to the class 1 (A and B) com-
ets listed by Marsden and Williams (2008), augmented by recent
orbit determinations taken from IAU/MPC Minor Planet Electronic
Circulars until 2011. All these orbits are determined without
accounting for non-gravitational forces, and all perihelion dis-
tances are considered. The histogram is separated into three sub-
groups denoted by different colours: the comets perturbed into
future orbits with positive energies (red area), those captured
inside the spike (green area) and those remaining (white area).

The latter represents about 11% of the total, thus corresponding
to hPi = 0.89 in good agreement with our above results.

Note that Dybczyński and Królikowska (2011) mentioned that
their comet sample showed a remarkably small mean energy per-
turbation, but they argued that this could be due to a preference for
large inclinations. In the case of (Królikowska and Dybczyński,
2010), 4–5 out of their 26 Oort spike comets were found to stay
in the spike with their future orbits. While this would yield a smal-
ler hPi than derived from Fig. 10, we caution that their numbers are
small, and the inclinations might be non-randomly distributed.

5. Long term evolution

Let us now investigate how the sample of comets defined in
Section 3 evolves dynamically under planetary perturbations
only.2 We use this sample for initial conditions, and we perform
long-term integrations in a quasi-deterministic manner by comput-
ing each subsequent planetary perturbation using the time-
dependent phasing of the planets, as mentioned in Section 3. For
the display of results, we split the ranges of orbital energy, perihe-
lion distance and cosine of inclination into equal intervals, thus cre-
ating, respectively, 40, 50 and 20 bins within the ranges
[�10�6 AU�1,�10�3 AU�1], [0,50 AU] and [�1,1]. For each perihe-
lion passage, we consider the comets according to the inbound

Fig. 8. Behaviour of P (black lines), Pin (green lines) and Pout (red lines) versus the initial perihelion distance (top), and below this, versus the cosine of the ecliptic inclination
for three different ranges of perihelion distance: q < 8 AU, 8 < q < 15 AU, and q > 15 AU (top to bottom). Note that the P scale of the lowest panel is different from the others.

Fig. 9. The opacity factor P (in percent) versus the initial (q, cos i), displayed as a
contour plot.

2 In a previous paper (Rickman et al., 2001) we studied, using a somewhat different
dynamical model, the first step of the inward evolution of Oort Cloud comets; both
the purpose and the methods of that investigation are different from the present one.
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values of their orbital parameters, i.e., analogous to the original
orbital elements of observed long-period comets.

Let npp be the sequential number of a certain perihelion passage,
regardless of which comet is considered. Our results will be
displayed for nine different values of npp. First we will show the
number of comets in each 2D cell, defined by the above-mentioned
bins, by considering the bivariate distributions of �1/a and cos i
versus q. Since the individual comets of our integrations follow dif-
ferent random-walk patterns of orbital energy evolution, their
orbital periods also evolve differently. Consequently, for different
comets at the same npp, their elapsed times will differ. In order
to keep track of this, we compute the average of the elapsed times
hti in each cell. In addition, for any given npp, we compute the crit-
ical semi-major axis alim = (5 Gyr)/npp)2/3, for which hti = 5 Gyr on
the assumption of constant semi-major axis. Obviously, comets
remaining in the sample at this npp must have had on average
smaller values of their semi-major axes.

We also investigate how the comets reach the end of their inte-
grations. Three end states may occur: the ‘‘decoupled’’ end state,3

for which z becomes smaller than �10�3 AU�1, the ‘‘ejected’’ end
state, for which z becomes larger than �10�6 AU�1, and the ‘‘frozen’’
end state, for which the comet has experienced its last planetary per-
turbation during the 5 Gyr integration. At each npp, the cumulative
numbers, Nd, Ne and Nf, respectively, of comets having reached each
end state are counted. Comets with perihelion close to the upper
limit rC = 50 AU will not be considered for the frozen end state.
Indeed, a tiny diffusion in perihelion distance may lead a comet
beyond this limit with no chance of return since no planetary pertur-
bations will be applied anymore. But this is an artifact of our model
and concerns very few comets per perihelion passage.

The results are shown in Figs. 11–13, for npp = 2, 10, 80 (Fig. 11),
npp = 1000, 2000, 6000 (Fig. 12) and npp = 15,000, 30,000, 50,000
(Fig. 13). The graphs are arranged in columns, each corresponding
to one value of npp. The two top panels show the number of survi-
vors Ns in each cell of the (q,�1/a) and (q, cos i) planes. The remain-
ing ones show the distributions of Nf, Ne and Nd over the (q, cos i)
plane.

5.1. Initial evolution

During the first interval shown in Fig. 11, the dynamics mainly
features the direct injection or ejection of the comets due to rela-
tively large energy kicks. In particular, for npp = 2 the comets have
suffered only one previous kick from the initial energy, which is
�5 � 10�5 AU�1 in all cases. For perihelia inside Saturn’s orbit,
the orbital energy already spreads all across the available range
with a significant number of comets having reached the decoupled
end state and a much larger one having reached the ejected end
state. A considerable spread of orbital energy is also seen from
the very beginning for perihelia in the range near Uranus’ and
Neptune’s orbits. This feature gets more pronounced between
npp = 2 and 10. Remarkably enough, the region with perihelia in-
side Jupiter’s orbit still contains many comets even at npp = 10.
Only the region with small inclination has then been almost com-
pletely emptied. The very few comets that initially reach the frozen
end state have perihelion distances very close to 50 AU, where rC is
located. This is caused by slight planetary kicks that shift the peri-
helion distance just above rC, such that the comets are no more
affected by planetary perturbations until the end of the integration.

When npp = 80, the region inside Jupiter’s orbit is essentially
emptied with just some tens of comets remaining with moderate

semi-major axes (typically, less than 10,000 AU) and large inclina-
tions. There are still thousands of comets with perihelia between
Jupiter and Saturn with a clear preference for large inclinations.
We also start to see a diffusion in orbital energy, caused by many
small-step perturbations, taking place at perihelion distances
larger than 30 AU.

5.2. Intermediate evolution

For npp = 1000, 2000 and 6000, as shown in Fig. 12, the region
inside Saturn’s orbit is essentially emptied (except for a few tens
of comets at npp = 1000 with inclinations around 110–130�). On
this longer time scale, we mainly see a diffusion process operating
in orbital energy rather than the strong kicks due to close encoun-
ters. The concentrations previously observed along the semi-major
axes of Uranus and Neptune have now disappeared. For npp = 1000,
the diffusion reaches a = 1000 AU (decoupled end state) for perihe-
lia inside Neptune’s orbit. Moreover, we see from the distribution
of decoupled end states that this preferentially concerns comets
with small inclinations. For large perihelion distances, many com-
ets have reached the frozen end state with a major contribution
around q = 40 AU and inclinations around 120�.

Indeed, the 1, 2 and 3 Gyr level curves of hti now start to be seen
in the Ns(q, cos i) diagram (this was not the case before). We see
that the surviving comets get dynamically older in terms of elapsed
time with increasing perihelion distance and inclination. This is the
general trend, although small local variations are also seen.

At npp = 2000, alim = 18,400 is smaller than the initial semi-ma-
jor axis (we recall that initially the semi-major axes were all equal
to 20,000 AU), and we observe that a large number of comets with
q > 40 AU and large inclination have reached the frozen end state.
At npp = 6000 this region is getting fully depleted, with all the com-
ets absorbed by the frozen end state. We also note an accumulation
of comets reaching this end state with perihelia between Uranus
and Neptune and large inclinations. This is consistent with the long
time needed to have a significant diffusion in semi-major axis for
such orbits. Thousands of comets still remain in the region be-
tween Saturn and Uranus. Finally, while there is very little change
in Ne during this interval, we note that Nd increases significantly.

5.3. Terminal evolution

For the third period, i.e., for npp = 15,000, 30,000 and 50,000
shown in Fig. 13, the distributions are shaped by a subtle balance

Fig. 10. Distribution of �1/ao for Oort spike comets (black line). The coloured areas
indicate the number of comets with future orbital energy smaller than �10�4 AU�1

(green area) or larger than zero (red area). The white area shows the comets that
remain in the Oort spike.

3 The word decoupled refers to the fact that such comets would no longer feel the
external perturbations caused by Galactic tides and stellar encounters, even if those
had been included. We disregard the possibility for them to return into the considered
energy range by further planetary perturbations.
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between diffusion time, related to the strength of the perturba-
tions, and the limited maximal time of integration.

For npp = 15,000, almost all the comets with perihelia inside
Uranus’ orbit have reached an end state (only a few hundred with
high inclination still remain). The diffusion time is short enough in
this region for the comets to avoid the frozen end state (except
again at large inclination), thus having ended in the decoupled or
ejected (preferred) state.

The main feature seen during this period is the loss of almost all
the remaining survivors, leaving very few with perihelion dis-
tances generally larger than 40 AU. Since the majority of the initial
comets had already been lost during earlier stages (essentially to
the ejected or frozen end states, depending on the initial values
of q and cos i), we cannot note any large changes of Nf or Ne. But
we do see an important increase in the number of decoupled com-
ets with perihelia beyond Uranus’ orbit.

A priori, it may seem curious that the decoupled end state has
now gained in importance relative to the ejections. We noted the
same feature also for the intermediate stage of evolution. The
explanation is that all the comets are started with a = 20,000 AU
in dangerous vicinity of the ejection limit but relatively far from
that of decoupling in terms of energy. This is why most comets
in planet-crossing orbits end relatively early by ejection, but the
situation changes, when we consider the long-term survivors. In

order to escape the frozen end state, these must evolve into orbits
of relatively small semi-major axis, and hence they are at least as
likely to be decoupled as to get ejected.

The last remarkable feature to comment upon is that not all
comets with initial q > 40 AU reach the frozen end state. It is true
that no close encounters occur for q > 40 AU, and the long-range
energy perturbations are very small, as seen in Figs. 3 and 4, but
they are different from zero. Thus, over Gyr time scales, by random
walk, the energy may actually reach both the ejection and decou-
pling limits. For the reason discussed above, ejections occur first
and decouplings come later for the non-frozen survivors.

6. Discussion and conclusions

We have applied a simple dynamical model of planetary pertur-
bations, neglecting the orbital eccentricities and inclinations and
the mutual perturbations among the giant planets as well as all
contributions by the terrestrial planets. The justification for this
is that, when simulating the effects on Oort Cloud or long-period
comets, we are only interested in a statistical description that is
correct to first order. Modelling detailed, individual outcomes is
of no concern to us. On the other hand, capturing the main features
of the probability distributions for planetary perturbations and

Fig. 11. The first row of colour diagrams gives the number of surviving comets Ns in each cell of the (q,�1/a) plane, and the second row shows the same for the (q, cos i) plane.
The grey side histograms give the marginal distributions of q (top) and �1/a or cos i (right- hand-side plots). The black line on the top plot gives the initial cumulative number
versus q. The black line to the right of the second plot gives the initial cumulative number versus cos i. The three last rows of colour diagrams give the cumulative numbers, Nf,
Ne and Nd, respectively, of comets in each end state. The colour log scale (common to all panels) is indicated at the bottom of each column. From left to right, the columns
correspond to the 2nd, 10th and 80th perihelion passage (indicated at the upper left of each column). The critical semi-major axis alim is given at the upper right of each
column.
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their variation with orbital elements is of essence, and our model is
good enough for this purpose. A related remark concerns the prob-
lem noted above regarding undersampling of the extreme tails of
the perturbation distributions. In our long-term simulations this
means that we treat only the close encounters with planets that
our sample comets experience, but we treat them accurately. Since
our sample is naturally much smaller than the Oort Cloud popula-
tion of the real Solar System, it is a trivial consequence that our
simulation does not capture the extremely large and extremely
rare perturbations in a statistically accurate way. However, this
is an unavoidable feature of all Monte Carlo simulations and does
not pose a real problem.

We made a special study of what happens to new Oort Cloud
comets as they make their first passage through the planetary sys-
tem by giving them initial orbits in the middle of the Oort spike
(ao = 20,000 AU). Averaged over a uniform distribution of cos i, we
found a chance for such comets to leave the energy range of the
spike that decreases from 95% at q ? 0 to �80% at q = 5 AU and
�30% at q = 10 AU. At q = 15 AU the chance has practically dropped
to zero. There is hence little sense in modelling planetary energy
perturbations by a loss cone that is completely opaque for
q < 15 AU, as has often been done in the past. It has already been
made clear, for instance by Kaib and Quinn (2009), that important
aspects of comet injection are missed, if this kind of opacity is
assumed, and our present results bring quantitative evidence that
such must be the case. In our next paper we will discuss more
deeply the role of planets in comet injection. For that purpose,

our present results showing a general decrease of opacity with
inclination are of special interest.

Concerning the results of long-term simulations that we pre-
sented in Section 5, special care is needed for a proper interpreta-
tion due to the limitations of the model used. First, while the
ejected end state in fact marks the end of the existence of such
comets in the Solar System, the situation is different for the decou-
pled end state. The comets that evolve into a < 1000 AU will
continue to exist in orbits of shorter periods and may even return
into the energy range covered by our simulation, but we do not
retain any information about these events. We may say that the
remaining dynamical lifetimes of decoupled comets with
q < 10 AU are relatively short due to the large energy perturbations
experienced by such comets, in agreement with the short time
scale for getting decoupled in this range of perihelion distance. In
reality this concerns objects that evolve into old long-period and
Halley-type comets. We intend to study this evolution in future
papers, including both the planetary perturbations and physical
lifetime effects.

The (q, cos i) diagrams give the impression that such comets will
have a preference for prograde orbits, as is in fact observed for the
Halley types, but this impression is false. In fact, the steady state
inclination distribution will have to include also the lifetimes,
which we are here neglecting, and this gives more weight to the
retrograde members. The situation is similar, although the time
scale is much longer, for perihelia between the orbits of Saturn
and Neptune. In this case, some of the objects may evolve into

Fig. 12. Same as Fig. 11 for npp = 1000, 2000 and 6000. In the first row of colour diagrams, the horizontal black line marks the value of alim. The averaged elapsed time level
curves are shown in the second row for hti equal to 1, 2 and 3 Gyr (light grey, dark grey and black lines, respectively).
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Centaur orbits, which according to our results would have a very
broad inclination distribution. This agrees with the conclusions
from numerical experiments by Brasser et al. (2012).

Another important point to note is that the simulations we are
here presenting neglect the influence of external perturbers, i.e.,
Galactic tides and stellar encounters. These would add a significant
spread in perihelion distance in the energy range of z > �10�4 AU�1

and a slower migration at smaller values of z. We will model this in
our next paper, but let us make some preliminary comments at this
point. New comets with q > 10 AU are likely to stay within the Oort
spike energy range for several revolutions at least, but contrary to
our simulation, their perihelion distances will change significantly.
Therefore, the slow energy diffusion at q > 40 AU will not occur in
the way we simulated. On the other hand, we may expect an inter-
play between the slow diffusions in orbital energy and perihelion
distance to occur for orbits with semi-major axes of a few thousand
AU and perihelion distances larger than 20 AU.

This interplay may feed a population with perihelia beyond
Neptune and semi-major axes much smaller than those of new
comets. Over Gyr time scales, the evolution found in our present
simulation may occur, leading to decoupled objects with large
perihelion distances (40–50 AU). Given that the Oort Cloud is prob-
ably a very old structure, the present Solar System may thus con-
tain such a population. It would appear somewhat like the
detached scattered disc but be characterised by larger semi-major
axes and a fairly isotropic distribution of orbital planes. It would
not have any direct connection with the scattered disc but result
from the long-term dynamics of usual Oort Cloud comets.

In conclusion, this paper has introduced a model of planetary
perturbations on long-period comets with applications to long-
term simulations of the dynamics of the Oort Cloud, which will
be described in forthcoming papers. In addition, a major result
concerns the transparency of the loss cone and leakiness of the
Jupiter–Saturn barrier, which is here systematically demonstrated
and quantified for the first time. From simulations of long-term
orbital evolutions of injected comets without including external
perturbations, we present evidence on how long such comets will
linger in the vicinity of the Oort spike, when their perihelia are be-
yond Saturn’s orbit, and we tentatively identify a mechanism to
store Oort Cloud comets, arriving with perihelia beyond Neptune,
into quasi-decoupled orbits with a � 1000 AU.
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Chapitre 3

Résultats

3.1 Synergie entre les perturbations stellaires

et les marées galactiques

3.1.1 Synergie à long terme

Dans un premier temps le modèle dynamique a été utilisé uniquement avec
les marées galactiques et les perturbations stellaires. On a ainsi pu mettre
en évidence une synergie entre les perturbations stellaires et les effets des
marées, de sorte que le flux de comètes observables avec un modèle incluant
les deux effets est supérieur à la somme des flux obtenus avec deux modèles
prenant en compte seulement un des deux effets.

Dans Rickman et al. (2008), inclus ci-après, cette synergie est clairement
mise en évidence. Plus précisément deux types de synergie sont identifiés : (i)
une synergie à long terme, c’est-à-dire agissant sur des échelles de temps de
l’ordre de la période des oscillations de l’excentricité induites par les marées,
(ii) et une synergie à court terme agissant pendant la dernière période or-
bitale de la comète avant de devenir observable. En outre, on a pu montrer
qu’on ne peut pas se reposer sur la distribution des éléments orbitaux des
comètes observées pour rejeter l’hypothèse qu’on subit actuellement une pluie
cométaire modérée.

Une étude détaillée de la synergie à long terme est effectuée dans Fouchard
et al. (2011a) (article inséré ci-après). Les marées galactiques sont un pro-
cessus quasi-intégrable, donc les régions du nuage d’où les comètes peuvent
devenir observables sous l’effet des marées galactiques (régions appelées TAZ,
pour Tidal Active Zone) sont relativement bien cloisonnées. Ainsi, lorsque
le temps s’écoule, les comètes de ces régions devenant observables en sont
éjectées, de telle sorte que ces régions ont tendance à se vider et le flux
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de comètes observables à se tarir. La présence des perturbations stellaires
change drastiquement cette image puisque les frontières de la TAZ devien-
nent perméables et de nouvelles comètes peuvent y être injectées grâce aux
étoiles. On a pu mettre en évidence qu’une seule et unique étoile pouvait
ainsi générer une augmentation du flux de comètes observables de 20 à 30%
pendant plusieurs centaines de millions d’années. Ce qu’on a appelé “bruine
cométaire”.
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with both small and large semi-major axes. We propose different dynamical mechanisms to
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1 Introduction

When analysing the distribution of original inverse semi-major axes of long-period comets,
Oort (1950) concluded that the near-parabolic spike of this distribution reveals a distant res-
ervoir of comets (the ‘Oort Cloud’). His favoured mechanism of injection of comets from
this reservoir into observable orbits (i.e., with small perihelion distances) was the passage of
stars in the vicinity of the reservoir, whereby the long-term reshuffling of angular momenta
would ensure a continuous infeed into the innermost part of the Solar System.

Until the 1980s stellar perturbation was the only mechanism considered when issues con-
cerning the injection of comets from the Oort Cloud were discussed (e.g., Rickman 1976;
Weissman 1979; Fernández 1980; Hills 1981; Remy and Mignard 1985). However, by that
time it became clear that the tidal action of the Galaxy as a whole must also have an important
influence—especially the part corresponding to the z-dependent disk potential (Heisler and
Tremaine 1986). This was verified by noting that the Galactic latitudes of perihelia of new
Oort Cloud comets have a double-peaked distribution that is characteristic of the disk tide
(Delsemme 1987).

An important paper by Duncan et al. (1987) treated the formation of the Oort Cloud and
showed that the characteristic time scale for changing the perihelion distances, independent
of the semi-major axis, is shorter for the Galactic disk tide than for the stellar perturbations.
This has been verified by later analytic work, e.g., by Fernández (2005), and further numer-
ical simulations of Oort Cloud evolution (e.g., Heisler et al. 1987) have given support to the
dominance of Galactic tides for comet injection.

Consequently, stellar perturbations have come to be practically neglected as a source of
comet injection—except when discussing “comet showers” (Hills 1981) arising from rare
stellar passages through the dense, inner parts of the Oort Cloud. The importance of stellar
perturbations for randomizing the orbital distribution of the Oort Cloud and thus keeping
the relevant infeed trajectories of the disk tide populated over long time scales has been
realized (see Dybczyński 2002 and references therein), but the actual injection is often seen
as due only to the tide. Hence it should be limited to semi-major axes large enough for the
tidal perturbation to bring the cometary perihelion at once from outside the “Jupiter–Saturn
barrier” (i.e., perihelion distance q >∼ 15 AU) into the observable region (q < 5 AU). The
result is that one expects new comets to have aori >∼ 3 × 104 AU (Bailey and Stagg 1988;
Levison et al. 2001; Fernández 2005).

On the other hand, some recent papers indicate that this picture may have problems.
The fractional population of the observable region—if fed only by Galactic tides—is small
enough, and the orbital periods long enough, that the estimated total population of the Oort
Cloud may be uncomfortably large (Charnoz and Morbidelli 2007). And in addition, when
non-gravitational effects are included into orbit determinations for new Oort Cloud comets
(Królikowska 2006), the resulting original orbits tend to be of shorter periods, having smaller
semi-major axes—often much smaller than 3 × 104 AU.

Meanwhile, we have developed fast and accurate methods to treat both the Galactic tides
(Breiter et al. 2007; Fouchard et al. 2007) and stellar perturbations (Rickman et al. 2005)
in Monte Carlo simulations of Oort Cloud dynamics. This has allowed us to perform cal-
culations, to be presented here, where the cloud is represented by as many as 106 sample
comets and integrated over a time exceeding the age of the Solar System. This amounts to
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Injection of Oort Cloud comets 113

5 × 1015 comet-years of individual evolutions (or only slightly smaller due to the loss of
comets during the simulation), which is much more than in all previous long-term Oort Cloud
simulations—e.g., 3 × 1013 comet-years for Duncan et al. (1987), 4 × 1014 comet-years for
Mazeeva (2006), and ∼4 × 1013 comet-years for Emel’yanenko et al. (2007) who used clon-
ing. Heisler (1990) simulated �7 × 1015 comet-years but only thanks to extensive cloning
during the course of the simulation. In fact her long-term simulations (4.5 Gyr) concerned
only �104 “tokens”, i.e., comets actually followed, while these were meant to represent
�150 times as many comets by means of cloning.

Our work is the first to study the mechanism of injection of comets from the Oort Cloud over
the age of the Solar System by simulating and comparing different dynamical models. The rea-
son why models involving both the Galactic tide and stellar perturbations gave a much higher
flux of injected comets than those involving only stars (Heisler et al. 1987; Heisler 1990) was
never clarified, since comparisons with models involving only the tide were not made. In the
present paper we concentrate on a comprehensive comparison of combined and separate mod-
els, thus describing and analysing for the first time the synergy effect of Galactic tide and stars.

We also take special care to define correctly the encounter velocities in our sample of pass-
ing stars, thereby arriving at somewhat larger values than those used previously. Finally, we
study the relative filling of the observable part of the loss cone and the distribution of inverse
semi-major axes of the injected comets. These studies are, however, only preliminary, since
our current simulations do not include planetary perturbations, and thus we cannot account
for those comets that arrive into the observable region after having “diffused” across the
Jupiter–Saturn barrier in several revolutions.

Our calculations are presented in Sect. 2, and in Sects. 3–5 we describe our results in
terms of the distribution of injection times into the inner planetary system, the flux of new,
observable comets as a function of time, and the distributions of inverse semi-major axis and
Galactic latitude of perihelion as well as loss cone filling at representative epochs. In Sect. 6
we discuss the results and summarize our conclusions.

2 Calculations

As a simplifying assumption, we consider the Oort Cloud to have been formed instanta-
neously at a given epoch, and that its orbital distribution was isotropic to begin with. Thus
the initial conditions are chosen with flat distributions of cos io, ωo, �o and Mo (we use
common notations for the orbital elements, and the angles may be defined with respect to an
arbitrary frame of reference). We consider a thermalized initial state of the cloud, where the
semi-major axes (ao) are chosen in the interval 3×103 < ao < 1×105 AU with a probability
density ∝ a−1.5

o (Duncan et al. 1987). The initial eccentricities (eo) are chosen with a density
function ∝ eo in such a way that the perihelia are outside the planetary system (q > 32 AU).
We thus initialise 1 × 106 comets.

The Galactic parameters used for calculating the tidal effects are the same as described
in earlier papers (Fouchard et al. 2007). The most important one for comparison with other
investigations is the mid-plane disk density, which we take as 0.1 M�pc−3 (Holmberg and
Flynn 2000). This is in agreement with Emel’yanenko et al. (2007), while Heisler (1990)
used 0.18 M�pc−3 (Bahcall 1984).

The simulation runs with a predefined set of 197,906 stellar encounters, occurring at
random times during a lapse of tmax = 5 × 109 years, with random solar impact parameters
up to dmax = 4 × 105 AU, and with random stellar masses and velocities. Our procedure for
creating each of these encounters is as follows. Let ξ denote a stochastic, random number
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Table 1 Stellar parameters

Type Mass (M�) Enc. freq. v� (km/s) σ∗ (km/s) 〈V 〉 (km/s) σV (km/s)

B0 9 0.005 18.6 14.7 24.6 6.7
A0 3.2 0.03 17.1 19.7 27.5 9.3
A5 2.1 0.04 13.7 23.7 29.3 10.4
F0 1.7 0.15 17.1 29.1 36.5 12.6
F5 1.3 0.08 17.1 36.2 43.6 15.6
G0 1.1 0.22 26.4 37.4 49.8 17.1
G5 0.93 0.35 23.9 39.2 49.6 17.9
K0 0.78 0.34 19.8 34.1 42.6 15.0
K5 0.69 0.85 25.0 43.4 54.3 19.2
M0 0.47 1.29 17.3 42.7 50.0 18.0
M5 0.21 6.39 23.3 41.8 51.8 18.3
wd 0.9 0.72 38.3 63.4 80.2 28.2
gi 4 0.06 21.0 41.0 49.7 17.5

The types are mostly MK types for main sequence stars; ‘wd’ indicates white dwarfs, and ‘gi’ indicates giant
stars. The encounter frequencies are given in number per Myr within 1 pc. The following two columns list the
solar apex velocity with respect to the corresponding type, and the spherical Maxwellian velocity dispersion.
The last two columns give the mean heliocentric encounter velocity and its standard deviation according to
our results

with a uniform probability distribution on the interval [0, 1]. The solar impact parameter is
chosen as d = ξ

1/2
d × dmax , and the time of the encounter (specifically, the time of the star’s

perihelion passage) is t = ξt × tmax . The direction of stellar motion with respect to the Sun
is defined in terms of Galactic latitude and longitude (b, �) such that sin b = 2ξb − 1 and
� = ξ� ×2π , i.e., it has an isotropic distribution. The point at which the initial stellar velocity
cuts the orthogonal impact plane is situated on a circle of radius d around the Sun, and its
location is defined by an azimuthal angle (a) such that a = ξa × 2π .

Next we choose the type of the star. We use 13 categories as in Rickman et al. (2004) with
parameters listed in Table 1. To each category we associate one value of the stellar mass.
These masses are generally taken as those of the archetypal spectral classes along the main
sequence according to Allen (1985). However, in contrast to our earlier investigations, we
replace the archetypal mass of 18 M� for B0 stars by a weighted average of 9 M�, consider-
ing that the less massive, later types (B2, B5) are much more common than the earlier ones.
The relative encounter frequencies fi of Table 1 are taken from García-Sánchez et al. (2001),
where they were derived from the respective products of number density and mean velocity,
ni 〈vi 〉. A random number ξi is used to pick a stellar category i with the probability fi/

∑
fi .

Finally, we choose the speed of the stellar motion in the following way. The velocity
dispersions (σ∗i ) listed in Table 1 are taken from García-Sánchez et al. (2001), and they
correspond to the semi-axes of the velocity ellipsoids (σui , σvi , σwi ) listed by Mihalas and
Binney (1981) using: σ 2∗i = σ 2

ui + σ 2
vi + σ 2

wi . For the peculiar velocity (v∗) of a star with
respect to its LSR, we use a spherical Maxwellian by taking ηu , ηv and ηw as three random
numbers, each with a Gaussian probability distribution with expectance 0 and variance 1,

and computing v∗ = σ∗i
{
(η2

u + η2
v + η2

w)/3
}1/2

. The star’s heliocentric velocity is found
by combining the vector v∗ with the Sun’s peculiar velocity with respect to the star’s LSR
(“apex velocity”) v�, whose absolute value is listed in Table 1 for each stellar category. We
assume a random relative orientation of the two vectors and thus compute:

V = {
v2�i + v2∗ − 2v�iv∗ · C

}1/2
(1)

where C = cos θ is taken as C = 2ξC − 1, and θ is the angle between the two vectors.
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Within each stellar category we have to account for the fact that the contribution to the
encounter flux is proportional to V . Thus we define a constant, large velocity V0i = v�i +3σ∗i

for each category, such that V is always smaller than V0i , and we take a new random number
ξV and keep the value just found for V , if ξV < V/V0i . Otherwise we repeat the computation
of V until the ξV condition is fulfilled. This procedure was not followed in our previous inves-
tigations, leading to underestimates of the average stellar velocities. Further underestimates
were caused by programming errors, and we caution the reader that the stellar velocities in
Rickman et al. (2004, 2005) were systematically too small. This is clearly seen by compar-
ing Fig. 1 of Rickman et al. (2005) with the data in Table 1, which yield a mean velocity of
53 km/s with a dispersion of �20 km/s.

A few comments on the mean stellar encounter velocity are in order. The average peculiar
velocity of stars in the solar neighbourhood is �40 km/s. This value was given by Hut and
Tremaine (1985), and combining it in quadrature with a typical solar apex velocity of 23 km/s
for the most common stellar categories (Table 1), one gets a mean heliocentric velocity of
�46 km/s. Heisler et al. (1987) were the first to introduce the flux-weighting into the selection
of random velocities, but they neglected the solar apex velocity. In fact, their flux-weighting
was somewhat different from ours, because they considered only one of the three velocity
components, namely, the radial heliocentric velocity. But the encounter flux is sensitive to
the velocity with respect to the impact plane, i.e., the full speed of the star, instead of just the
radial component. We have found that this difference has only a small effect on the resulting
mean velocity, but we mention it for the sake of completeness. In both cases, we find that the
weighting raises the mean velocity by 6–7 km/s. This explains our mean velocity of 53 km/s
as resulting from including both the solar motion and the flux-weighting procedure. Finally,
let us compare with the mean encounter velocity of �46 km/s in García-Sánchez et al. (2001).
This resulted from a list of 92 stellar encounters within 5 pc and 1 Myr of the present, com-
piled with the aid of Hipparcos data, but the authors showed that there was a serious bias
against faint absolute magnitudes in this sample, affecting all stars with MV > 4. Thus, the
stars with the highest velocities were essentially lacking, and the resulting mean velocity is
that of the inherently brighter, slower moving stars.

Comparing with other investigators, we note that both Heisler (1990); Mazeeva (2006)
and Emel’yanenko et al. (2007) based their stellar encounter frequencies on the analysis
by Heisler et al. (1987), who ignored the solar motion—thereby underestimating the rela-
tive frequency of encounters with massive stars that have small velocity dispersions—and
neglected the contribution of the massive giants. Our encounter sample contains as much
as 3.5% of massive stars, i.e., the B0, A0, A5, F0, F5 and ‘gi’ categories in Table 1 with
an average mass of 2.3 M�, while counting the stars in the absolute magnitude range that
corresponds to this average mass in Heisler et al. (1987), one arrives at <1% of the total
encounter frequency. Since the massive stars have an average M/V ratio ∼10 times larger
than the red dwarf stars that dominate the sample, each such star will affect ∼100 times as
many comets. Hence one easily realizes that in our case a large fraction of the total stellar
effect comes from the massive star category that is downplayed by the other investigators.
This, to some extent, compensates for two other effects that make the stellar perturbations
less efficient in our simulation. One is the larger encounter velocities, as already described,
and the other is the total encounter frequency within 1 pc, which in our case is 10.5 per Myr,
while for the others it is 13.1 per Myr.

Our calculations of the heliocentric impulse imparted to the comet (at time t) are done
using the Sequential Impulse Approximation, which guarantees a good accuracy at a low
cost of computing time (Rickman et al. 2005). During the simulation we keep track of all the
perihelion passages with their q values. At each perihelion a decision is taken about which
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Fig. 1 Injection time versus initial semi-major axis. The semi-major axis range is split into 10 equal intervals
of log a. For each interval we plot different statistical parameters characterizing the distribution of injection
times, as explained in the text. The dotted line labelled Tg corresponds to the tidal torquing time shown in
Fig. 2 of Duncan et al. (1987), Ts to the corresponding stellar torquing time, and Tr to the period of (q, iG )
oscillation imposed by the vertical tide. The top panel (a) compares the model with only tides to the one with
only stars, and the grey dots are individual stellar injections. In the bottom panel (b) the stars-only model is
replaced by the combined model

method to use for the Galactic tide perturbation during the coming orbital period. The fastest
method is a mapping (Breiter et al. 2007) that analytically computes the orbital elements at
the subsequent perihelion, but this is used only for elliptic orbits with semi-major axis less
than a critical value that depends on the eccentricity (Fouchard et al. 2007). Otherwise we use
numerical integration with a symplectic integrator for KS-regularized equations of motion
(Laskar and Robutel 2001) in case 1/a > 10−5 AU−1 and the 15th order RADAU integrator
(Everhart 1985) for 1/a < 10−5 AU−1.
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During the orbital period in question, normally, several stellar passages occur. On those
occasions the osculating cometary orbit is subject to an instantaneous impulse. In the numer-
ical integration regime for the Galactic tide, one always comes back to perihelion. But in
the mapping regime, when the starting orbital period has elapsed, the comet may not be at
perihelion because of the intervening stellar perturbations, and we then resort to numerical
integration until the next perihelion passage takes place.

The simulation proceeds for a maximum of 5 Gyr, unless an end state is reached. There
are two such end states: either the comet reaches perihelion with q < qc = 15 AU (it is lost
due to planetary perturbations), or the comet reaches r = 4 × 105 AU in outbound motion
(it escapes directly into interstellar space).

What we have just described is the full simulation of the “combined” model including
both the Galactic tide and stellar perturbations. In addition, we have run two simulations that
include only one or the other of the two dynamical effects.

3 Injection time

We will first consider the time needed to shift any cometary starting perihelion distance
qo > 32 AU into a perihelion distance q < 15 AU. This is the time tinj required to inject
a comet into the target zone, and we call it the injection time. We have thus scrutinized all
three simulations, and for each injected comet in every simulation we noted its value of tinj.
Let us now compare the statistics of injection times between all three dynamical models.

The range of initial semi-major axes 3 000 < ao < 100 000 AU is divided, according to
log ao, into ten equal intervals. For each interval the following statistical parameters concern-
ing the injection time are computed: its median value, its lower and upper quartiles (surpassed
by 75%, respectively 25%, of the values), its lower and upper deciles (surpassed by 90%,
respectively 10%, of the values), and finally its lower and upper percentiles (surpassed by
99%, respectively 1%, of the values).

Figure 1 presents the comparison of tinj statistics by means of two plots. The top one
(Fig. 1a) compares the model with only the Galactic tides to the combined model, while
in the bottom one (Fig. 1b) the tides-only model is compared to the one with only stellar
perturbations. In each case we plot the statistical quantities versus ao. The tides-only model
is represented by filled squares, and for the other models we use half-filled circles. At any
particular value of ao, the symbols for each model are joined by vertical bars. A slight hori-
zontal shift between the symbols has been introduced for easy distinction of the models, but
the real ao intervals are identical. The median values have been joined by curves (dotted for
the tides-only model, and solid for the other ones). The grey dots show individual injections
for the stars-only model (Fig. 1b) and the combined model (Fig. 1a).

For comparison with Duncan et al. (1987), who plotted a similar diagram (their Fig. 2),
we include three lines. The one labelled Tg shows their “tidal torquing time” and the one
labelled Ts shows the corresponding “stellar torquing time”, both as functions of a. These are
meant to represent the typical time required to decrease the perihelion distance from 25 AU
to 15 AU in the two cases. The third line labelled Tr refers to the period of (q, iG ) oscillation
due to the tidal component normal to the Galactic plane (Duncan et al. 1987).

By inspecting Fig. 1, we can make the following observations. First, compare the tides-
only median curve with the Tr line. The two agree fairly well in the range from a � 6 000 to
25 000 AU. This is natural, because Tr is twice the average time it takes for the vertical tide
to bring any Oort Cloud comet into the target zone, as long as it is on a relevant trajectory
with qmin < 15 AU. For a <∼ 6 000 AU the median flattens out at about 2.5 Gyr, and this
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Fig. 2 The upper diagram shows the number of comets entering the observable zone per 50 Myr versus time.
The white histogram corresponds to the combined model, the black histogram to the Galactic tide alone, and
the grey histogram to the passing stars alone. The asterisks indicate the number of comets remaining in our
simulation for the combined model at every 500 Myr with scale bars to the right. The middle diagram shows
the excess number of injections into the observable region per 50 Myr in the combined model with respect
to the sum of the stars-only and tides-only models. The lower diagram shows this excess expressed in percent
of the mentioned sum

is due to the limit of our simulated interval at 5 Gyr. Had we let the simulation run for a
much longer time, we would have seen the median curve follow the Tr line to even smaller a
values. For a >∼ 25 000 AU we see how the median curve turns upwards, while Tr continues
to decrease. This can be explained as a result of a quick stripping of comets from all trajec-
tories with qmin < 15 AU, after which these have to be repopulated through the action of the
non-integrable part of the tides. Since this works on a much longer time scale, it is obvious
that the median of tinj has to increase.

Already at this point we see evidence that the mean injection time—even in the tides-
only model—does not follow the prediction of the Tr (a) dependence at all semi-major axes.
Studying the Oort Cloud over a long enough time allows other parts of the Galactic tide
than the simple, vertical component to take control of comet injections, at least in the outer
parts of the cloud. But consider now the median curves of the two models that involve stellar
perturbations. They are mutually quite similar, but they differ strongly from the tides-only
curve except at a <∼ 6 000 AU.

The mutual similarity—in spite of a much larger number of grey points (injections) in
Fig. 1b—means that the same basic mechanism is at work. We identify this as the angular
momentum reshuffling by stellar perturbations. In Fig. 1a (stars-only model) this in itself
makes comets diffuse all over angular momentum space so that some reach the target zone.
In Fig. 1b (combined model) the same angular momentum diffusion repopulates the “infeed
trajectories” (with qmin < 15 AU) of the vertical Galactic tide, whereupon the comets are
injected at a rate given by Tr (a). We interpret the flatness of the median curves at a level
of roughly half the duration of our simulation as evidence that the time scale of angular
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momentum reshuffling is short enough to guarantee an injection rate that is at least as large
during the first half (0–2.5 Gyr) as during the second half (2.5–5 Gyr). This is in agreement
with the thermalization time scale reported by Duncan et al. (1987). The tendency for a slight
decrease of the median tinj at the largest semi-major axes is likely due to a progressive deple-
tion of the outer parts of the cloud during the course of the simulation, while the reshuffling
time scale is relatively short.

We thus realize that the behaviour of the median injection time, generally speaking, has
very little to do with any of the theoretical time scales. Let us now instead consider the lowest
percentiles, since these give information on the quickest injections that–in principle–might be
governed by the Tg or Ts dependences. The lowest percentile of the tides-only model indeed
decreases with ao roughly parallel to the Tg line in the inner core of the cloud (a < 10 000 AU),
but we nonetheless see a somewhat smaller slope. This tendency gets stronger with increasing
ao and finally turns into an increase outside 30 000 AU. We interpret this as due to the same
repopulation of infeed trajectories by the non-integrable part of the tide as we discussed in
relation to the median curve.

The lowest percentile of the stars-only model shows a fall-off with ao that is interestingly
slow in comparison with the Ts line. This appears to be related to the horizontal bands of
grey points, which are cometary showers. For each ao interval in the inner core, the timing
of the lowest percentile is that of the first shower reaching into that interval. The larger ao,
the sooner such a shower appears. But the showers also get weaker, being caused by more
and more distant stellar encounters. Thus, in the outer parts of the cloud they are no longer of
significance for defining the lowest percentile. Since this is instead controlled by a growing
number of usual, inefficient stars passing through the outer regions, one has to wait longer.

When we look at the lowest percentile of the combined model, we see that it follows the
same decrease as the tides-only model in the inner core. Indeed, with a much larger number
of injections, the comet showers have lost their importance, and as we shall see in Sect. 4,
during the first Gyr the injections are largely controlled by the Galactic tides. But outside
the inner core the lowest percentile now behaves with respect to that of the tides-only model
in a similar way as the median does, and the reason is the same. Going to larger semi-major
axes, in both models we see an increasing number of late injections, although for different
reasons, and these determine the behaviour of most statistical parameters, causing them to
decrease less rapidly than the Tg line.

In summary we can state that we have found the theoretical time scales of Duncan et al.
(1987) to give a rather poor representation of our statistics of injection times. On the other
hand, we find evidence in the combined model for an important role being played by the repop-
ulation of tidal infeed trajectories via stellar encounters—something that may be described
as a synergy effect. This being said, one nonetheless realizes that Tr is one of the basic
time scales that govern this synergetic injection, the other one being the angular momentum
reshuffling time scale of stellar perturbations. Let us now move to a discussion of the rate of
injections and how this depends on time.

4 Time dependent injection flux

The upper part of Fig. 2 shows a histogram plot of the number of comets injected into the
observable region as a function of time from the beginning till the end of the simulation.
Three histograms are shown together: the one in black corresponds to a model with only
Galactic tides, and the grey one to a model including only stellar perturbations. Finally, the
top, white histogram is for the combined model that includes both tides and stars.
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The first thing to note is the gradual decline of the injection flux of the tides-only model
over a few Gyr, after which it stays at a very low level. The reason is clear. In the beginning,
the phase space trajectories that in the regular dynamics imposed by the vertical tide will
periodically lead into the “loss cone” (q < 15 AU) are populated just as densely as any phase
space domain and thus furnish an important flux of injections during the first period of (e, iG )
oscillations. This amounts to a typical time scale of < 1 Gyr for much of the initial cloud, but
the population on these trajectories is depleted by each entry into the loss cone, and there is no
efficient way to replenish them without including stellar passages. On the longer time scale,
we see only the feeble flux coming from (1) the infeed into the tidal injection trajectories
by the non-integrable part of the tide; (2) the inner parts of the cloud, where the period of
oscillation is very long (Fouchard et al. 2006).

The other two histograms include the effects of stellar passages, and the stars are the
same in both simulations. Therefore, we see the same comet showers appearing and the same
quasi-quiescent periods in between. The white area at the top of each bin corresponds to
the extra contribution of the combined model as compared with that of the stars only. If
the numbers plotted in the white, grey and black histograms are called NC , NS and NG ,
respectively, we can define 	NC = NC − NS − NG as an absolute measure of this extra
contribution.1 Already at first glance, looking at the later part of the simulation, we see that
this is very significant. In the two lower panels of the figure, we plot histograms of 	NC and
τ = 	NC/(NS + NG), i.e., the extra contribution expressed as a fraction of NS + NG .

The basic observations are as follows. The spiky nature of the grey histogram is due to
comet showers caused by close stellar encounters (we will briefly treat these below). While
during the first Gyr the level of NG is generally higher than that of NS , this situation gets
reversed after more than 2 Gyr. Even outside the main showers, NS is then at a somewhat
higher level than NG . The white histogram, showing NC , shares the spikes of the strongest
showers, but the contrast between the spikes and the background is less than in the grey
histogram. Indeed, the 	NC histogram shows no spikes at all, and the general level does
not seem to correlate with the stellar injection rate, as illustrated by Fig. 3. Therefore, during
the later part of the simulation, the τ parameter shows fluctuations anticorrelated with those
of NS . It reaches a few hundred percent, when NS drops to its lowest levels, but sometimes
decreases to nearly zero during the peaks of NS .

In order to smooth out those fluctuations we present in Table 2 time averages of τ over
1 Gyr periods along with the corresponding integrals of NC , NS and NG . During the first
Gyr the flux of the combined model is not much larger than the sum of the two fluxes with
separate effects, and the difference is just a small fraction of the total flux. But toward the
end the synergy effect of the combined model, as measured by 	NC , has grown—on the
average—to nearly the same level as NS + NG . During the last Gyr we find that 〈NC 〉 is
about 2.5 times larger than 〈NS〉 in fair agreement with earlier estimates by Heisler et al.
(1987) and Heisler (1990). After an initial, relatively fast decrease due to the emptying of
the tidal infeed trajectories, 〈NC 〉 continues to decrease approximately in proportion to the
total number of Oort Cloud comets (NOC ), and 〈NS〉 and 〈NG〉 show similar behaviours.

Looking in detail at the 	NC and τ histograms in Fig. 2 for the beginning of our simula-
tion, we see that they start from negative values and turn into positive ones after ∼0.5 Gyr.
Thus, in the very beginning, the sum of the separate fluxes is larger than the combined flux.
This phenomenon was found by Matese and Lissauer (2002), whose calculations were limited

1 Towards the end of our simulation the number of Oort Cloud comets has decreased in all three models but
most in the combined one. We then have about 930 000, 840 000 and 760 000 comets in the tides-only, stars-
only and combined models, respectively. This means that 	NC actually underestimates the extra contribution
of the combined model.
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Fig. 3 	NC versus NS (plotted
on a log scale), where the
numbers refer to injections of
comets into the observable region
during intervals of 10 Myr

Table 2 Number of comets entering the observable region during periods of 1 Gyr

Model [0–1] Gyr [1–2] Gyr [2–3] Gyr [3–4] Gyr [4–5] Gyr

G 2 128 797 481 307 248
S 1 425 1 555 1 030 717 511
C 3 618 3 141 2,412 1 733 1 274
〈τ 〉 1.8% 33.6% 59.6% 69.2% 67.9%

Model G corresponds to the Galactic tide alone, S to passing stars alone, and C to Galactic tide and passing stars
together. 〈τ 〉 is the increment from the sum of the two first rows (Galactic tide plus passing stars separately)
to the third row (Galactic tide and passing stars together)

to only 5 Myr, and as they explained, it is typical of a situation where both tides and stars
individually are able to fill the loss cone to a high degree. We will discuss this point again in
Sect. 5.

The large amount of synergy (τ ∼ 70%) seen in the later part of our simulation is remark-
able and indicates that both the tides and the stars on their own are seriously inefficient in
filling the loss cone. It is only by means of the synergy of both effects that we are able to
explain an important degree of loss cone filling at the current epoch. We will look at this
closer in Sect. 5 by separating the injection flux into different ranges of semi-major axis.
For the moment we emphasize that treating comet injections from the Oort Cloud in the
contemporary Solar System simply as a result of the Galactic tide is not a viable idea.

Already in Sect. 3 we identified a mechanism that offers a likely explanation of the syn-
ergy effect, i.e., the repopulation of tidal infeed trajectories via stellar encounters. But note in
Fig. 2 that the initial flux of the model with tides only is not matched by the white areas in the
later part of the simulation. Thus, even though there is an ongoing replenishment of the tidal
infeed trajectories due to the randomizing effect of stellar encounters, this replenishment is
not complete. The critical trajectories remain largely depleted, and models that do not take
this fact into account will overestimate the tidal contribution to the injection flux, as well as
the efficiency of tides in filling the loss cone.

The most important synergy mechanism of the Galactic tide and stellar perturbations is
that the latter are able to repopulate the critical phase space trajectories that in the quasi-
regular dynamics imposed by the tide lead into the loss cone (Dybczyński 2002; Fernández
2005). Our results appear to verify and quantify this picture. But in addition we see hints
that a different effect is also at work. In Sect. 5 we will show that the distribution of 1/a
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of newly injected, observable comets—even during the typical, quiescent periods—has a
significant extension inside the limit (at a � 3 × 104 AU), where the tide becomes able to
feed comets from outside the loss cone into observable orbits. Our explanation for this effect
is as follows.

In qualitative terms, when the Galactic tide is in the process of injecting a comet into the
observable region from the region outside the loss cone, and stellar perturbations are added,
the latter will sometimes aid in decreasing the perihelion distance of the comet (	q∗ < 0),
and sometimes they will counteract the tide (	q∗ > 0). To first order, the two effects will
cancel. But if we consider how much the critical value (1/ac) of the inverse semi-major axis
for tidal injection into the observable region (ac � 3 × 104 AU) is decreased by a typical
positive 	q∗ or increased by the same typical value of 	q∗ in the negative direction, we find
that the latter effect dominates. Thus, a negative 	q∗ causes a larger gain of comets with
a < ac than the loss of comets with a > ac caused by a positive 	q∗ of the same size. This
holds for any nearly uniform distribution of 1/a in the Oort Cloud.

In mathematical terms, consider the expression for the maximum possible decrease of q
in one revolution due to the Galactic tide:

	q = −Sq1/2z−7/2 (2)

where z = 1/a and S = 2.8 × 10−15 (Byl 1986), counting q and a in AU. This would hold
for a Galactic latitude of perihelion of ±45◦. We take this favourable orbital orientation as
an example, but the following arguments apply for any other orientation as well.

Next, consider a particular value (qp) of the perihelion distance preceding the injection
into an observable orbit. Using Eq. 2, one can write down an approximate condition for the
critical value z = z0 in order to bring the comet into the observable region (q < q� = 5 AU):

qp = q� + Sq1/2
p z−7/2

0 (3)

Equation 3 defines a unique relation between qp and z0, and by differentiating one easily
finds that qp decreases monotonously with z0, while the second derivative is always positive.

Considering thus an arbitrary point (z0, qp) satisfying Eq. 3, we may introduce stellar
perturbations by adding a term −	q∗ to the right-hand member of Eq. 3, and we can write:

qp = q� + Sq1/2
p z−7/2

1 − 	q∗ (4)

where z1 is the new critical value of z. Hence, (z1, qp + 	q∗) also satisfies Eq. 3. Without
the stellar perturbation all comets with q = qp and z < z0 are injected into q < q�, and
including the stellar perturbation, the condition changes into z < z1. From the negative slope
of the qp(z0) relation it is obvious that a negative value of 	q∗ yields z1+ > z0, and the
same positive value yields z1− < z0. It is also obvious from the positive curvature of the
graph that z1+ − z0 > z0 − z1−. If |	q∗| is very small, this difference is negligible, but if
it is large enough to compete with |	qG |, the effect will be important. The latter is indeed
often the case, when we discuss injections from just outside the loss cone (qp � 15 AU), as
has been shown, e.g., by Duncan et al. (1987) and Fernández (2005). Therefore, the gain of
comets with z > z0 occurs over a larger interval than the loss with z < z0 for a symmetric
distribution of stellar perturbations.

Another issue is the distribution function of z for the Oort Cloud. Our simulations start
with a probability density f (z) ∝ z−1/2 as appropriate for an Oort Cloud formed according
to the model of Duncan et al. (1987). In such a situation there would be more comets per unit
interval of z at z < z0 than at z > z0, and the gain effect would be counteracted and possibly
turned into a net loss of injected comets.
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However, an interesting result of our simulations is that the gradual loss of comets from
the Oort Cloud changes the distribution of 1/a. In agreement with a recent study by Brasser
et al. (2008), we find that the loss of comets from the outer parts of the cloud is not com-
pensated by diffusion from the inner parts, so that after 4.5 Gyr, when the number of comets
has decreased from 1 × 106 to 7.6 × 105, f (z) has become roughly flat over the range from
a = 20 000 to 100 000 AU. This shows that we have to expect a net gain of newly injected,
observable comets resulting from a synergy of 	qG and 	q∗. Moreover, there should be a
shift of comets from outside to inside the tidal injection limit—probably explaining why we
see a significant flux of new comets all the way down to a � 20 000 AU.

Although we cannot provide exact numbers, it appears that the secondary synergy mech-
anism due to what we may call “constructive interference” of the two effects—even though
it certainly exists—is not the dominating one. The tentative evidence comes from the relative
smoothness of the 	NC histogram (Fig. 2) and the lack of correlation between 	NC and NS

(Fig. 3). These properties are expected of the repopulation of tidal infeed trajectories because
of the long response time (∼ several 108 years) for tidal infeed on the Tr time scale (Fig. 1).
But if the constructive interference had been very important, we would have expected 	NC

to increase immediately upon an increase of NS—with the caveat that visible peaks of our NS

histogram might arise primarily from a temporary infeed of inner Oort Cloud comets with
z >> zo, which do not contribute to the interference. Further detailed studies are needed to
clarify this issue.

The cometary showers, displayed in Fig. 4 by means of a histogram of the injection flux
of the combined model with a bin width of only 10 Myr, are seen to be quite important for
the injection of comets from the Oort Cloud, as expected and as found by other authors
previously (e.g., Heisler et al. 1987). We are saving a detailed analysis of those for a later
paper. At present, we can only remark that the results presented here are hard to compare
with the treatments of cometary showers by Heisler et al. (1987) or Heisler (1990). The first
of these papers treated only comets with a = 10 000 or 20 000 AU with a full dynamical
model and then only for a time interval of less than 200 Myr. The second gave only a brief
account of a simulation for 4.5 Gyr and then only for injections from q > 10 to q < 10 AU
instead of our requirement that the perihelion has to fall substantially from q > 15 to
q < 5 AU.

Fig. 4 Same as Fig. 2 (upper panel), but versus time per 10 Myr for the combined model only
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5 Orbital element distributions of observable comets

Figure 5 shows the distributions of the opposite of the inverse semi-major axis (−1/a) and the
sine of the Galactic latitude of perihelion (for clarity we use the absolute value | sin b|) of the
comets entering the observable region, i.e., heliocentric distance smaller than 5 AU, during
a typical 170 Myr interval near the end of our simulation, where no strong comet showers
are registered. We show an average of three such periods, i.e., 4.38–4.55 Gyr, 4.55–4.72 Gyr
and 4.80–4.97 Gyr. In fact, comparing the three data sets, we find a rather good agreement,
so that tentatively, the expected error of the mean is not very large. Three histograms are
shown for each quantity: the one in black is for the model with Galactic tides only, the grey
one is for the model with only stellar perturbations, and the white one shows the combined
model.

After more than 4 Gyr the Galactic tides alone are practically only able to inject comets
into the observable region if a > 50 000 AU, so that the non-integrable part of the tides may
provide new comets into the emptied infeed trajectories of the vertical component. Thus the
feeble flux of new observable comets is strictly confined to the outermost parts of the Oort
Cloud. If only the stellar perturbations are at work, the injected comets are almost as few
as in the case of the Galactic tides. However, the distribution of −1/a shows that the stellar
perturbations are relatively efficient injectors of comets with semi-major axes in the whole
range from 25 000 to more than 100 000 AU, and there is some marginal infeed all the way
into the inner core. Note that this concerns a time interval without any strong comet showers.

When both the processes are at work, the number of comets entering the observable zone
is 206, about 86% more than the sum of the two separate contributions (39 + 72). This esti-
mate of τ is a bit higher than for the entire 1 Gyr interval, listed in Table 2, because the three
intervals have been selected as particularly calm, avoiding even the smaller peaks of NS that
can be seen in Fig. 2. We have shown above that larger values of NS lead to smaller values
of τ . The distribution of −1/a is as wide as for the stellar perturbations alone. However, the
picture has changed, since the additional 86% of the comets are strongly concentrated to the

Fig. 5 Distributions of −1/a, where a is the semi-major axis (top panels) and | sin b|, where b is the Galactic
latitude of perihelion (bottom panels), for the comets entering the observable region during 170 Myr near the
end of the simulation. When present, numbers in the top-left corners of −1/a distribution panels correspond
to comets with −1/a < −1×10−4 AU−1. The left column corresponds to the model with Galactic tide alone,
the middle column to passing stars alone, and the right column to the model with both effects
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interval from −4 × 10−5 to −2 × 10−5 AU−1 (25 000 < a < 50 000 AU). The local values
of 	NC for the five 1/a intervals (0–1), (1–2), (2–3), (3–4) and (4–5) × 10−5 AU−1 are −2,
−22, +63, +36 and +10, respectively. We will comment on the negative values of the first
entries in connection with Fig. 7.

We see that the mechanism of synergy that increases the flux of injections in the combined
model prefers the range of semi-major axis (a > 30 000 AU) where the vertical Galactic tide
is able to provide the injections, once the relevant trajectories are populated. But there is an
important extension of the synergy to smaller semi-major axes as well, extending at least
to a � 20 000 AU. We conclude that both the above-described synergy mechanisms must
be at work. The repopulation mechanism is obviously important, but the shift to smaller
semi-major axes can only be explained by the ‘constructive interference’ mechanism.

Looking at the distributions of | sin b|, indeed the signature of the Galactic tide is clearly
present in the left diagram and absent in the middle one. However, it appears again to some
extent in the right-hand diagram, where the combined model is presented. Thus we have
evidence that the synergetic injection of comets in the combined model carries an imprint
in the latitudes of perihelia similar to that of the Galactic tide, though the feature is strongly
subdued. In fact, while the subdued tidal imprint is consistent with an important role being
played by the ‘constructive interference’ synergy mechanism, our combined model does not
appear to reproduce the observed | sin b| distribution of new Oort Cloud comets. An in-depth
study of this problem and a consideration of ways out of this possible dilemma are deferred
to future papers.

The shaping of the b distribution by the Galactic tide was first simulated numerically for a
realistic Oort Cloud model by Matese and Whitman (1989). However, the left panels of Fig. 5
show a behaviour that is in stark contrast to their results. Practically all our tidal injections
occur for a > 50 000 AU, where Matese and Whitman (1989) found no tidal imprint in the b
distribution because of complete loss cone filling independent of b. In the light of our results
this can be seen as an artefact of their assumption of complete randomization of the Oort
Cloud orbit distribution. Indeed, as we shall find below (Table 4), the tidal loss cone filling
for 50 000 < a < 100 000 AU towards the end of our simulation is far from complete, and
therefore we see the imprint of the tide in our b distribution.

In Fig. 6 we show the corresponding distribution of −1/a and | sin b| for the 10 Myr inter-
val from 3.85 to 3.86 Gyr, where Fig. 4 shows that the number of observable comets has a
high peak due to a moderately strong shower. Occurring near the middle of the period, this
shower dominates the time-integrated injection rate. The trigger is a M5 star with an impact
parameter d � 2 000 AU and a velocity v� � 18 km/s.

The mid and right-hand −1/a distributions show that, as soon as stars are involved, the
injection of comets now extends over the whole cloud, including an important fraction from
the inner core with a < 10 000 AU. In fact, the synergy effect is now very strong in the
range from 10 000 to 20 000 AU, amounting to τ > 150%. This is unexpected on the basis
of both the above-mentioned mechanisms, since we are discussing orbits too far inside the
tidal injection limit. We are instead led to hypothesize a different mechanism. In the present
case we are comparing the number of comets injected by a particular, deeply penetrating star
from the mentioned range of semi-major axes in the stars-only versus the combined model.
In the absence of the Galactic tides it is likely that orbits with perihelia close to but outside
the loss cone have been depleted by the preceding cometary showers, while in the combined
model the disk tide provides a regular transfer of comets into this zone on a Gyr time scale,
thus compensating for the losses. This means that the synergy works in the opposite sense
compared to the normal situation outside the showers. During a shower the tides are pro-
viding the material for injections by the stars, while in the normal situation the stars are
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Fig. 6 Same as Fig. 5 but considering the comets that enter the observable region during a shower between
3.85 and 3.86 Gyr. The shower is due to a M5 star with impact parameter 2,055 AU, velocity 17.7 km/s and
mass 0.21 M�

providing the material for tidal injections. The absence of a synergy in the inner core may be
explained by the very long time scale for tidal torquing, or by a smaller degree of depletion
of the source region for stellar injections.

Naturally, in the stars-only model the shower does not carry any signature in the distri-
bution of | sin b|. The combined model does not exhibit any significant signature either, but
there may nonetheless be a slight tendency. In case this is real, it might possibly reveal a
somewhat more efficient synergy in the 10 000–20 000 AU range for the orbits experiencing
a faster tidal decrease of q .

Let us now consider the situation at the beginning of the simulation, before the tides have
had the time to completely empty the tidal infeed trajectories in the outer part of the cloud.
The results are shown in Fig. 7 for a period between 0.63 and 0.80 Gyr, when no strong show-
ers are noted. The number of comets entering into the observable region is 282, 128 and 463
for the tides, the stars, and the combined model, respectively. The action of the tides is still
quite strong, since the infeed trajectories in the interval 20 000 < a < 50 000 AU are not yet
severely depleted (cf. Fig. 1). Therefore the net synergy effect amounts to only 13%.

The local 	NC values for the same five 1/a intervals as we discussed in connection
with Fig. 5 are in this case −5, −66, +35, +61 and +19. We do not see any significant
synergy effect for more tightly bound orbits. The distribution of positive synergy over the
2–5×10−5 AU−1 range is similar to that of Fig. 5, and our conclusions about the relevance of
the two mechanisms are the same. Note that in both cases we see negative 	NC values in the
two outermost 1/a ranges (0–2 × 10−5 AU−1). The fundamental reason is the one discussed
above in order to explain the negative τ values in the very beginning of the simulation, i.e., a
saturation effect of the loss cone when both injection effects individually are able to cause a
large degree of filling. The distributions of | sin b| exhibit the same features as in Fig. 5 and
lead to the same conclusion: when both tides and stars act in synergy, the signature of the
Galactic tide may be seen but appears quite marginal.

Since we noted in Sect. 4 that the replenishment of the tidal infeed trajectories by stellar
perturbations is not complete during the later part of our simulation, an obvious consequence
is that the filling of the loss cone for the relevant semi-major axes cannot be complete either.
To quantify this statement, we consider the rate of perihelion passages ṅ with q < q0 as
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Fig. 7 Same as Fig. 5 but considering the comets entering the observable region during 170 Myr near the
beginning of the simulation

a function of the semi-major axis, assuming complete loss cone filling and a completely
thermalized Oort Cloud (Hills 1981; Bailey and Stagg 1988):

ṅ(a) = NOC · f (a) · 2 q0

a
· a−3/2. (5)

Here, NOC is the number of comets in the entire Oort Cloud (initially 106 in our model) and
f (a) the frequency function describing the distribution of semi-major axes: f (a) ∝ a−1.5

initially in our model.
We have computed injection rates in the combined model for the three time intervals of

Figs. 5–7 using Eq. 5 and finding the integrals
∫

NOC f (a)a−5/2da over different ranges of
−1/a directly from the simulation output at neighbouring moments. The calculation of these
integrals is done by simply adding the values of a−5/2 of all the comets found in the relevant
range. Multiplying by the length of each interval and putting q0 = 5 AU, we find the numbers
Ncomp listed in Table 3.

The numbers of comet injections for each 1/a range and each time interval can be read
off from the figures, and they are listed as Nsim in the table along with the ratios Nsim/Ncomp,
which give the filling factor of the observable part of the loss cone ( flc). We find that this
factor is close to 100% in the beginning of the simulation for a > 50 000 AU and remains
>80% for such semi-major axes even towards the end during quiescent periods. But the factor
drops rapidly with decreasing a to values near 2% at a � 20 000 AU. These results may be
compared with those of Heisler (1990), who used a similar procedure for deriving flc. She
did not consider semi-major axes a > 40 000 AU, and inside this limit we find somewhat
smaller filling factors than she did, consistent with the fact that we use a lower value for the
Galactic mid-plane density and somewhat higher stellar velocities.

Note that the filling factors have decreased somewhat, when we compare the final qui-
escent period with the initial one. Except in the outermost parts of the Oort Cloud, there is
always a depletion of comets in the regions of phase space near the tidal infeed trajectories
and in the vicinity of the loss cone, and this depletion grows slowly with time.

The numbers Nsim found for the shower period are too small to be statistically useful for
the outer parts of the cloud, and the filling factors listed are very uncertain. However, we see
an obvious effect in the inner parts, when comparing flc with the corresponding values of
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Table 3 Numbers of comet injections during the time intervals of Figs. 5–7 for different ranges of inverse
semi-major axis, as computed from Eq. 5 and found from our simulation of the combined model

	(1/a) Beginning End, showers End, quiescent

(10−5 AU−1) Ncomp Nsim flc (%) Ncomp Nsim flc (%) Ncomp Nsim flc (%)

(0–2) 106 111 ∼100 3.2 2 ∼60 48 40 83
(2–3) 303 189 62 10 6 ∼60 160 83 52
(3–4) 616 111 18 24 2 ∼8 367 46 13
(4–5) 1 044 23 2.2 44 6 14 692 14 2.0
(5–10) 15 600 23 0.15 740 29 3.9 12 100 13 0.11
>10 672 000 6 0.0009 37 200 31 0.08 626 000 10 0.0016

The ratio of simulated to computed number, expressed in percent, is also listed in each case

Table 4 Filling factors for the observable part of the loss cone, computed for different ranges of semi-major
axis and separately for the three dynamical models (tides-only, stars-only, and combined)

	(1/a) flc (Beginning) flc (End)

(10−5 AU−1) Tidal (%) Stellar (%) Combined (%) Tidal (%) Stellar (%) Combined (%)

(0–1) ∼400 ∼100 ∼200 ∼100 ∼100 ∼100
(1–2) 86 60 ∼100 30 45 78
(2–3) 36 10 62 0.6 10 52
(3–4) 6.5 1.1 18 – 2.3 13
(4–5) 0.09 0.3 2.2 – 0.5 2.0
(5–10) – 0.1 0.15 – 0.06 0.11
>10 – 0.0006 0.0009 – 0.0008 0.0016

quiescent periods. The shower increases flc by factors ∼20–100, and thus the overall flux
exhibits the peak seen in Fig. 4 due to comets with a < 20 000 AU.

We have already made the remark that neither 	NC nor τ provides a fully satisfactory
measure of the synergy effect, because they do not account for the difference of the number of
Oort Cloud comets between different dynamical models—especially towards the end of the
simulation. After 5 Gyr the total number of comets in the combined model is only ∼80% of
that in the tides-only model, and if we concentrate on comets with 50 000 < a < 100 000 AU
where the losses are the largest, the ratio of the two models is only 35%. In order to com-
pensate for such effects we have computed the flc parameter separately for the three models
and for all the ranges of 1/a, and we present the results in Table 4. The time periods referred
to are the quiescent periods of Figs. 5 and 7.

The outermost energy range is empty in all models, when the simulation starts, but it gets
populated quickly—at least when stars are involved. We interpret the very large value of flc in
the tides-only model at the beginning as evidence that the radial tide has not extracted comets
into this energy range in a uniform manner, so that our assumption of thermalization when
deriving Ncomp is not justified. To a lesser extent this appears to be true also in the combined
model, where stars have extracted many more comets. It is likely that this extraction too—at
the early time in question—has not populated all the angular momenta in a thermalized fash-
ion. However, the statistics is too poor to be confident about such conclusions. In any case,
the loss cone filling is extremely efficient for all models, thus explaining the negative values
of 	NC .

For the next energy range we see the saturation effect again, especially in the beginning.
At the end, the value of flc in the combined model is close to the sum of those in the other
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two models. Hence there is no apparent synergy in this case, but probably a real synergy
has been concealed by the saturation effect. In any case the large negative value of 	NC

results entirely from the small number of comets in the combined model, as discussed above.
In the next three energy ranges (20 000 < a < 50 000 AU) we see that flc in the com-
bined model is much larger than the sum of the two other entries, and for a < 20 000 AU
the effect continues: adding the tides to the stars increases the loss cone filling by a factor
1.5–2.

6 Discussion and conclusions

We have simulated the evolution of the Oort Cloud over 5 Gyr, using for initial conditions a
relaxed model with a distribution of semi-major axis f (a) ∝ a−1.5 within the interval 3 000–
100 000 AU. This model is based on the results of simulation of Oort Cloud formation and
evolution by Duncan et al. (1987). However, we do not find this to be a steady distribution.
More comets are lost from the outer parts of the cloud than can be replaced from inside, so
that our model cloud evolves into a distribution close to f (a) ∝ a−2—i.e., flat in 1/a.

Our dynamical model has two main limitations. We do not treat encounters with very
massive Galactic perturbers, such as star clusters or Giant Molecular Cloud complexes, the
justification being that they occur so rarely that the current Solar System is unlikely to feel
the direct reverberations of any such encounter, and that even if they modify the structure of
the Oort Cloud, our interest is not primarily in its dynamical history but rather in the way
stars and Galactic tides currently interact when injecting observable comets.

Moreover, we do not treat planetary perturbations in any direct manner. Like most previous
investigators (e.g., Heisler 1990) we use a loss cone defined by a limiting perihelion distance
(in our case, 15 AU) outside which no planetary effects are included and inside which all
comets are considered lost from the cloud through perturbations by Jupiter and Saturn. In
terms of “transparency” of the planetary system (Dybczyński and Prȩtka 1997; Dybczyński
2005), our model is completely opaque (P = 1). This means that we are limiting our atten-
tion to a subset of the observed population of “new” Oort Cloud comets, i.e., those that have
jumped directly from q > 15 AU into their observed orbits with q < 5 AU. We are neglecting
the rest of the population, which consists of comets that passed perihelia in the outer part
of the loss cone without being perturbed away before arriving into observable orbits. We
are also neglecting a possible contribution to the observed new comets by a “leakage” from
the scattered disk (Levison et al. 2006). Therefore we prefer not to draw any conclusions in
this paper regarding the total number of Oort Cloud comets or the exact values of the filling
factors. Nor do we claim to make any prediction on the detailed shape of the 1/a distribution
of new Oort Cloud comets, until we have included the planetary perturbations in a realistic
manner.

We have shown that the concept of tidal and stellar torquing time scales (Duncan et al.
1987) gives a very incomplete picture of the speed of comet injection, whether it may concern
Galactic tides or stellar encounters. The distribution of injection times is largely shaped by
other effects—like comet showers or the repopulation of the emptied infeed trajectories of
the disk tide due to the non-integrable part of the tides or stellar perturbations.

We have also shown how—for semi-major axes large enough for the tide to populate
observable orbits—the regions of the phase space occupied by trajectories leading into the
loss cone get depleted during the first Gyr of Oort Cloud evolution. This would leave little
chance for the tide to produce a significant number of observable comets at the current time,
were it not for the capability of stellar perturbations to replenish the tidal infeed trajectories.
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We have indeed demonstrated that, during the later parts of our simulation, there is a very
important synergy effect of the Galactic tide and stellar perturbations such that the combined
injection rate is on the average ∼70% larger than that of the stars alone plus that of the tide
alone. This synergy is strongest for semi-major axes between ∼20 000 and 50 000 AU but
continues all the way into the inner core. During comet showers the synergy effect in the
outer parts of the cloud practically disappears, but the one affecting the inner parts becomes
very important.

We have identified two mechanisms for the synergy during quiescent periods in the outer
parts of the Oort Cloud. One is that the stellar perturbations provide a supply of new comets
that replenishes the depleted tidal infeed trajectories, and the other is that the gain of comet
injections, when stellar perturbations decrease the perihelion distance, dominates over the
loss caused by opposing perturbations. For the synergy of the inner cloud we hypothesize
that the Galactic tides provide the material for stellar injections by slowly feeding the region
of phase space in the vicinity of the loss cone. Thus, the general picture spawned by our
results is that injection of comets from the Oort Cloud is essentially to be seen as a team
work involving both tides and stars. It appears meaningless to rank the two effects in terms
of strength or efficiency.

Indeed, for the smaller semi-major axes the Galactic tide does not dominate the injection
of comets, contrary to the conclusions of Heisler et al. (1987) and Heisler (1990).2 It only
contributes to a synergy with stellar perturbations, and without the stars one would not have
any injections of comets with a <∼ 20 000 AU.

The distribution of Galactic latitudes of perihelia of the observable comets exhibits a
maximum for |sin b| � 0.5 as expected in the tides-only model, but in the combined model
this feature can hardly be seen at all. The tides form part of the synergetic injection, but their
imprint is largely washed out by the stellar contribution. But, likely due to the role of the
tides in helping the stars to create comet showers, the pattern can be seen at least as clearly
during a shower as during the quiescent periods. Therefore, it tentatively appears that the
shape of the observed b distribution can not be used to indicate whether we are experiencing
any shower at present. However, since none of our model distributions appears to agree with
the observed one, we have to defer any conclusions to future papers. It may be interesting to
see, for instance, if the leakage from the scattered disk into the Oort Cloud with an ensuing
direct transfer into observable new comets may alleviate the problem.

We have measured the filling of the observable part of the loss cone by comparing our
simulated injection rates for different intervals of semi-major axis with the rates of observable
perihelion passages (q < 5 AU) computed for a completely thermalized distribution of com-
etary orbits involving a filled loss cone. The deficiency of our simulated rate likely reflects
not only a lack of comets in the loss cone but a general depletion in a wider phase space
region in its vicinity, as remarked by Heisler (1990). Our results can be compared with hers,
and in contrast to her inference that flc may level out at ∼60% for a >∼ 30 000 AU, we find
an average filling factor during quiescent periods in the current Solar System, which drops
steadily from ∼100% at a > 100 000 AU to 1% or less at a < 20 000 AU in the combined
model. However, there are important differences between the two investigations, one being
that she simulated a much shorter time period than we do, and in addition our parameters for
the Galactic tides and stellar encounters also differ from hers.

2 The main reason for this discrepancy is that the Heisler papers considered injections into the loss cone—
mainly by slight perturbations of q across the limiting value qc = 10 AU—while we consider large jumps
from q > 15 AU into the observable region with q < 5 AU. Interestingly, Heisler et al. (1991) commented
that the injection into orbits with a <∼ 20 000 AU and q < 2 AU is indeed dominated by stellar perturbations.
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In agreement with Weissman and Hut (1986), we find that cometary showers do not
significantly increase the loss cone filling at large semi-major axes. However, near 25 000 AU
there is an abrupt change into the regime of the inner cloud, where the filling factor increases
by orders of magnitude during moderate to strong events. The showers of course involve
direct injections by the passing stars, but the synergy with the Galactic tide is as important
as during quiescent periods.
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a b s t r a c t

The effects of a sample of 1300 individual stellar encounters spanning a wide range of parameter values
(mass, velocity and encounter distance) are investigated. Power law fits for the number of injected com-
ets demonstrate the long range effect of massive stars, whereas light stars affect comets mainly along
their tracks. Similarly, we show that the efficiency of a star to fill the phase space region of the Oort cloud
where the Galactic tides are able to inject comets into the observable region – the so-called ‘‘tidally active
zone’’ (TAZ) – is also strongly dependent on the stellar mass. Power laws similar to those for direct injec-
tion are obtained for the efficiency of stars to fill the TAZ. This filling of the tidally active zone is crucial for
the long term flux of comets from the Oort cloud. Based on long-term Monte Carlo simulations using a
constant Galactic tide and a constant flux of stellar encounters, but neglecting the detailed effects of plan-
etary perturbations, we show that this flux essentially results from a two step mechanism: (i) the stellar
injection of comets into the TAZ; and (ii) the tidal injection of TAZ comets into the loss cone. We find that
single massive stars are able to induce ‘‘comet drizzles’’ – corresponding to an increase of the cometary
flux of about 40% – which may last for more than 100 Myr by filling the TAZ to a higher degree than nor-
mal. It appears that the stars involved in this process are the same that cause comet showers.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Long period comets are believed to come from a nearly spheri-
cal reservoir of comets – the so-called Oort cloud (Oort, 1950) –
extending over roughly a hundred thousand astronomical units.
According to Oort, due to perturbations by stars passing in the
vicinity of the cloud, the perihelia of some comets in this distant
region have been reduced enough for those comets to become ob-
servable. In fact, until the 1980s stellar perturbation was the un-
ique mechanism considered to be able to inject comets from the
Oort cloud into the inner Solar System (heliocentric distance r < 5
AU). At that time, the important role of the Galactic tides in making
Oort cloud comets observable was established. Beginning with the
work of Byl (1983), several studies (see Matese and Whitman,
1992; Wiegert and Tremaine, 1999, and references therein) have
shown that the distribution of the observed Galactic latitudes of
perihelia of new comets correlates with the action of the disc tide
(i.e., the tidal force caused by the variation of the Galactic gravita-
tional potential with distance from the mid-plane). Based on this

finding and the realization that, judged as a separate mechanism,
the disc tide would be on average more efficient than stellar pas-
sages in providing new observable comets, stellar perturbations
have later tended to be practically neglected as injection
mechanism.

More recently, Matese and Lissauer (2002) studied the evolu-
tion of Oort cloud comets over a time scale of 5 Myr, suffering
simultaneously the perturbations due to the Galactic tides and
due to stellar impulses. They found that the sum of the separate
injection rates of new comets is significantly larger than the com-
bined rate, and they concluded that over this short time scale, both
the Galactic tide and the stars are individually able to fill the loss
cone efficiently.

In a previous paper (Rickman et al., 2008) – hereafter RFFV08 –
we have also explored the dynamical evolution of Oort cloud
comets, but over a time scale of 5 Gyr, including the action of both
perturbers, i.e., the stellar perturbations and the Galactic tides,
simultaneously. Over the first 5 Myr we confirmed the result found
by Matese and Lissauer. But over much longer time scales we
found the situation to be reversed, the combined flux being larger
than the sum of the separate fluxes. When both perturbers act to-
gether, a synergy is generated that significantly increases the flux
of comets into the observable region (defined by r < 5 AU). Accord-
ing to RFFV08, one main reason for this synergy is that passing
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stars cause a randomization of cometary orbital elements and con-
sequently may send comets into orbits that are linked through the
Galactic tides with the observable region.

An important finding was published by Kaib and Quinn (2009),
dealing with the role of the giant planets in comet injection from
the inner region of the Oort cloud (semi-major axis a < 2 � 104

AU). They found that this region contributes to the flux of observa-
ble comets by means of the planets perturbing the semi-major axis
into a > 2 � 104 AU, while the perihelia stay at distances q � 10–15
AU, after which the Galactic tides may bring the perihelia below
the limit of observability.

The main purpose of the present paper is to study the influence
of stellar perturbations, according to their physical characteristics
(stellar mass, velocity and impact parameter), on the efficiency of
(i) direct injection of comets into the observable region, and (ii) fill-
ing of what we call the tidally active zone (see Section 3.3). In both
cases special attention will be given to the role of stellar masses. In
order to analyze the star-induced dynamics in a comprehensive
way, our strategy is to proceed in steps. Therefore, in the present
paper we limit ourselves to a simplified model (typical of all earlier
works of ours), where the planets are assumed to perturb all com-
ets with q < 15 AU away from the Oort cloud. A full description of
the planetary perturbations, capturing the effects of the Kaib–
Quinn mechanism, will be the subject of a forthcoming paper.
We caution the reader that the results of the present paper are pre-
liminary as far as the real Solar System is concerned, but they will
form a necessary background in order to understand the outcome
of the full model.

We begin by a brief description of our dynamical model in Sec-
tion 2. The action of single stars is then studied in Section 3. The
stellar samples and the initial conditions used for the Oort cloud
are described in Section 3.1. The amount of direct injections of
comets into the observable region, in dependence of the stellar
encounter characteristics, is presented in Section 3.2. Using the
definition of the tidally active zone (TAZ) as a function of the
semi-major axis obtained in Section 3.3, the efficiency of single
stars to fill the TAZ is evaluated in Section 3.4.

In Section 4 – like in RFFV08 – we perform three kinds of Monte
Carlo simulations of Oort cloud evolution. Each simulation is
named after the dynamical model used, i.e., the perturbations con-
sidered. Model G is the simulation for which the Galactic tides pro-
vide the unique perturber. In Model S(all) the comets are perturbed
only by passing stars whose masses span the whole range from
0.21 M� to 9 M�, and in model C(all) the two perturbers (tides
and stars) act together. In addition, two more sets of simulations
are made. Here, rather than considering the whole range of stellar
masses, we perform simulations like those of models S(all) and
C(all), but considering two different subsamples of stars, one de-
fined by masses Mw < 1.2 M� yielding models S(light) and C(light),
and the other containing massive stars with Mw > 1.2 M� yielding
models S(heavy) and C(heavy). Discussion and conclusions are gi-
ven in Section 5.

2. Dynamical modelling

The Galactic tides and the stellar perturbations are modelled in
the same way as in RFFV08. For the tides this means that we ac-
count for the full, non-averaged dynamics including both radial
and vertical (disc) terms, using a local disc density of 0.1 M� pc�3

(Holmberg and Flynn, 2000) that characterizes the current solar
neighbourhood. Our method of integration is a hybrid approach,
described in Breiter et al. (2007), Fouchard et al. (2007). The stellar
perturbations are treated by the sequential impulse approximation
(Rickman et al., 2005), which builds on the improved impulse
approximation by Dybczyński (1994). In the C models we use the

tidal integrator, interrupting it at the predefined times of stellar
encounters, when the computed heliocentric impulses are added
to the cometary velocities. All the comets were integrated in
parallel.

For a comparison of the model and parameters used in our sim-
ulations with those of earlier Oort cloud simulations, we refer to
RFFV08.

3. Effects of individual stars

3.1. Stellar samples and initial conditions

As in RFFV08, we consider 13 types of stars (mostly represented
by MK spectral classes), whose characteristics are listed in Table 1.
The basic source for these data is Garcı́a-Sánchez et al. (2001). For
each type, we construct five sequences of 20 stellar encounters,
occurring at intervals of 250 Myr during a 5 Gyr interval, the first
encounter occurring 100 Myr after the beginning of the simulation.

The stellar velocities and encounter geometries are derived in
the same way as in RFFV08. This means that – for any given type
of star – we construct the encounter velocity from the data in Ta-
ble 1 as the vector sum of the solar apex velocity and a randomly
chosen, isotropically distributed stellar peculiar velocity. The abso-
lute value of the latter is chosen using a Maxwellian distribution
with the listed dispersion, and we use the resulting speed as a
weight factor (see RFFV08), since stars contribute to the encounter
flux in proportion to their velocities (Heisler et al., 1987). The
direction of the encounter velocity is taken at random from an iso-
tropic distribution.

The impact parameter b� with respect to the Sun is randomly
chosen between 3 � 103 AU and 4 � 105 AU with a uniform distri-
bution in logb�. This choice of distribution makes us sample the
whole range of encounter distances more equally than in the case
of real stellar encounters, where the closest ones are very rare
compared to the distant ones.

These 65 stellar encounter sequences (corresponding to a total
of 1300 individual encounters) perturb a cloud of 106 fictitious
comets having the following statistical characteristics. The initial
semi-major axes are taken in the interval: 3 � 103 < a0 < 1 � 105AU
with a flat distribution of orbital energy (i.e., inverse semi-major
axis). Thus we sample the whole range of energies equally,
whereas in simulations of the real Oort cloud – following (Duncan
et al., 1987) – a probability density / a�3/2 is often used, giving

Table 1
Stellar parameters. The types are mostly MK types for main sequence stars; ‘wd’
indicates white dwarfs, and ‘gi’ indicates giant stars. The encounter frequencies are
given in number per Myr within 1 pc. The following two columns list the solar apex
velocity with respect to the corresponding type, and the spherical Maxwellian
dispersion of peculiar velocities. The last two columns give the mean heliocentric
encounter velocity and its standard deviation.

Type Mass
(M�)

Enc.
freq.

v� (km/
s)

r⁄ (km/
s)

hVi (km/
s)

rV (km/
s)

B0 9 0.005 18.6 14.7 24.6 6.7
A0 3.2 0.03 17.1 19.7 27.5 9.3
A5 2.1 0.04 13.7 23.7 29.3 10.4
F0 1.7 0.15 17.1 29.1 36.5 12.6
F5 1.3 0.08 17.1 36.2 43.6 15.6
G0 1.1 0.22 26.4 37.4 49.8 17.1
G5 0.93 0.35 23.9 39.2 49.6 17.9
K0 0.78 0.34 19.8 34.1 42.6 15.0
K5 0.69 0.85 25.0 43.4 54.3 19.2
M0 0.47 1.29 17.3 42.7 50.0 18.0
M5 0.21 6.39 23.3 41.8 51.8 18.3
wd 0.9 0.72 38.3 63.4 80.2 28.2
gi 4 0.06 21.0 41.0 49.7 17.5
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more weight to the inner core. Like in the case of stellar impact
parameters, since the present model is not intended to mimic the
real Oort cloud, we prefer to use a uniform sampling.

The initial eccentricities e0 are chosen with a density func-
tion / e0 in such a way that the perihelia are outside the planetary
system, i.e., q0 > 32 AU. The angular elements x0, X0 and M0 (we
use common notations for the orbital elements, and the angles
may be defined with respect to an arbitrary frame of reference),
like cosi0, are randomly chosen with flat distributions.

The motion of comets is integrated for a maximum of 5 Gyr, and
the integration stops if either a perihelion passage occurs with
q < 15 AU, or the heliocentric distance increases beyond
r = 4 � 105 AU. The comet is then considered as lost from the Oort
cloud – either by planetary perturbations (the first case) or by tide-
induced escape into interstellar space (the second case). The term
injection will be reserved for comets that reach the observable zone
at perihelion (q < 5 AU).

3.2. Direct injections

In this Subsection we will present the results of S models,
neglecting the action of Galactic tides.

Table 2 gives the fractions of stars in three groups, correspond-
ing to different mass ranges, which yield numbers of injected com-
ets in different intervals. We note that even with as many as 106

comets in our simulated Oort cloud, the statistical sampling of
the number of injected comets is rather poor – especially for the
lightest stars, where the number is zero in more than half the
cases. More than 20 comets are injected by most of the B0 stars
(the heaviest) and 46% of the other heavy stars but only 13% of
the light stars.

Let us base our discussion on the classical impulse approxima-
tion (Rickman, 1976), which involves the following assumptions:
(i) the star moves with constant velocity with respect to the Sun,
and the motion follows a straight line, (ii) in accordance with the
high stellar speed, the comet is considered at rest in the heliocen-
tric frame during the stellar passage, and (iii) the stellar effect is
computed for a star moving from infinity to infinity. This approxi-
mation is useful for discussing and interpreting statistical results,
although it is not at all accurate in individual cases for the rela-
tively fast-moving comets of the inner core.

With the above assumptions, the heliocentric impulse imparted
to the comet is given by:

DV ¼ 2GMH

VH

bC

b2
C

� b�
b2
�

 !
; ð1Þ

where Mw is the stellar mass, Vw is the stellar velocity, and b� and
bC are the vectors from the Sun and the comet, respectively, to the
closest points on the stellar trajectory.

For a close encounter with the comet only, we get
approximately:

DV / MH

VHbC
; ð2Þ

while in the case of a distant encounter with both the Sun and the
comet, as shown by Rickman (1976), we obtain:

DV / MHr

VHb2
�

; ð3Þ

where r is the heliocentric distance of the comet.
Now, consider the case of close encounters between the star

and the injected comets. Our modelled Oort cloud has a flat distri-
bution of 1/a and thus a distribution like a�2 in the semi-major
axis. In terms of heliocentric distance, the distribution function is
then proportional to r�2, and the number density of comets in
the cloud (n) varies as r�4. We want to find the number of comets
that may be injected due to close encounters along the track of the
star through the Oort cloud. This will depend on the along-track
integral of the number density of comets multiplied by the cross-
sectional area perpendicular to the track, within which the comets
may suffer large enough impulses to inject them.

The requirement is for jDqj to overcome a certain value – typi-
cally, the 10 AU needed in order to cross the Jupiter–Saturn barrier
(this means the range of perihelion distances within the loss cylin-
der, where the comets are not observable). Let G be the angular
momentum of the cometary orbit. Using the approximate relation
q / G2 for high-eccentricity orbits, we obtain:

jDqj / GjDGj: ð4Þ

If vt is the size of the transverse velocity component, we have:
G = rvt. Hence, jDGj = rjDvtj, and we may consider jDvtj to be some
standard fraction of jDVj for a random orientation of the impulse
vector. Taking jDVj from Eq. (2), we find that in order to have
jDqj > 10 AU, we require bC < b‘ with:

b‘ / r �MH

VH

: ð5Þ

Here we consider G to be a constant, given by the pre-injection peri-
helion distance.

The above-mentioned cross-sectional area (A) is hence:

A / r2 M2
H

V2
H

; ð6Þ

and in order to estimate the number (NS) of injected comets, we
have to take the along-track integral through the cloud of n � A.
The latter product varies as r�2, and for a spherical cloud with ra-
dius Rcl the result is:

NS /
M2

H

V2
H

� 1
b�

arctg
Rcl

b�

� �
: ð7Þ

This is an approximation that holds for b� � Rcl, which is the case
of interest for us, and we may use the limiting value of arctg(Rcl/
b�) = p/2 as a constant factor.

As a result, in case stars inject comets basically by close encoun-
ter perturbations, we expect the injected number to scale with the
square of the parameter:

Iclose ¼
MH

VH

ffiffiffiffiffiffi
b�

p : ð8Þ

We will look for a correlation between NS and Iclose as an indicator of
the importance of close star-comet encounters as injection
mechanism.

Next, consider the case of distant, tidal encounters described by
Eq. (3). In this case the injected comets are not situated near the
star track but in a region much closer to the Sun. Let us estimate
the size of that region, since this will influence the number of in-
jected comets. If we consider the mean transverse velocity change
to be proportional to the change of total velocity (see above), we

Table 2
Fraction of stars, given as per cent, in three different groups – namely, B0 stars (9 M�),
A0 to F5 and red giant stars (1.3–4 M�), and all the other stars (0.2–1.1 M�) – yielding
numbers of injected comets in different ranges.

Mass (M�) 9 [1.3,4] [0.2,1.1]

ninj = 0 6 23.6 52.9
ninj = 1 9 8.2 9.9
2 6 ninj 6 5 12 11.4 10.9
6 6 ninj 6 20 20 10.8 13.4
21 6 ninj 6 200 17 25.2 12.9
201 6 ninj 36 20.8 0.1
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get: jDv t j / MHrV�1
H

b�2
� from Eq. (3). Thus, according to Eq. (4), we

obtain the expected change of perihelion distance as:

jDqj / r2 � MH

VHb2
�

: ð9Þ

In order for jDqj to overcome the estimated value of 10 AU, we
see that r must be larger than some rmin, where r2

min / VHb2
�=MH.

This means that the injected comets must be outside a ‘forbidden
region’ around the Sun, whose size decreases with increasing val-
ues of the parameter:

Idist ¼
MH

VHb2
�

ð10Þ

Hence we expect NS to correlate positively with Idist and will look for
such a correlation as an indicator of tidal interactions as injection
mechanism.

We will refer to Iclose and Idist as ‘‘strength parameters’’ for close
and tidal encounters, respectively, and the units to be used are so-
lar masses (M�) for Mw, 40 km/s for Vw, and 2 � 104 AU ’ 0.1 pc for
b�. The common factor Sw = Mw/Vw may be regarded as a specifi-
cally stellar strength parameter independent of the encounter
geometry (Dybczyński, 2002). Within each stellar type of Table 1
some scatter of Sw is caused by the spread in velocities as indicated
by rV, but if we calculate mean values hSwi = Mw/hViusing the listed
mean values hVi, we find that these vary by a factor �90 from B0
stars with h Swi ’ 15 to M5 stars with h Swi ’ 0.16 in the above
units.

These differences are in reality compensated by the different
encounter frequencies – also listed in Table 1. Encounters with
M5 stars are more than 1000 times more frequent than those with
B0 stars. When discussing our results for NS versus Iclose and Idist, it
is worth keeping in mind the actually expected minimum encoun-
ter distances of each stellar type over a 1 Gyr time scale (taken as
representative for the long-term evolution of the Oort cloud).
Using the listed encounter frequencies, we may calculate the area
that yields 1/2 encounters during 1 Gyr for the type of star in

question, and we may take the radius of the corresponding circle
for the distance of the expected closest encounter. The result is
�60,000 AU for B0 stars and �2000 AU for M5 stars.

In Fig. 1 we plot NS as found in our simulations versus the
strength parameter of the corresponding stellar encounter Iclose

(left panels) and Idist (right panels). The upper panels display re-
sults for the stellar types with the smallest hSwi. These are K0,
K5, wd, M0 and M5 stars. The lower panels show gi, A5, A0 and
B0 stars, which have the largest hSwi values. In both cases we use
colours to identify the individual types. We also include the inter-
mediate types (F0, F5, G0 and G5) in all diagrams, plotted with grey
circles.

The most striking result appears for the high-mass stars. These
are seen to show a very good correlation between NS and Idist over a
major part of the plotted range, while no correlation whatsoever is
observed for Iclose. The top, rightmost part of the diagrams exhibit a
saturation effect, to which we shall return below. In the lower part
of the Idist diagram, for NS < 10, we also see an increasing effect of
statistical noise. For the low-mass stars the picture is somewhat
less clear – partly due to the small values of NS in many cases.
However, the correlation of NS with Iclose is clearly better than
the one with Idist.

If we look at any particular stellar type, the closest encounters
with b� � 3000–5000 AU (generally shown by the rightmost points
in each diagram) cannot be expected to inject most comets by tidal
perturbations. For the high-mass stars we might have seen this as
an extra scatter, if there had not been the mentioned saturation ef-
fect. But it would not matter in practice, since even over the age of
the Solar System not a single such encounter is statistically ex-
pected, given the rarity of such stars. For the low-mass stars the
correlation with Iclose is quite good all the way from the closest
encounters to the region, where the statistical noise prevents safe
judgements. This means encounter distances up to b� � 30,000 AU
if not more.

Hence we conclude that as regards stellar injections from the
Oort cloud, the stars of highest mass are basically distant, tidal per-
turbers, while the common, low-mass stars act mostly via close
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Fig. 1. Number of comets entering the observable region due to individual stellar encounters versus Iclose (left panels) and Idist (right panels). In the upper panels we plot low-
mass stars (Mw 6 0.9 M�), using violet colour for K0 stars, blue for K5 stars, green for white dwarf stars, skyblue for M0 stars (in all cases filled circles), and open black circles
for M5 stars. In the lower panels we plot high-mass stars (Mw > 2 M�), using orange colour for giant stars, yellow for A5 stars, pink for A0 stars (in all cases filled circles), and
open red circles for B0 stars. The grey circles indicate the stars of intermediate masses (F0, F5, G0 and G5 stars). We have plotted regression lines (linear fits in log scale) at the
upper left for low-mass stars, and at the lower right for high-mass stars. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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encounters with comets – at least when passing through the inner
or central parts of the cloud. We interpret this as a trend with
increasing stellar mass for comet injection to move from close
encounters along the stellar track to distant ones affecting large
parts of the Oort cloud at the same time. Since this trend should
be continuous, the stars of intermediate masses (including the so-
lar type stars) are likely to act in both ways, so the mechanism
could be different for different, individual comets.

The lines drawn are regression lines, yielding power-law fits for
NS. In the case of low-mass stars we have excluded all the M5 stars
and those other stars that yield NS < 5 for lack of statistical signif-
icance. For the high-mass stars we excluded the saturated region
with Idist > 0.1. The mathematical expressions for the power laws
are:

NS ¼ I1:82
close � 101:21; ð11Þ

(low-mass stars), and:

NS ¼ I0:89
dist � 101:11; ð12Þ

(high-mass stars). The scaling factors play the role of referring NS to
an Oort cloud with 106 comets. The power law indices of the above
formulae are defined with standard deviations of ±0.11 for Iclose and
±0.01 for Idist. The standard deviations of the exponents entering
into the scaling factors are ±0.39 and ±0.13, respectively. Note the
good agreement of our result for the Iclose index with the theoretical
value of 2 derived above.

Our results for injection probabilities due to stellar encounters
should be compared with those of Dybczyński (2002). We find
much larger values than he did, but this is essentially a result of
different initial conditions. Instead of choosing the initial cometary
orbits with perihelion distances q > 50 AU (Dybczyński, 2002), we
start the simulations with q > 32 AU, and each new stellar encoun-
ter brings some comets closer to the loss cone so that the next star
may act on comets with q closer to 15 AU. Apart from this differ-
ence, we note a general similarity of the results – e.g., Dybczyński
(2002) found a variation of injection efficiency for b� = 30,000 AU
that is slower for large stellar strength parameters than for small
ones (cf. his Fig. 6), and this may be interpreted using our results
as a shift from tidal injections in the first case to close encounters
in the second.

Our results demonstrate quantitatively that heavy stars are
long-range perturbers, typically injecting comets from large parts
of the Oort cloud without having to pass very close to the Sun,
while low-mass stars in general affect comets mainly near their
tracks and need to pass very close to the Sun in order to induce
large numbers of injections. In reality, of course, such close
encounters are very rare, and even though high-mass stars have
much lower encounter frequencies (see Table 1), the latter enjoy
the advantage of not having to pass as close in order to cause large
effects.

The last feature to be noted in Fig. 1 is an apparent saturation of
the injected number at about 1000. While the low-mass stars never
reach this level, the high-mass stars sometimes do. The reason for
the saturation is the complete filling of the loss cone (cf. RFFV08).
This orbital domain, defined by q < 15 AU, is normally almost
empty in our model of the cloud, and it gets repopulated by each
stellar encounter. However, these encounters can do no more than
thermalize1 the velocity distribution of the comets – there is no rea-
son for them to aim in particular at the loss cone when perturbing
the velocities or to overpopulate any part of it, like for instance,
the observability zone. Therefore the number of injected comets

has a maximum given by the number of comets in our modelled Oort
cloud, which would have q < 5 AU in a thermalized distribution.

This number is easy to estimate, using the fraction 2qo/a with
qo = 5 AU (Bailey and Stagg, 1988) and the probability density func-
tion f(a). Integrating the product of these with respect to a over the
extent of the cloud, and normalizing to a total population of 106

comets, we get a value between 1000 and 2000, in agreement with
the ceiling observed in Fig. 1.

From these results, even though the distribution of encounter
distances that we use is very different from reality, our results sug-
gest high-mass stars to be at least as important as low-mass stars
for direct injection of comets from the Oort cloud in the long run
despite their much lower encounter frequency. This will be further
discussed in Section 4.

3.3. The tidally active zone

The synergy observed in RFFV08 during periods outside comet
showers may result largely from the fact that stellar encounters
randomize the comet orbital elements and consequently repopu-
late the regions of phase space, from which the tides may inject
the comets into the observable region.

Let us consider the case of integrable dynamics involving only
the Galactic disc tide. In this framework, we have to assume that
the semi-major axes of the comets are small enough to allow the
averaging of the equations of motion with respect to the mean
anomaly (see Heisler and Tremaine, 1986; Breiter et al., 1996; Fou-
chard et al., 2005), and we neglect the radial component of the
tides as well as stellar encounters.

In this case it is well known (Breiter et al., 1996) that the evo-
lution of the perihelion distance is strictly periodic. Hence, a comet
can be injected into the observable region only, if the minimum va-
lue of the perihelion distance over one cycle is smaller than 5 AU.
The phase space region of the Oort cloud which contains all such
comets will be called the tidally active zone (TAZ).

According to the work of Matese and Whitman (1992) one can
easily define the TAZ, using the integrability of the system. Indeed,
the minimum value of the angular momentum Gmin of a comet or-
bit is given by:

G2
min ¼

1
8

5L2 þ 5H2 � G2
0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5L2 þ 5H2 � G2

0

� �2
� 80L2H2

r
;

where

G2
0 ¼ H2 þ 1� H2

G2

 !
G2 þ 5ðL2 � G2Þ sin2 x
� �

;

and we have L ¼ ffiffiffiffiffiffila
p

; G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lað1� e2Þ

p
and H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lað1� e2Þ

p
cos i.

Consequently, under an integrable Galactic tide, the minimum
value that the perihelion distance of a comet can reach is:

qmin ¼ a 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� G2

min

la

s0
@

1
A: ð13Þ

The TAZ can then be obtained as the region of phase space in
which, according to the equations above, L, G and H are such that
qmin < 5 AU. We may compare with the work of Maciejewski and
Pre�tka (1998), who gave a criterion for an Oort cloud comet in
order certainly not to become observable under the effects of a
quasi-integrable tide. Specifically, considering only the normal
component of the tide but without averaging, they computed a
global minimum rmin of the heliocentric distance depending only
on the total energy and the normal component of the angular
momentum. Doing this for a comet on a given orbit, in case the
result is rmin > 5 AU, the comet would never become observable
according to our criterion. However, because the minimum is

1 The fact that we exclude comets with q < 32 AU makes very little difference and
the effect may be neglected.
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global, rmin is not the same as the minimum heliocentric distance
reached by this comet with its specific values of initial eccentricity
and argument of perihelion during an arbitrarily long time. The lat-
ter is instead approximated by our result for qmin. This conclusion
is independent of the fact that their system was not averaged.

Consequently, their criterion might be efficient for speeding up
simulations, since one would integrate only the comets for which
rmin < 5 AU (as far as neither the radial component of the tide nor
stars are taken into account). Because 5 AU P qmin P rmin for our
TAZ, all its comets would be integrated using the (Maciejewski
and Pre�tka, 1998) criterion, but if we would define the TAZ using
rmin instead of qmin, we would have many comets inside that TAZ,
which in fact cannot enter the observable region. Consequently,
even though we have one additional hypothesis since we have
averaged our equations of motion, we will use the above qmin to de-
fine the TAZ.

Let us now consider three regions: the inner region (a < 20,000
AU), the central one (20,000 < a < 50,000 AU), and the outer one
(50,000 < a < 100,000 AU). The part of the cloud outside these re-
gions is not considered, since it is empty at the beginning and re-
mains almost empty during the integrations. Furthermore, we
cannot consider an integrable tide for such comets. Strictly speak-
ing, integrability only holds true for the inner region and part of the
central region.

Fig. 2 shows the fraction of comets in the TAZ (in per cent) ver-
sus time, as found in the Model G simulation, for the three regions
of the Oort cloud and for the entire Oort cloud (excluding any
comets with a > 100,000 AU). Note that this tide model includes
the radial component in addition to the obvious fact that we treat
non-averaged equations of motion. We may thus expect important
effects (see below) for the outer Oort cloud region, when applying
the theoretical TAZ to the simulation results. The three regions are
plotted using different colours, while the black curve shows the
result for the entire cloud.

In the beginning of the integration, i.e., at time t = 0, the filling of
the TAZ is generally at its maximum. The outer region shows a spe-
cial behaviour, as discussed below. Moreover, since our choice of
initial orbital elements assumes that the Oort cloud is thermalized,
we may consider that the initial fraction corresponds to a com-
pletely filled TAZ. The fractions of comets in the TAZ when it is
completely filled are thus: pfull = 5.85%, 2.63% and 1.80% for the in-
ner, central and outer regions of the cloud, respectively. For the en-
tire Oort cloud we have pfull = 5.42%. We note that pfull is higher for
the regions closer to the Sun. This can be realized from Eq. (13),
since it is easily seen that G2

min / la, and thus qmin / a. Hence,

everything else being fixed, qmin decreases for decreasing semi-ma-
jor axis, and consequently, the relative measure of the TAZ
increases.

As time goes on, the TAZ gets depleted, since the comets that
enter the observable region on account of q < 5 AU get removed
from the integration. Let us now consider this depletion of the
TAZ in more detail for each region of the Oort cloud separately.

� In our dynamical model, no comets of the inner region are able
to jump the Jupiter–Saturn barrier, since the tides are not strong
enough to decrease the perihelion distance from q P 15 AU to
below 5 AU in only one orbital period. Hence, even though
the TAZ gets depleted as seen in the Figure, there are no comets
injected into observable orbits. The relatively slow depletion of
the TAZ is explained as follows. As specified in Section 3.1, the
simulation is stopped and the comet is lost as soon as its helio-
centric distance r 6 rc = 15 AU.2 As time goes on, the TAZ popu-
lation is reduced in relative terms, since more comets located in
the TAZ reach the limiting value rc = 15 AU than comets that
are outside the TAZ. The low speed of the depletion is due to
the very long periods of the perihelion cycle for inner region com-
ets. Indeed, this period is proportional to 1/Porb, where Porb is the
orbital period (see Matese and Whitman, 1992; Breiter et al.,
1996).
� The depletion of the TAZ is particularly evident for the central

region (see Fig. 2) and occurs mainly during the first billion years.
This fast depletion is explained by the fact that the period of the
perihelion cycle (Pq) is shorter than for the inner region. In fact,
most comets in the inner region have Pq > 5 Gyr, so there is not
enough time in our simulation for the TAZ to get fully depleted.
But in the central region we can expect that most comets have
Pq < 5 Gyr, so the TAZ should have time to get nearly fully
depleted. However, we see that even at the end of the integration,
the TAZ is not entirely empty. This fact is explained by two prop-
erties of the dynamics. First, we recall that the integration of a
comet is stopped, when its heliocentric distance becomes less
than 15 AU. Thus, a necessary condition for a TAZ comet to be
excluded is that at the time when its perihelion distance is smal-
ler than 15 AU, the comet should actually be close to its perihe-
lion. For large semi-major axes, the probability of this event
decreases as the inverse of the square of the orbital period (Fou-
chard et al., 2010). A comet may hence stay in the TAZ even if
the period of its perihelion cycle is short (implying a large orbital
period). Second, and probably the main point, the real dynamics
is not integrable, since the assumption of an orbit-averaged Ham-
iltonian as implicit in our definition of the TAZ breaks down. In
addition there is also the radial component of the tide, which is
not considered in the TAZ definition. As a result, the TAZ border
cannot be strictly hermetic. This permeability of the TAZ
increases with the semi-major axis, since the influence of the
non-integrable part of the dynamics (including the radial compo-
nent) increases with increasing semi-major axis (Heisler and Tre-
maine, 1986; Fouchard et al., 2005).
� These two properties obviously apply to the outer region as

well. The permeability of the TAZ is now very high. This is
why the filling of the TAZ is almost constant with time for this
region of the Oort cloud.

3.4. Filling of the tidally active zone by stars

What happens when the stars are at work? Each time a star
passes through the Oort cloud, it perturbs the orbital elements of

Fig. 2. Percentage of comets in the TAZ for different regions of the Oort cloud. The
blue, green, red and black curves illustrate, respectively, the inner, central, outer,
and entire Oort cloud. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

2 If the perihelion distance at this time is q < 5 AU, we record a case of comet
injection.
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many comets – notably those placed near its track – injecting some
of them into the TAZ, and ejecting some of them from the TAZ. If
the Galactic tides are not at work, from a statistical point of view,
nothing happens. But, if the tidal effects are included, the density
inside the TAZ will be lower than the density outside it. Then the
action of the stars will be to fill the TAZ, thereby tending to balance
these two densities. We will now study this phenomenon by sim-
ulating the evolution of an Oort cloud in the presence of both the
Galactic tides and the stellar encounter sequences described in
Section 3.1.

In order to quantify the effect of a star, we define a TAZ filling
efficiency at time tw (the time of perihelion passage of the star,
when its perturbations on the comets are applied) by:

f ¼ ninjðtHÞ
nOort

� 1
pfull

;

where ninj is the number of comets passing from outside the TAZ at
tw � � to inside the TAZ at tw + �; � is a short interval of time, nOort is
the number of comets at tw + � in the Oort cloud, and pfull is the full
TAZ fraction of the Oort cloud as given in Section 3.3. Obviously, one
may compute f for each sub-region of the Oort cloud (inner, central,
or outer). The quantity � should be taken sufficiently small in order
that no, or at most very few, comets are removed from the integra-
tions between tw � � and tw + �. We have taken � = 1000 yr.

Fig. 3 shows the value of f in per cent versus the impact param-
eter with respect to the Sun (b�) for each cloud region and for all
the stars used in our simulations. The following observations
may be made.

� All plots show a rather clear separation of the efficiency factor
with respect to the stellar type, which shows that the stellar
mass and velocity are key parameters for TAZ filling. A satura-
tion effect is often seen, whereby – for obvious reasons – the f
values are limited to ’100% or less.
� As regards the inner Oort cloud region, (1) for low-mass stars

(wd stars and lighter), f is at most 24% for a white dwarf with
a solar impact parameter b� � 3300 AU. For b� > 12,000 AU, f
is always smaller than 3.5% and drops to values below 1% for
b� > 25,000 AU. (2) For the massive B0 stars, values of f > 80%
are reached, when the impact parameters b� are less than
5000 AU, while for b� > 25,000 AU, f decreases below 15%.
� For the central Oort cloud region, the picture changes drasti-

cally. High-mass stars (A5 stars and heavier) excluding the B0
type are now able to fill up 70% of the TAZ for impact parame-
ters around 20,000 AU or less. For impact parameters around
50,000 AU, up to about 25% of the TAZ is refilled by these stars
(and up to 50% for B0 stars). Regarding the low-mass stars, the
best filling efficiencies are 60–70% for impact parameters less
than 4000 AU. For impact parameters around 10,000 AU and
50,000 AU, f drops to values around 30% and 2.5%, respectively,
i.e., one order of magnitude smaller than the values obtained for
high-mass stars.
� Concerning the outer Oort cloud region, despite the fact that

the TAZ is not well defined as already pointed out in Sec-
tion 3.3, we still observe that massive stars are 5–10 times
more efficient than light stars in filling the TAZ. The filling effi-
ciency can reach high values even for large impact parameters
(it may be larger than 100% at d� > 60,000 AU for B0 stars).
However, one should note that even the tide alone is able to
fill the TAZ in this case. Indeed, it appears that during the time
span Dt ’ 250 Myr separating the stellar encounters of our
simulations, the tides fill the outer TAZ almost completely.
This demonstrates the large permeability of the TAZ at such
large semi-major axes.

In Fig. 4 we plot the value of the TAZ filling efficiency f as com-
puted between the stellar encounters versus the stellar mass of the
preceding encounter, for the three regions of the Oort cloud. Spe-
cifically, we count ninj from tw + � for one stellar encounter to tw � �
for the next one, and we use nOort at the latter occasion. In this case
the TAZ filling is only due to the tides. We see that for the three re-
gions the values of f are gathered in different ranges: [0.15%,
0.88%], [0.74%, 21.2%] and [38%, >100%] for the inner, central and
outer Oort cloud, respectively. This is a demonstration that the
TAZ is indeed almost hermetic in the inner Oort cloud, moderately

Fig. 3. Efficiency f of individual stars to fill the TAZ for the inner Oort cloud region
(top diagram), central region (middle diagram) and outer region (bottom diagram)
versus the solar impact parameter. The colour codings of stellar types are the same
as in Fig. 1. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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permeable for the central Oort cloud and completely permeable for
the outer Oort cloud.

Interestingly, we observe a slight dependence on the stellar
mass with higher values of f for higher stellar masses. A priori,
the stellar perturbations should not affect the TAZ filling, since f
is computed between these encounters. Our explanation is that
just outside the frontier between the TAZ and the rest of the phase
space there is a transition region in which the tide is inefficient (as
anywhere outside the TAZ), but the perturbation needed to transfer
the comet from this transition region into the TAZ is so small that it
can be provided by the non-integrable component of the tide.
When the TAZ gets depleted due to comets falling into the loss
cone, this mobility acts to resupply comets into the TAZ, whereby
the transition region also gets depleted. Since massive stars are
more efficient to fill the TAZ, they are also more efficient to fill
the transition region, and hence the tides are more efficient to fill
the TAZ after such stellar encounters.

Because the inner Oort cloud does not contribute to the flux of
observable comets without the direct help of a stellar perturba-
tion,3 and since the TAZ of the outer Oort cloud is easily refilled by
the tides only, we will now concentrate on the central part of the
Oort cloud.

For the central Oort cloud, Fig. 5 gives f (in per cent) versus Iclose

(upper panel) and versus Idist (lower panel) for individual stars. Lin-
ear fits in log scale (shown by the straight lines) are given by:

f / I2:74	0:08
close ; ð14Þ

where the fit has been made for the ensemble of wd, K0, K5 and M0
stars (upper panel), and:

f / I1:00	0:02
dist ; ð15Þ

for gi, A5, A0 and B0 stars together (lower panel). Note that a cut-off
has been made for Idist > 0.002 in this case in order to avoid the sat-
urated region.

Comparing Eqs. (14) and (15) with Eqs. (11) and (12), we note
that the power law indices are similar. This is an indication that
the relative efficiencies of stars to inject comets into the TAZ are
similar to those of injecting comets directly into observable orbits.

3.5. Long term dynamics

Let us now study the effect of the TAZ filling efficiency on the
flux of observable comets over a long time scale. We will consider
two sets of stars, one including 20 A5 stars (Mw = 2.1 M�) and the
other including 20 K0 stars (Mw = 0.78 M�). The geometries of the

encounters are different in the two cases except in the very begin-
ning of the sequence.

We perform three computations including: (i) the Galactic tides
only, (ii) stars only, and (iii) both Galactic tides and stars, and we
compare the results as in RFFV08. Our model parameters for the
cloud are the same as described in Section 3.1, i.e., all regions (in-
ner, central and outer) are included. The results of the simulations
in terms of numbers of injected comets during 20-Myr intervals
over a total time scale of 5 Gyr are plotted in Fig. 6.

The direct injections (Section 3.2) are limited to the time bin of
the respective encounter, as shown by the grey spikes. We notice
that for similar solar impact parameters, the height of these spikes
is always smaller for K0 stars than for the higher-mass A5 stars.
This is in agreement with the results found in Section 3.2.

We also notice that the combined models (white histograms)
show a continuous excess of injected comets with respect to the
tide-only models (black histograms) of the kind seen in RFFV08.
This reflects the synergy discussed in RFFV08 and is largely ex-
plained by the filling of the TAZ induced by stellar perturbations.
The lower plots of Fig. 6 show the time evolution of the amount
of TAZ filling given by

pTAZ ¼
nTAZ

nCR
� 1
pfull

; ð16Þ

in the central Oort cloud region, for the combined model with A5
stars (lower plot of Fig. 6a), and for the combined model with K0
stars (lower plot of Fig. 6b).

Concentrating on times larger than 1 Gyr, and comparing the
two kinds of stars, we clearly see a correlation between the filling

Fig. 4. For the inner (blue open triangles), central (green open circles) and outer
Oort cloud (red open squares), we plot the efficiency f of the tides to fill the TAZ
between stellar encounters, versus the stellar masses. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 5. Efficiency f of individual stars to fill the TAZ of the central Oort cloud versus
Iclose (upper panel) and Idist (lower panel). The colour coding of the points is the
same as in Fig. 3. The full-drawn lines indicate linear fits in log scale. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

3 Note that this may not be true in reality but is implied by our simplified
treatment of planetary perturbations.
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of the TAZ and the excess of injected comets of the combined mod-
els. We may also recognize that the excess jumps to higher levels
in connection with the closest, most effective stellar encounters.
These results prove that the filling of the TAZ by passing stars is
the fundamental mechanism behind the synergy between the
Galactic tides and stellar perturbations. As seen from the diagrams,
this synergy is able to trigger ‘‘comet drizzles’’ due to single
encounters filling the TAZ, inducing a significant increase of the
flux of observable comets lasting up to a few hundred Myr.

4. Cumulative stellar effects in long term simulations

4.1. Initial conditions and simulations

We now consider the same thermalized initial Oort cloud as in
RFFV08. Specifically, the cloud is constructed in the same way as in
Section 3.1, but the semi-major axes are chosen with a probability
density / a�1:5

o (Duncan et al., 1987).

We also use the same sample of passing stars as in RFFV08, de-
fined as follows: we build a predefined set of 197,906 stellar
encounters, occurring at random times during an interval of time
from t = 0 to 5 Gyr, with random solar impact parameters up to
dmax = 4 � 105 AU, and with random stellar masses and velocities
(see Table 1) (Rickman et al., 2004, 2008).

As seen from Table 1, the encounter frequency is much smaller
for heavy stars than for light ones, and consequently the number of
encounters is much larger for light stars than for heavy stars. In
fact, out of a total number of 197,906 stellar encounters, 191,036
are due to light stars and only 6870 are due to heavy stars.

We recall that for models S(light) and C(light) only the light
stars (Mw < 1.2 M�) are taken into account, and for models S(heavy)
and C(heavy) only the heavy stars (Mw > 1.2 M�) are at work.

4.2. Synergy induced according to the star samples

In Table 3 we list the number of comets entering the observable
region during intervals of 1 Gyr, for the different sets of models de-
scribed at the end of the Introduction.

Moreover, as in RFFV08, in order to quantify the synergy we
have computed the quantities: DNC = NC � NG � NS and s = DNC/
(NS + NG).4

Looking at Table 3, we notice that we always have
NS(all) < NS(heavy) + NS(light). This means that the intersection
between the sets of comets injected by heavy stars and by light
stars is not empty. Specifically, we observe from Table 3 that the
sum of the injected numbers in the S(heavy) and S(light) models
exceeds NS(all) by about 20%.

Now, consider the total number of comets injected during the
whole time span of 5 Gyr in the S(light) or S(heavy) model, and
let us define an efficiency factor of a star sample to inject comets
by: gS = (number of comets injected)/(number of stellar
encounters). We get, respectively: glight ’ 1.9 � 10�2 and gheavy =
39 � 10�2.

However, due to the high encounter frequency of light stars
(one every 26,000 yr), we have to expect that the stars of the
S(light) model will as a rule interfere with each other, as comets
are being injected. The number of injected comets may be affected
by these interferences, and thus it is not directly comparable to the
injected number in the S(heavy) model, where the amount of inter-
ference is much smaller (one star every 730,000 yr). Thus, in order
to compute gheavy for an encounter frequency similar to the one of
light stars, we rather consider the difference between the number

(a)

(b)

Fig. 6. The upper panels show the number of injected comets per 20 Myr versus
time. The black histograms correspond to the tide-only model, the grey ones to the
star-only model, and the white histograms to the combined model. The impact
parameters of the closest encounters are written above each plot. Lower panels:
amount of the TAZ filling versus time for the central cloud region. Figure (a) is for A5
stars (2.1 M�) and (b) for K0 stars (0.78 M�).

Table 3
Number of comets entering the observable region during periods of 1 Gyr. Model G
corresponds to the Galactic tide alone, S to passing stars alone, and C to Galactic tide
and passing stars together (all, heavy and light mean that all, only the heavy or only
the light stars are taken into account in the simulations). hsi is the increment from the
sum of the two first rows (Galactic tide plus passing stars separately) to the third row
(Galactic tide and passing stars together).

Model [0–1] Gyr [1–2] Gyr [2–3] Gyr [3–4] Gyr [4–5] Gyr

G 2117 801 473 307 252
S(all) 1367 1620 1101 688 480
C(all) 3703 3244 2450 1782 1276
hsi 6.29% 33.99% 55.65% 79.1% 74.32%
S(heavy) 855 985 352 306 205
C(heavy) 3075 2391 1583 1259 934
hsi 3.47% 33.87% 91.88% 105.38% 104.38%
S(light) 810 901 915 622 482
C(light) 3174 2617 2292 1831 1487
hsi 8.44% 53.76% 65.13% 97.1% 102.59%

4 For the all-stars models, a small discrepancy with the results of RFFV08 may be
noticed. This is due to a correction of our code in the check of perihelion passages.
However, the discrepancy does not change in any sense the results of RFFV08.
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of comets injected by all the stars in model S(all) and those injected
by the light stars only in model S(light), i.e., 5256–3730 = 1526. We
consider the injection of this number of comets to be due to the
heavy star encounters. Finally, we compute gheavy = 1526/6870,
obtaining: gheavy ’ 22 � 10�2.

Consequently, even in a full simulation where several stars al-
most always act simultaneously, heavy stars are at least 10 times
more efficient than light stars in order to directly inject comets into
the observable region.

As regards the synergy, we note that the values of hsi after more
than 2 Gyr are higher for those combined models where only one
subset of stars is included. The main circumstance contributing
to this feature is the lower number of injected comets for the
star-only models when only one subset of stars is considered.
The corresponding number in the combined models is smaller
too but by far not to the same extent.

In view of the small number of heavy stars, the high values of
hsi for the heavy-star combined model are striking. As already
noted in RFFV08, and as shown in Section 3.3, this synergy is
mainly explained by the injection of comets by stars into the TAZ.

In Fig. 7 we plot the results of three sets of simulations: those
obtained with all (heavy + light) stars (Fig. 7a), with only heavy
stars (Fig. 7b), and with light stars only (Fig. 7c). The upper panel
of each figure shows the number of comets injected into the obser-
vable region (perihelion passages with q < 5 AU) per period of
20 Myr versus time for three models. The black histograms corre-
spond to the tide-only model (model G), the grey histograms cor-
respond to the star-only models, i.e., models S(all), S(heavy) and
S(light), and the white histograms correspond to the combined
models: C(all), C(heavy) and C(light). Let NG, NS and NC be the num-
bers of comets plotted in the black, grey and white histograms,
respectively. Then the lower panels show the quantity: DNC = NC–
NG–NS, which measures the synergy arising, when both the Galactic
tide and the stars act simultaneously. Fig. 7a shows the same re-
sults as Fig. 2 of RFFV08.

In RFFV08, we found over the first �500 Myr that the synergy
was negative, i.e., the sum of the separate fluxes was larger than
the combined flux. As explained by Matese and Lissauer (2002),
this result is a typical outcome, when both tides and stars are indi-
vidually able to fill the loss cone. The same phenomenon is ob-
served in the present results for all three sets of simulations. But,
in addition, in the lower panels of Fig. 7 – showing the values of
DNC computed every 20 Myr – we see that over the entire 5 Gyr
of simulation, the synergy parameter DNC becomes negative sev-
eral times later on, namely, when showers occur. During those
periods both the tides and the stars are indeed able to fill the loss
cone individually. This phenomenon was not observed in RFFV08,
since DNC was then computed over periods of 50 Myr, which
smoothed out the effect of the showers.

As may be noticed in Fig. 7b, the flux of comets generated by the
heavy-star model shows large fluctuations and drops to zero sev-
eral times. This indicates that the flux is characterized by comet
showers completely filling the loss cone, which are separated by
quiescent periods, during which the loss cone may become empty.
On the contrary, the flux induced by the light stars is rather char-
acterized by a permanently non-empty loss cone. Because strong
comet showers occur during the two first billion years for the hea-
vy-star model, the two fluxes (heavy stars and light stars) are over-
all comparable. Note that the relative difference between these
two fluxes is much less than the corresponding difference in the
number of stars (about a factor 28).

4.3. TAZ filling and flux of observable comets

In order to highlight the fundamental role of the TAZ filling to
explain the flux of injected comets, we have devised the following

experiment. We perform three different Oort cloud simulations
(using a probability density / a�1.5 in semi-major axis, as ex-
plained above) including both Galactic tides and stars: these differ
only in terms of the set of initial conditions and the sequence of
passing stars. The same three simulations have also been used as
the basis of a different investigation of comet injection, which we
are publishing separately in a paper submitted to Astronomy and
Astrophysics.

The TAZ filling only relates to the flux of injected comets during
quiescent periods, i.e., outside comet showers. Thus, for the present
purpose we need to identify the latter. We consider that a star in-
duces a shower, when its encounter parameters d�, Vw and Mw give
an estimated number of injected comets NS > 25, as computed from
Eqs. (11) or (12) (depending on the stellar mass). The number 25
corresponds more or less to the background flux observed at the
end of the simulations (see Fig. 8). In the case of such an encounter,
we consider the shower to start at the perihelion passage of the
star and to last for 10 Myr.

The full time span of each simulation is split into intervals of
100 Myr, starting 50 Myr after the beginning. Now consider specif-
ically the central region of the Oort cloud. For each time interval
we consider the number nTAZ of comets in the TAZ of the central
region computed at the middle of the interval, and the number nobs

of injected, observable comets coming from the central region dur-
ing the quiescent part of the interval. We denote the length of this
quiescent part, which is obtained by subtracting all the 10 Myr
shower periods, by Tq. We then compute the quiescent flux sobs

of observable comets per Myr by:

sobs ¼
nobs

Tq
: ð17Þ

Let us now assume that the quiescent flux of new, observable com-
ets per Myr is strictly proportional to the number of comets in the
central TAZ, i.e.,

sest ¼ nTAZ � C; ð18Þ

where C is a constant. We will use a value of C defined by the qui-
escent, injected comets between 300 and 500 Myr (this period is
chosen because a transient effect is still at work in our simulations
during the first 200 Myr5) (see Fouchard et al., 2005). The reason we
do not choose this period of normalization even later is that we want
the TAZ to be almost full, allowing more confidence in the results.
We have:

C ¼ sH

obs

nH

TAZ
: ð19Þ

where the asterisks denote the specific use of the above-mentioned
time interval.

Each simulation yields a different value of C – namely, C = 0.644,
0.569 and 0.652 in units of 10�3 Myr�1 – the differences being due
to the specificity of each period. Because we want to treat C as a
constant, applicable to any simulation, we will use the mean value
C = 0.622 � 10�3 Myr�1.

Note that, knowing the number nCR in the central region of the
Oort cloud (this is �200,000), nTAZ may be replaced by pTAZpfullnCR,
according to Eq. (16). Consequently, we can also compute a maxi-
mum estimated flux corresponding to a completely filled TAZ
(pTAZ = 100%) by:

smax ¼ nCRpfullC; ð20Þ

For the three present sets of initial conditions, pfull = 2.542% for the
central Oort cloud. This is slightly different from the previous value

5 This transient effect is due to the flat initial distribution of arguments of perihelia,
which is not stable under the action of the Galactic tides. The tides modify this
distribution, resulting in an increase of the flux at the beginning of the integrations.

M. Fouchard et al. / Icarus 214 (2011) 334–347 343

110



pfull = 2.63%, since the probability density of the semi-major axes is
now chosen as / a�1:5


 instead of a�1

 . Thus, the present Oort cloud is

less concentrated toward the Sun, resulting in a lower value of pfull.
Fig. 8a–c shows in the top panels the number of injected, obser-

vable comets per interval of 20 Myr and the number of comets in
the Oort cloud at 500 Myr intervals versus time. The largest values
of Idist for passing stars are plotted in the middle panels, and at the
bottom the values of sobs for the central and entire Oort cloud are

plotted along with sest and smax. Each figure shows the output of
one of the three simulations (Fig. 8a corresponds to the model
C(all) already used in Section 4.2).

The agreement between sest and sobs for the central Oort cloud
is rather good and improves with time along the span of the sim-
ulations. Thus the assumption behind the calculation of sest

appears warranted. This highlights the importance of the Galactic
tides for comet injection from the central Oort cloud. The

(a)

(b)

(c)

Fig. 7. The upper diagrams show the number of injected comets per 20 Myr versus time (in Gyr). The black histograms correspond to the tide-only model (NG), the grey ones
to the star-only model (NS), and the white ones to the combined model (NC). The lower graphs exhibit the values of DNC = NC � NG � NS in each 20 Myr time bin. When
positive, DNC is plotted by a full black line; otherwise we use a dotted grey line. Figure (a) is for the all-stars models, (b) for heavy-stars models and (c) for light-stars models.
The black asterisks, grey asterisks and black rectangles in the upper panels indicate the number of comets remaining in the Oort cloud at intervals of 0.5 Gyr scale on the right
axis for the combined models, the only stars models and only tides models respectively.
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fluctuations shown by sobs are partly due to small number
statistics, since Tq is sometimes rather small, and partly to inherent
fluctuations in the efficiency of non-shower making stars between
different intervals. The relatively small difference between sobs

computed for the central and entire Oort cloud during the later
part of the simulations shows that the central Oort cloud gives
the major contribution to the quiescent flux of observable comets.

In addition, considering smax as an indicator of the number of
comets in the central Oort cloud, we observe that the overall deple-

tion of the Oort cloud comes mainly from its central part, whose pop-
ulation is depleted by almost a factor two in each simulation.

It is difficult to disentangle the role of individual stars in these
simulations. For each sufficiently large increase of sest as judged by
visual inspection of Fig. 8, Table 4 gives: the period during which
the increase occurs (column 1), the TAZ filling expressed by the
percentages pðiÞTAZ and pðf ÞTAZ at, respectively, the beginning (i) and
the end (f) of the 100 Myr periods (column 2), and the mass(es)
of the star(s) with the largest value(s) of Idist (if a single star is
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Fig. 8. In each diagram (a–c) the top panel gives the number of injected comets per 20 Myr (histogram) and the number of comets in the Oort cloud every 500 Myr (crosses).
The middle panel shows the largest values of Idist for passing stars (the colours denote different stellar types as in previous figures). The bottom panel shows the flux of
injected, observable comets per Myr outside showers during each 100 Myr interval (sobs) for the central Oort cloud (green line) and the entire Oort cloud (black line), the
estimated flux (sest) for the central Oort cloud (full red line) and the flux (smax) considering a filled TAZ (dashed red line). The figures represent three simulations using
different sets of initial conditions and sequences of passing stars. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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clearly identified, only one mass is given, while otherwise several
masses are listed) (column 3). This Table summarizes the most sig-
nificant cases of instant TAZ filling, leading to ‘‘comet drizzles’’ as
discussed in Section 3.5.

Most of the guilty stars are high-mass stars (Mw > 1.2 M�).
Among the ten comet drizzles listed, five involve stars of lower
masses, but one of these is a marginal case (Mw = 1.1 M�), and
two others involve high-mass stars as well. A striking feature in
Fig. 8 is the frequent occurrence of large Idist values for the lightest
M5 stars. This is due to the large overall frequency of these encoun-
ters, but note that Fig. 5 showed that even large Idist values mostly
lead to poor TAZ filling for those stars.

As seen in Fig. 8, the comet drizzles are generally associated to
one comet shower (except for the one starting between 0.5 and
0.6 Gyr in the first simulation, where three showers seem to con-
tribute to the TAZ filling). On the other hand, showers do not al-
ways give rise to visible drizzles, since it is harder to detect a
TAZ filling than a loss cone filling. This is mainly due to the fact that
the TAZ is never empty, whereas the loss cone is generally empty –
at least for moderate semi-major axes.

The influence of these few stellar encounters on the long term
flux is evident. Indeed, from a statistical point of view, the three
sets of stellar encounters should lead to an identical background
flux, whereas the comet showers and the comet drizzles may dif-
fer. In Fig. 8 we see that this is verified.

We observe in the top plots of Fig. 8a–c that during the last Gyr
the first simulation has no strong stellar encounters, whereas the
third one is affected by two such encounters yielding two comet
drizzles (Table 4). The final observed fluxes from the central Oort
cloud are 0.52 Myr�1 for the first simulation, and 0.97 Myr�1 for
the third one. Thus the third simulation produces 1.87 times more
comets from the central cloud at the end than the first one does.

This, again, is directly related to the TAZ filling, since at the end
the central TAZ is filled only to 55% in the first simulation, whereas
for the third simulation it is almost completely filled (97%). Consid-
ering the whole Oort cloud, the third simulation produces 1.39
times more observable comets at the end than the first one does.
This ratio is lower, since in our dynamical model the contribution
from the inner cloud outside showers is negligible, and the contri-
bution from the outer cloud is not affected by the comet drizzles –
its TAZ being always full.

Consequently, it appears that the flux of comets toward the ob-
servable region is closely related to the population of comets inside
the TAZ. At the end of the simulations, we note that a TAZ filled at
the level of 50–60% is guaranteed by the ‘‘background’’ passing
stars. However, a single passing star – preferably massive – is able
to fill the TAZ completely, resulting in an almost 100% increase of
the flux of observable comets from the central cloud and of 40%

from the entire cloud. Such increases may last for more than
100 Myr.

5. Conclusions

We have investigated the effect of stellar perturbations on the
flux of comets coming from the Oort cloud into the observable re-
gion. We considered 13 different spectral types including 11 main
sequence types, white dwarfs and giant stars.

As a first result it has been demonstrated and verified quantita-
tively (to our knowledge the first time) that high-mass stars
(Mw > 2 M�) – and in particular the most massive ones like the
B0 stars – inject comets from large parts of the cloud during each
encounter, whereas light stars (Mw < 1 M�) mainly affect comets
in their close vicinity. The number of injected comets is generally
much larger for high-mass than for low-mass stars, thus partly
compensating for the relative rarity of their encounters. Moreover,
the efficiency of the stars to fill the Tidally Active Zone (the region
from which the Galactic tides are able to decrease the perihelion
distance of a comet below 5 AU) is also strongly dependent on
the stellar mass.

Let us compare our study with that of Heisler et al. (1987). They
simulated the cloud for only about 300 Myr and were thus not able
to see the effects of very massive stars in creating comet showers.
Their conclusion was that such stars are too rare to be efficient, but
ours is quite different, since we follow the cloud for the full age of
the Solar System. We may add that even more massive perturbers,
like the GMCs, have so far been neglected in all Oort cloud simula-
tions of the present type. Only analytic studies have been devoted
to their effect on the Oort cloud (Hut and Tremaine, 1985) or wide
binaries (Weinberg et al., 1987).

We have shown that the TAZ filling due to stellar encounters is a
fundamental condition for injection of comets into the observable
region. Indeed, as was already asserted in RFFV08, we have shown
that the filling of the TAZ is directly related both to the synergy be-
tween the Galactic tides and stellar perturbations and to the flux of
injected, observable comets.

The massive stars not only induce stronger comet showers than
light stars do, but they are also able to trigger a synergy with the
Galactic tides that may last for a few hundred Myr. Because of this
synergy, a single star – preferably massive – is able to almost dou-
ble the flux of comets from the central cloud for more than
100 Myr. If one considers the entire Oort cloud, the flux of comets
is thus multiplied by about 1.4. We have called such events comet
drizzles. It is important to keep in mind that the current flux of new
Oort cloud comets may be influenced by an encounter with a mas-
sive star that occurred more than 100 Myr ago.

In conclusion, one may consider the flux of observable comets
as a two steps mechanism: (i) First the comet is injected into the
TAZ under the effects of stellar perturbations. This zone acts like
a ‘‘waiting room’’ before entering the loss cone. (ii) Then the comet
is sent from the TAZ into the depth of the loss cone under the ac-
tion of the tides. Consequently, the long term synergy between
tides and passing stars is crucial in order to maintain a flux of ob-
servable comets on a long time span. This is yet another new fea-
ture as compared with Heisler et al. (1987). Their �300 Myr
simulations started with a thermalized cloud, i.e., a filled TAZ,
and there was no time to empty it. Thus they found that comet
injection is dominated by the Galactic tide. We too find that this
is the case at the present time, but we emphasize that the reason
is the long-term refilling of the TAZ by stellar encounters, espe-
cially those of high-mass stars.

As a final remark, note that on a time scale of �100 Myr, the Sun
is orbiting the Galactic centre and oscillating ‘‘vertically’’ through
the Galactic mid-plane. Thus, the frequency of stellar encounters
– and in particular that of high-mass stars – may show important

Table 4
The periods during which clear increases of sest are observed in Fig. 8, the values of
the TAZ filling at the beginning pðiÞTAZ

� �
and at the end pðf ÞTAZ

� �
, and the masses of the

stars with the largest values of Idist that passed during the respective periods.

Period (Gyr) pðiÞTAZ—pðf ÞTAZ (%) Mw (M�)

Simulation # 1
0.5–0.6 83–89 4, 0.21, 4
1.8–1.9 71–83 2.1
3.1–3.2 62–69 4, 0.21

Simulation # 2
1.8–1.9 70–82 1.3
4.1–4.2 59–70 0.78

Simulation # 3
1.4–1.5 68–78 2.1
2.7–2.8 78–83 1.3
3.5–3.6 74–86 0.21
4.1–4.2 75–88 9
4.8–4.9 76–101 1.1
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variations, and it will eventually be important to include those
variations (Gardner et al., 2011) when studying the likely origin
of the currently observed new comets. While there is currently
no way to verify observationally, whether we are living in a comet
drizzle, the results of Gardner et al. (2011) show that the current
location of the Sun near the Galactic mid-plane and near its peri-
Galacticon causes the present, tidally induced flux of new comets
to be higher (likely by �35%) than the long-term average. As far
as we can tell, the amplitudes of both variations are similar.
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Dybczyński, P.A., 2002. Simulating observable comets. I. The effects of a single
stellar passage through or near the Oort cometary cloud. Astron. Astrophys. 396,
283–292.

Fouchard, M., Froeschlé, Ch., Matese, J.J., Valsecchi, G.B., 2005. Comparison between
different models of Galactic tidal effects on cometary orbits. Celest. Mech.
Dynam. Astron. 93, 229–262.

Fouchard, M., Froeschlé, Ch., Breiter, S., Ratajczak, R., Valsecchi, G.B., Rickman, H.,
2007. Methods to study the dynamics of the Oort cloud comets II: Modelling the
Galactic tide. In: Benest, D., Froeschlé, Cl., Lega, E. (Eds.), Topics in Gravitational
Dynamics, Lecture Notes in Physics, vol. 729. Springer Verlag, Berlin, pp. 271–
293.

Fouchard, M., Froeschlé, Ch., Rickman, H., Valsecchi, G.B., 2010. Dynamical features
of the Oort cloud comets. In: Souchay, J., Dvorak, R. (Eds.), Lecture Notes in
Physics, vol. 790. Springer Verlag, Berlin.

Garcı́a-Sánchez, J., Weissman, P.R., Preston, R.A., Jones, D.L., Lestrade, J.-F., Latham,
D.W., Stefanik, R.P., Paredes, J.M., 2001. Stellar encounters with the Solar
System. Astron. Astrophys. 379, 634–659.

Gardner, E., Nurmi, P., Flynn, C., Mikkola, S., 2011. The effect of the Solar motion on
the flux of long-period comets. Mon. Not. R. Astron. Soc. 411, 947–954.

Heisler, J., Tremaine, S., 1986. The influence of the galactic tidal field on the Oort
comet cloud. Icarus 65, 13–26.

Heisler, J., Tremaine, S., Alcock, C., 1987. The frequency and intensity of comets
showers from the Oort cloud. Icarus 70, 269–288.

Holmberg, J., Flynn, C., 2000. The local density of matter mapped by Hipparcos.
Mon. Not. R. Astron. Soc. 313, 209–216.

Hut, P., Tremaine, S., 1985. Have interstellar clouds disrupted the Oort comet cloud?
Astron. J 90, 1548–1557.

Kaib, N.A., Quinn, T., 2009. Reassessing the source of long-period comets. Science
325, 1234.

Maciejewski, A.J., Pre�tka, H., 1998. Galactic disc tidal action and observability of the
Oort cloud comets. Astron. Astrophys. 336, 1065–1071.

Matese, J.J., Lissauer, J.J., 2002. Characteristics and frequency of weak stellar
impulses of the Oort cloud. Icarus 157, 228–240.

Matese, J.J., Whitman, P.G., 1992. A model of the galactic tidal interaction with the
Oort comet cloud. Celest. Mech. Dynam. Astron. 54, 13–35.

Oort, J.H., 1950. The structure of the cloud of comets surrounding the Solar System
and a hypothesis concerning its origin. Bull. Astron. Inst. Neth. 11, 91–110.

Rickman, H., 1976. Stellar perturbations of orbits of long-period comets and their
significance for cometary capture. Bull. Astron. Inst. Czech. 27, 92–105.

Rickman, H., Froeschlé, Ch., Froeschlé, Cl., Valsecchi, G.B., 2004. Stellar perturbations
on the scattered disk. Astron. Astrophys. 428, 673–681.

Rickman, H., Fouchard, M., Valsecchi, G.B., Froeschlé, Ch., 2005. Algorithms for
stellar perturbation computations on Oort cloud comets. Earth Moon Planets
97, 411–434.

Rickman, H., Fouchard, M., Froeschlé, Ch., Valsecchi, G.B., 2008. Injection of Oort
cloud comets: The fundamental role of stellar perturbations. Celest. Mech.
Dynam. Astron. 102, 111–132.

Weinberg, M.D., Shapiro, S.L., Wasserman, I., 1987. The dynamical fate of wide
binaries in the solar neighborhood. Astrophys. J. 312, 367–389.

Wiegert, P., Tremaine, S., 1999. The evolution of long-period comets. Icarus 137, 84–
121.

M. Fouchard et al. / Icarus 214 (2011) 334–347 347

114



3.1. Synergie 115

3.1.2 Synergie à court terme

La synergie à court terme n’agit que pendant la dernière période orbitale
de la comète avant d’être observable. On peut résumer ses effets en trois
points essentiels (résultats publiés dans Fouchard et al., 2011b, inséré ci-
après) :
• l’introduction des perturbations planétaires déplace le pic de Oort vers

de plus petites valeurs du demi-grand axe ;
• alors que les marées seules sont incapables de rendre observable une

comète ayant un demi-grand axe de l’ordre de 24 000 UA, l’aide des
étoiles permet de rendre observables des comètes ayant un demi-grand
axe de l’ordre de 20 000 UA (les étoiles seules pouvant injecter des
comètes avec des demi-grands axes bien plus petits, mais le flux est
très faible en dehors des douches cométaires) ;
• il existe une interférence constructive entre les perturbations stellaires

et les effets des marées galactiques engendrant une augmentation du
flux de l’ordre de 20%.

Cette synergie a donc des effets déterminants sur la localisation et la
forme du pic de Oort. Or ce pic est pour le moment le seul indice observable
que l’on ait sur le nuage de Oort lui-même, et donc sur sa formation. Il est
donc important de bien pouvoir modéliser cette synergie à court terme sur les
comètes observées. Pour cela on a besoin de connâıtre l’historique récent des
rencontres stellaires de notre système solaire. On a montré que les données
provenant de la mission HIPPARCOS sont insuffisantes pour bien modéliser
cette synergie alors que celles que nous fournira la mission GAIA le seront.
Rickman et al. (2012) est plus spécifiquement consacré à cet apport de la
mission GAIA sur la possibilité de bien modéliser cette synergie.
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ABSTRACT

Context. This work is a follow-up of a previous study, where we simulated the dynamical evolution of the Oort Cloud over 5 Gyr with
special attention to the injection of comets into observable orbits.
Aims. We wish to clarify how comet injection operates with two types of perturbers: Galactic tides and passing stars. We illustrate
why attempts to identify the stars that might have played an important role in injecting the observed new Oort Cloud comets are as
yet unlikely to succeed, and investigate how large an improvement can be expected from the Gaia mission.
Methods. We simulate a 5 Gyr time span, concentrating on the injections found during the last 3 Gyr by extracting detailed information
about the last revolution of the injected comets. We analyse the contributions of both the Galactic tides and the stars separately, and
assess their importance as a function of the semi-major axis of the comets. We also compute the distances and motions of the perturbing
stars at the time the comets reach their perihelia and thus estimate their observability.
Results. By studying more than 20 000 injected comets, we determine how the likelihood of tidal and stellar injections varies with the
semi-major axis. We establish the range of semi-major axis for which a real-time synergy between stellar and tidal perturbations is
important. We find how many perturbing stars could be identified using H and Gaia data, and how the dynamics of injections
would change, if only the observable stars were acting.
Conclusions. The number of injected comets peaks at a semi-major axis (a) of about 33 000 AU but the comets spread over a wide
range around this value. The tides are unable to inject any comets at a < 23 000 AU but would be able to inject almost all of them at
a > 50 000 AU. The real-time synergy is found to extend between a ∼ 15 000 AU and a ∼ 45 000 AU and to be the main contributor
at a ∼ 25 000 AU. Stellar perturbations make important contributions at all semi-major axes. On the basis of H data, only
a minority of the stars that may contribute to comet injections are detectable, since most stars have escaped to distances beyond the
H detection limit. For Gaia, on the other hand, a large majority of the perturbing stars will be both identifiable and measurable.

Key words. celestial mechanics – comets: general – Oort Cloud

1. Introduction

When Oort (1950) introduced the concept of a very distant
source region for long-period comets (the “Oort Cloud”), he was
aware of the need for an efficient mechanism to bring the peri-
helia of comets from the region well beyond the orbits of Jupiter
and Saturn (typically, perihelion distance q > 15 AU) into the
observable range (nowadays, q < 5 AU). If this does not happen
during just one orbit, it is likely that the comet is lost from the
process because of a planetary perturbation that either ejects it
from the Solar System or captures it into a much more tightly
bound orbit.

Oort (1950) identified the impulses imparted to comets by
passing stars as a likely mechanism for comet injection. Under
usual conditions, it would work exclusively for the orbital range
of the “new comets”, i.e., for semi-major axes a > 10 000 AU.
Comets orbiting at closer distances would not have the time to
experience a relevant perturbation during one orbital revolution.
However, Hills (1981) pointed out that an Oort Cloud extend-

⋆ Present address: Observatoire de Lille, 1 impasse de
l’Observatoire, 59000 Lille, France.

ing inward of the above limit will from time to time be per-
turbed by close stellar encounters – possibly leading to large,
episodic increases in the flux of new comets including smaller
than usual semi-major axes. These events have been termed
“comet showers”.

In the mid-1980’s, it was realized that the Galactic tidal
force also has an important influence on comet injection, and
may in fact represent the predominant effect (Duncan et al.
1987; Delsemme 1987). In particular, Heisler & Tremaine
(1986) showed that the “vertical” disk tide is an efficient per-
turber, causing regular q oscillations in the range of a of about
30 000−40 000 AU. On the basis of H results (Perryman
et al. 1997), the local density of the Galactic disk has been found
to be lower than previously thought (Holmberg & Flynn 2000)
thus reducing the influence of the disk tide, but its significance
remains indisputable.

In a previous paper (Rickman et al. 2008), we simulated the
evolution of the Oort Cloud assuming that it is perturbed by
both Galactic tides and passing stars over a time interval of up
to 5 Gyr. We found that the injection of new comets at present –
as well as during the past few Gyr – is dominated by a synergy
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between the two perturbers. While it may be that this synergy
is largely due to the stars filling the “tidally active zone”, from
where the disk tide may bring the comets into observable orbits
(Fouchard et al. 2011, to be referred to as FFRV11), there also
appears to be a more direct involvement of the stars that is quite
significant at a < 30 000 AU (Rickman et al. 2008).

Another way to analyse the process of comet injection was
followed by Dybczyński (2001, 2006), who took a sample of
high-quality original orbits of observed long-period comets, in-
tegrating them backward to the previous perihelion passage.
In his first paper, he considered only the Galactic tides and
found that, while comets with original semi-major axes of ao >
25 000 AU tend to have moved from orbits with q > 15 AU,
those with smaller values of ao have not. By performing addi-
tional integrations including the perturbing action of the Algol
system during its slow encounter about 7 Myr ago, he was
able to show that a few additional comets made the jump from
q > 15 AU. He thus proposed that the inclusion of the stellar
perturbations in the dynamical model would be very important
in revealing which comets are indeed “new” rather than simply
fulfilling a criterion based on ao.

The second paper (Dybczyński 2006) presented an improve-
ment to the search for H stars experiencing close en-
counters with the Sun in the recent past or near future, which had
earlier been made by García-Sánchez et al. (1999, 2001). This
may be said to represent the state of the art of the matter, and
the result was a list of 23 stars identified to have passed within
2.5 pc of the Sun during the previous 3 Myr. Only 11 of these
actually penetrated to within 2 pc, which is ∼10% of the statisti-
cally expected total of ∼120 based on an expected flux of about
10 encounters within 1 pc per Myr (García-Sánchez et al. 2001).
None of the passages was found to have triggered the injection
of any observed comet, and Dybczyński’s conclusion was that
the current comet injections are dominated by the Galactic tides.

Królikowska & Dybczyński (2010) selected a sample of
26 comets for which high-quality original orbits could be
derived while accounting for non-gravitational (NG) effects
(Królikowska 2006). All these comets have original values of
1/ao less than 10−4 AU−1, so they are “new” in Oort’s sense. For
swarms of clones compatible with the observations, these au-
thors integrated the orbits backward and forward until the sub-
sequent perihelion passage or the ejection of the comet from the
Solar System. In accordance with Dybczyński (2006), only the
Galactic tides were considered as a perturbing force in these in-
tegrations. Thus, taking account of observational uncertainties
as well as NG effects, they concluded that fewer than 30% of
the comets are actually new in the sense of having passed from
q > 15 AU during the last revolution. This result is largely
caused by non-gravitationally determined original orbits tending
to have smaller semi-major axes than one obtains when neglect-
ing the NG effects.

Dybczyński & Królikowska (2011) performed a similar
study, focusing on relatively recent comets with perihelia be-
yond 3 AU. They again found a large fraction of “dynamically
old” comets, which apparently had their previous perihelion pas-
sage well within the “loss cylinder”. Thus, the Jupiter-Saturn
barrier does not appear to be as efficient an obstacle as has been
thought. While the actual role of this barrier was recently inves-
tigated by Kaib & Quinn (2009) and shown to allow the passage
of comets via previously unexpected routes, it is also of interest
to re-evaluate the conclusions about the insufficiency of stars to
act in the current comet injections. In this paper, we investigate
the roles of passing stars and the Galactic tides during the last

revolution before an observable comet appears, based on our dy-
namical simulations.

In Sect. 2, we introduce three different hypothetical
Oort Clouds containing 106 comets perturbed simultaneously by
the Galactic tides and three different sequences of stellar en-
counters, each sequence acting on one Oort Cloud. Section 3
is devoted to our results, paying special attention to the role
of the stars in connection with that of the tides. In Sect. 4, we
investigate, based on our simulations, the observability by the
H or Gaia missions of the stars that have passed during
the last revolution of the currently discovered new Oort Cloud
comets, and whether only those that are observable would be
able to inject a sufficiently large amount of comets. Our conclu-
sions are summarized in Sect. 5.

2. Models and calculations

2.1. Models

As in Rickman et al. (2008), we build a thermalized initial
Oort Cloud of 106 fictitious comets with orbital elements chosen
at random, and we study their dynamical evolution over 5 Gyr.
Each comet is subject to both tidal and stellar perturbations.
The initial conditions of these fictitious comets are as follows:
the semi-major axes a0 are chosen such that 3 × 103 < a0 <
1×105 AUwith a probability density∝a−1.50 (Duncan et al. 1987),
and the eccentricities e0 are chosen with a density function ∝e0
with the constraint that the perihelia are outside the planetary
system, i.e., q0 > 32 AU. The initial angular elements, ω0, Ω0
and M0, which may be defined with respect to an arbitrary frame
of reference, are randomly chosen with a flat distribution, and
the same holds for cos i0.

We choose three different sets of initial conditions, i.e., we
consider three different initial Oort Clouds. They form three
realizations of the distributions described above. We also con-
sider three different samples of passing stars. Each sample cor-
responds to a sequence of 197 906 stellar encounters, occurring
at random times during an interval from zero to tmax = 5×109 yr,
with random solar impact parameters up to dmax = 4 × 105 AU,
and with random stellar masses and velocities according to
the procedure described by Rickman et al. (2004, 2008). Each
cloud defined previously is perturbed by one of the three stellar
samples.

For the computation of the stellar perturbations acting on the
heliocentric orbit of a comet, we use the “sequential impulse ap-
proximation” (Rickman et al. 2005), which employs hyperbolic
deflections to compute the impulses (Dybczyński 1994) while
accounting for the motion of the comet by integrating the instan-
taneous acceleration over time using finite steps. This method
has been shown to be quite accurate even for comets moving in
the inner core.

Our simulation proceeds for each comet by integrating the
Galactic tidal effects as described in Breiter et al. (2007) and
Fouchard et al. (2007) between successive moments of closest
approach to the Sun by stars. At these moments, the tidal in-
tegration is stopped, and the orbital elements of the comet are
updated using the stellar impulses.

The motions of the fictitious comets are integrated at most
over 5 Gyr. However, the integration is stopped when the helio-
centric distance of a comet becomes either r > 4 × 105 AU or
r < 15 AU. The threshold of 15 AU is a crude way to model
planetary perturbations. A comet with q < 15 AU is assumed
to either be ejected into interstellar space, which means that the
current perihelion passage is the last one, or be sent into a much
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more tightly bound orbit, in which case the influence of external
perturbers (Galactic tides or passing stars) is effectively cut off.
Each time we stop an integration on account of r < 15 AU, we
take note of the actual perihelion distance and record a case of
injection into an observable orbit, if q < 5 AU. We refer to this
as a post-injection orbit. For every comet that is thus injected,
its orbital elements at the previous perihelion passage are saved.
These refer to what we shall call the pre-injection orbit.

The number of injected comets per interval of 20 Myr ver-
sus time is shown in Fig. 1. The sequences of stellar encoun-
ters are seen to be quite different, the third simulation having
more frequent strong stellar encounters than the other two. This
is shown by the large number of high peaks, corresponding to
comet showers. However, the background fluxes are similar with
a global decrease in each case. In this regard, we emphasize that
all the stellar encounter sequences are constructed in the same
way and are consistent with the observed number densities and
velocities of stars in the current solar neighbourhood.Obviously,
these data do not provide strong constraints on the history of
the Oort Cloud in terms of major stellar perturbations, but we
can see that the quiescent flux of comet injections is not very
strongly affected by this uncertainty.

The decrease in the flux is explained by the depletion of the
tidally active zone (TAZ) – i.e., the region of phase space from
which the Galactic tides are able to decrease the perihelion dis-
tance below 5 AU – with time. We describe this phenomenon
in detail in FFRV11. The strong stellar perturbations that induce
comet showers are efficient in re-injecting comets into the TAZ,
thereby influencing the flux of injected comets during several
hundred Myr hence, but they also accelerate the loss of comets
from the “central part” of the cloud (intermediate range of semi-
major axes), where most of the injections occur. That the back-
ground flux behaves similarly in the three simulations in spite of
the different numbers of shower-inducing events can thus be un-
derstood by considering that the flux of injections is proportional
to both the number of comets in the central Oort Cloud and the
relative amount of TAZ filling in this zone. With a larger number
of shower-inducing stellar encounters, the first factor decreases
while the second one increases.

At the beginning of the integrations, the TAZ is full. Because
this situation is rather exceptional the first 2 Gyr of each in-
tegration will not be taken into account (see FFRV11). This
2 Gyr time span is more or less the time needed for the central
Oort Cloud to settle into a normal state of TAZ filling.

2.2. The comet enhancements

The high peaks seen in Fig. 1 are indicative of comet showers
caused by specific stellar encounters. The comets injected dur-
ing a shower have different characteristics in terms of their num-
ber and distribution of orbital elements than the comets injected
during a quiescent period. For instance, the high rate of injec-
tions that characterizes comet showers is often due to the rarely
seen passage of a star through the inner core of the Oort Cloud.
This causes lots of injections from this inner core (small values
of the semi-major axis), which is more or less immune to in-
jections under normal circumstances. Consequently, we need to
take care to separate the injected comets into those that experi-
enced quiescent conditions and those that might have suffered an
abnormally large stellar perturbation. In particular, we aim to use
the set of quiescent comets as a proxy for the current conditions
in order to draw conclusions about the injection of the observed
“new comets”.

Fig. 1. Number of observable comets per interval of 20 Myr versus time
for the three simulations. When the number exceeds 300, it is written
above the respective graph. The crosses give the number of comets in
the Oort Cloud as counted every 500 Myr (scale to the right).

The problem is how can we define a comet shower? Such an
event is due by definition to a single star. Hence, the best ap-
proach is to assess, for each star, whether the star is capable of
inducing a large enhancement of the rate of comet injections or
not. To this aim, we use the results of the simulations described
in FFRV11, which tell us that, using ≃106 sample comets, the
number N⋆ of injected comets, following a single stellar en-
counter, is statistically approximated by1

N⋆ =

(
M⋆

V⋆
√

d⊙

)1.82
× 16.23 (1)

for low-mass stars, and

N⋆ =

(
M⋆

V⋆d2
⊙

)0.89
× 12.83, (2)

for high-mass stars. The units for M⋆ (stellar mass), V⋆ (stel-
lar speed at infinity), and d⊙ (impact parameter with respect

1 These two power laws were obtained from a different initial
Oort Cloud, i.e., with a flat distribution of orbital energy. It is, however,
quite close to our simulated initial Oort Cloud, also because the distribu-
tion of orbital energy evolves with time, as we see later. Consequently,
we apply these power laws to our simulated Oort Cloud.
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to the Sun) are, respectively, the solar mass, 40 km s−1, and
20 000 AU. High-mass stars were found to be those with M⋆ > 2
and low-mass stars those with M⋆ ≤ 0.9. The two formu-
lae are relevant for close encounter perturbations and distant,
tidal perturbations, respectively (FFRV11). Stars of intermediate
masses would likely act in either way, depending on the detailed
circumstances.

In this investigation, we use the term comet enhancement for
cases when a star passes with N⋆ > 5. For each star of our sim-
ulations, we know M⋆/V⋆, and using Eqs. (1) and (2) one can
derive two values of d

(c)
⊙ (one per equation) such that N⋆ > 5 for

d⊙ < d
(c)
⊙ . If M⋆/V⋆ = 0.60077, both values of d

(c)
⊙ are equal,

amounting to 1.316 (i.e., 26 320 AU). In general, when selecting
the value of d

(c)
⊙ to use, we always take the smallest one, i.e., the

most restrictive definition of enhancement-producing stars.
In terms of the 13 stellar types that we consider, the

most common ones (red and white dwarfs) predominantly have
M⋆/V⋆ < 0.60077, which means that we identify the enhance-
ment makers among such stars using Eq. (1) – as indeed we
should (FFRV11). For all the other types (giants and main-
sequence stars down to K0), we mostly use Eq. (2). Judging from
Fig. 1 of FFRV11, this choice is actually relevant – not only for
the high-mass stars defined above but also for the lower mass
types.

We subdivide the injected comets into two categories accord-
ing to whether or not there was any passage by an enhancement-
producing star during the last revolution of the comet. We use
the term quiescent comets strictly for those comets that did not
experience any such stellar passage, and all the others will be
described as non-quiescent comets. Only the first category will
be used as a proxy for the observed new comets.

We note that in our simulations, two comets injected into si-
multaneous perihelion passages may actually belong to different
categories, because their last revolutions may have taken differ-
ent amounts of time. Thus, the comet with the shorter period
may fulfil the requirement of being quiescent, while the other
one does not. Hence, we do not consider comet enhancements in
terms of specific time intervals. We use instead “quiescent” and
“non-quiescent” as flags of injected comets indicating whether
their last orbit may or may not have been influenced by a star
with a high injection efficiency2.

With the above criteria, we have a total of
1227 enhancement-producing stars out of a total of 593 718
passing stars during the full length of all three simulations.
During the last 3 Gyr, the number of enhancement-producing
stars is 755 out of a total of 355 821 passing stars. While this
fraction is very small, the number of enhancement makers is
much larger than the number of high peaks in Fig. 1. Thus,
we can expect all high peaks (major showers) to be caused by
enhancement makers, and conversely, the stars that do not cause
enhancements also not to cause any significant peaks.

From Fig. 1 of FFRV11, one can see that the number of injec-
tions caused by non-enhancement-producing stars is never much
larger than 10 for an Oort Cloud of the same size as the cur-
rent ones. This confirms the above expectation. Moreover, some
enhancement-producing stars actually produce no comet injec-
tions at all, even though the statistical expectation is at least 5.
We conclude that our definition of enhancement-producing stars
is rather liberal, and many comets that we consider as non-
quiescent actually behave in the same way as the quiescent ones.

2 Note that a non-quiescent comet does not have to be strongly per-
turbed by the enhancement-producing star. Its injection may well have
been caused by the Galactic tides or by another star.
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Fig. 2. Velocity at infinity versus solar impact parameter for all the
stars passing during the last 3 Gyr of the simulations. Tiny, grey dots
correspond to stars that do not cause enhancements, black dots to
enhancement-procucing stars with M⋆ < 1.2, small black circles to
enhancement-producing stars with 1.2 < M⋆ ≤ 4, and large black cir-
cles to enhancement-producing stars with M⋆ = 9 (B0 stars).

If the number of injections by a certain star in our sim-
ulations were 5−10, the corresponding number for the real
Oort Cloud in case this contains 1012 comets would be∼(5−10)×
106. Over an interval of several million years, the flux of new
comets with q < 5 AU would only be a few per year, which
would be barely noticeable as an increment upon the estimated
flux of 0.8 comets per year per AU of perihelion distance af-
ter correction for discovery bias (Francis 2005). Thus, what we
call enhancements are not comparable to the comet showers dis-
cussed in previous literature. They are much less significant, so
our criterion for defining quiescent comets is indeed conserva-
tive.

Such conservatism is of relevance, since the Solar System is
statistically unlikely to be experiencing a major comet shower
at the moment (Dones et al. 2004), and the orbital distribution
of long-period comets does not show the expected features of
a shower (Dybczyński 2002). Hence, the observed new comets
are most likely quiescent ones, and in order for our model to
be applicable to these, our quiescent comets should indeed be
quiescent, i.e., unaffected by any significant enhancement.

Figure 2 plots the velocity at infinity V⋆ versus the solar
impact parameter d⊙ for stars passing during the last 3 Gyr
of all three simulations. The masses of the enhancement-
producing stars are indicated by different black symbols, while
all other stars are shown by tiny, grey dots. As expected, the
enhancement-producing stars are stars with small impact param-
eter and/or low velocity as a general feature. However, the higher
the mass of the star, the larger the impact parameter is allowed
to be. In particular, the highest-mass stars may produce enhance-
ments at almost any impact parameter, if their velocity is low
enough.

We have a total of 20 446 injected comets during the last
3 Gyr, among which 29.9% are of the quiescent type and 70.1%
are non-quiescent. During the first 2 Gyr, we had 21 385 injected
comets, out of which 36.7% were quiescent. The higher pro-
portion of quiescent comets initially is due to the TAZ being
more populated, which facilitates the role of the tides in inject-
ing comets. As mentioned above, this is the reason whywe study
only the comets injected during the last 3 Gyr.
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Fig. 3. Schematic representation of the variation in the angular momen-
tum for different injection scenarii. The distance to the centre in this
diagram represents the angular momentum of the comets, i.e., the per-
ihelion distance in the present case of quasi-parabolic orbits. The full
black circle corresponds to a perihelion distance of 15 AU, and the yel-
low disk corresponds to perihelion distances smaller than 5 AU. The
meaning of the arrows is explained in the text. For each trajectory, the
comet starts at perihelion before its last revolution.

2.3. Injection scenarii

Before explaining our results we need to describe the different
main scenarii for the last orbital period of injected comets. To
begin with, we note that stellar perturbations are rarely negligi-
ble – thus the pre- and post-injection orbits are rarely connected
by a single tidal trajectory. As illustrated in Fig. 3, there are not
very many cases to distinguish. The figure shows the main fea-
tures of dynamical evolutions leading to comet injection during
the last orbit before the observable perihelion passage. We note
that it does not cover all possible scenarii but has been simplified
for clarity.

We represent the generally decreasing trend of perihelion
distance associated with injections by arrows directed toward
the centre. The yellow region denotes the observable orbits, and
the white, surrounding one represents the Jupiter-Saturn barrier.
The red and blue arrows show the evolution – forwards in time
– caused by stellar impulses and the Galactic tides, respectively.
By dashed blue arrows, we indicate how the tidal perturbation
would have continued to act in the absence of the stellar impulse.
The green arrows show the backward evolution starting from the
time of the stellar perturbation, if only the tides are allowed to
act. We assume for simplicity that there is only one significant
stellar impulse during the last revolution of the comet.

The cases numbered 1−4 represent the vast majority of all
injections. Case 1 refers to tidal injections, where stars play a
relatively insignificant role. They may perturb the comets, thus
affecting somewhat the post-injection orbits, but even in their ab-
sence the initial trajectory would lead to an injection because of
the tides. We distinguish two subclasses called a and b, depend-
ing on the outcome of a backward integration with only tides. In
case 1a, the comets cross the barrier into orbits with q > 15 AU,
while in case 1b they do not. Case 2 is different, since the in-
jection would have failed in the absence of the stellar impulse.
However, the star does not inject the comet by itself – it is only
a helper to the tides.

Case 3 is again different, because now the star actually per-
forms the injection, and the tidal action is generally rather in-
significant. We may again distinguish two subclasses in the same
way as in case 1. Thus, case 3b refers to comets that get injected

by a stellar impulse but would appear to have been tidally
injected as judged from a purely tidal backward integration.
As previously mentioned, this is a relatively rare phenomenon.
Case 3a is the more common one, where the injected comets
bear no traces of tidal injection. Finally, in case 4 an injection is
achieved, but it is impossible to ascribe it to either stars or tides.

Case 4 may also be considered as a real-time synergy be-
tween the stars and tides, since these two mechanisms interact
in a constructive way to ensure that the comets are injected. In
reality, however, it must also happen that an injection, which the
tides alone would have achieved, fails because of a stellar im-
pulse. This is indicated as case 5 by thinner arrows, since our
normal simulation does not register such outcomes. Nonetheless,
we did investigate these outcomes, as described in the next sec-
tion.

We now define three sets of injected comets:

– set G consists of those for which a backwards integration us-
ing only the Galactic tides yields a previous perihelion dis-
tance larger than 15 AU. In other words, these are comets
whose post-injection orbits would have been reached by tidal
injections in the absence of stars. This set involves cases 1a,
2, and 3b of Fig. 3;

– setG′ contains those for which the forward integration yields
a perihelion distance smaller than 5 AU even when turning
off the stellar perturbations during the last revolution. In
other words, the pre-injection orbits would lead to tidal in-
jections in the absence of stars. This set involves case 1
of Fig. 3;

– set S contains the injected comets for which there is one
passing star during the last revolution that induces a cross-
ing of the Jupiter-Saturn barrier. This set is represented by
case 3 of Fig. 3.

These three sets intersect to some extent. For instance, comets
that follow trajectory 1a belong to both G and G′, whereas case
1b comets belong only to G′ and case 2 comets belong only to
G. Moreover, there are injections that do not belong to any of the
sets, as illustrated by case 4 of Fig. 3.

3. General results

3.1. The injected comets

Among the total of 20 446 comets injected during the last 3 Gyr
of our simulations, 9642 comets belong to the G set, out of
which 5107 (52.9%) are non-quiescent, and 8915 comets be-
long to the S set, out of which 8257 (92.6%) are non-quiescent.
We note that 739 comets belong to both G and S sets, and out
of these 624 (84.4%) are non-quiescent. Finally, 2628 injected
comets belong to neither G nor S. Out of these, about 60% are
non-quiescent.

It is well-known that both tidal and stellar perturbations de-
pend strongly on the semi-major axis of the comets, and in
Fig. 4 we show the effect of these dependences on the injection
statistics in terms of our G and S sets. For this purpose, we di-
vided the range of the semi-major axis (i.e., [3000, 100 000]AU)
into 150 bins such that the comets are initially equi-partitioned
among the bins. For each interval, we show the number of in-
jected comets (ninj), as well as the fractions pG and pS of comets
belonging to sets G and S, respectively, among the injected
comets. This is done separately for quiescent and non-quiescent
comets.

From top to bottom, the first four panels of Fig. 4 show the
behaviour of ninj, pG, pS and pS + pG versus the semi-major axis
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Fig. 4. The first four panels show, from top to bottom: the number of in-
jected comets, the fraction of injected comets in set G, the fraction in set
S, and the sum of these two fractions, all plotted versus the semi-major
axis at injection (ainj). In these plots, the full black lines correspond
to quiescent comets and the full grey lines to the non-quiescent comets.
The dotted black line in the uppermost plot shows the number of comets
(given on the right axis) in the Oort Cloud at 3 Gyr. The horizontal grey
line in the bottom plot indicates the value of unity for the sum of the
two fractions. The fifth panel shows the fraction of injected comets that
are not injected any more, if one removes the stellar perturbations dur-
ing the last revolution (black line), and the fraction of comets injected
in a tides-only model that are not injected any more, when one adds the
stellar perturbations (grey line). In all the plots, the vertical dashed line
indicates the threshold acrit, below which no comets belong to the G set.

at injection (ainj). The fifth panel is different, as we describe it
later.

Because we consider only the last three gigayears, the distri-
bution of comets in the Oort Cloud has changed from the initial
state. Some comets have left the cloud, and some have migrated
between different ranges of semi-major axis. To illustrate the ef-
fect of the population of the Oort Cloud at injection, the distri-
bution of the semi-major axis at 3 Gyr is plotted in the upper
panel. Initially, the number of comets in each bin was close to
20 000, which is situated at the top of the plot. We see that some
depletion has occurred and that this depletion gets stronger for
more distant parts of the cloud. The outermost parts have been
depleted by more than a factor of two, while the innermost parts
are left practically unchanged. At times later than 3 Gyr, which
we consider, these depletions will have grown further.

Our results on the number of injected, quiescent comets
are in general agreement with the location of synthetic Oort
spikes found by others using similar experiments (e.g., Wiegert
& Tremaine 1999; Emel’yanenko et al. 2007). Our maximum
of the injection efficiency occurs around 33 000 AU. The de-
crease in ninj toward smaller semi-major axes is due to the well-
known decrease in the average size of both tidal and stellar
perturbations. For larger semi-major axes, the decrease is par-
tially explained by the strong depletion of the outer parts of the
Oort Cloud that we commented on above. However, the main
reason is that the Galactic tides change the perihelia of outer
Oort Cloud comets very rapidly. The timescale is shorter than

the orbital period. Thus, under the action of the tides alone, the
probability for a comet to reach its perihelion when the perihe-
lion distance is below 5 AU, i.e., the ratio of the time spent with
q < 5 AU to the orbital period P, behaves as P−2 (Fouchard et al.
2010). For stellar injections, the same problem arises, i.e., the
tides are likely to remove the comet from the observable zone, if
there is sufficent time. Consequently, even though the number of
potential comets to be injected increases with a because of the
growing size of the perturbations, this effect is more than offset
by the aforementioned a−3 dependence.

We note that for non-quiescent comets, the injection effi-
ciency is almost flat with respect to the semi-major axis. This is
consistent with previous results (Rickman et al. 2008) because
during a comet shower the loss cone is filled at almost any semi-
major axis. We conclude that, even though this category has been
very liberally defined, it terms of numbers it is dominated by
shower comets.

The smallest semi-major axis of the G set at injection
is 23 774 AU. We interpret this to mean that below acrit ≃
23 000 AU the tides are unable to inject comets on their own.
However, for larger ainj the G set fraction of injected comets
rises rapidly, especially for quiescent comets, so that for ainj >
50 000 AU it is almost unity for both categories. This illustrates
the rapidly growing efficiency of tidal perturbations, which even-
tually even acts to quench the injection rate, as discussed above.

In the range where the rate of quiescent comet injections is
at its maximum, we have pG = 0.812, implying that for almost
20% of the injected comets stars must have played important
roles. In some cases, these may have been as in case 1b of Fig. 3,
and in other cases as in cases 3a or 4. This fraction increases for
smaller semi-major axes, reaching 33% for ainj = 30 000 AU
and almost 85% for ainj = 25 000 AU. We thus observe that
comet injections in the inner part of the Oort peak are generally
governed by stellar perturbations.

The fraction of S set comets decreases continuously from
unity for ainj ∼ 10 000 AU to very small values for ainj >
40 000 AU. For quiescent comets in the latter range, pS is always
below 5%, and even for non-quiescent comets it remains below
20%, owing to the very efficient tidal perturbations in the outer
part of the Oort Cloud. As we see in the next subsection, large
stellar perturbations of q are common for these comets, but most
stellar injections are sabotaged by subsequent tidal increases in
q, as mentioned above. On the other hand, for comets that are
indeed injected – regardless of the mechanism – a backwards in-
tegration with the Galactic tides is almost sure to bring the peri-
helion beyond 15 AU, so that the comets will be counted with the
G set. Thus, the tides appear to dominate the injections at large
semi-major axes because of our definitions of the S and G sets.
Stellar perturbations may play important roles in the game, but
they are unlikely to get credit.

For quiescent comets at the other end of the a-range, we note
that for ainj ≃ acrit, we have pS = 30%, and for ainj = 15 000 AU,
pS ≃ 85%. Hence, for this range of semi-major axes, the sum of
the S and G fractions is less than unity, as shown in the fourth
panel of Fig. 4, so the injections are often due to neither the tides
nor any single star alone. We are dealing instead with a syn-
ergy between the tides and stellar perturbations, which acts “in
real time”, i.e., the tides and stars collaborate in making comets
cross the Jupiter-Saturn barrier. The plot shows that this synergy
reaches a maximum for ainj ≃ acrit, where the sum of the two
fractions barely reaches 30%, and the synergy is at work over
the whole range ainj ∈ [15 000, 45 000] AU. What happens is
illustrated by case 4 of Fig. 3.
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Finally, for ainj > 45 000 AU, we observe the opposite be-
haviour, namely, a “duplication of effort” of tides and stars with
pS + pG > 1. A star injects a comet into an orbit that could
also have been reached by a tidal injection. This relatively rare
phenomenon is illustrated by case 3b of Fig. 3. As already men-
tioned, it is almost impossible for an injected comet of the outer
Oort Cloud not to belong to the G set, so the stellar injections
that do not get sabotaged will generally be assigned double
membership.

To summarize the peculiarities of comet injection from the
outer part of the Oort Cloud, we have seen that the very rapid
tidal changes in the perihelion distance (timescale shorter than
the orbital period) is an obstacle to injection owing to the diffi-
culty in timing the perihelion passage. Another problem is that
the concept of a tidally active zone (FFRV11) is no longer valid
in the sense of a phase space region permanently linked to the
observable orbits by tidal trajectories. We are dealing with a
loosely defined set that in the presence of stars is neither filled
nor empty, but whose occupation is continuously changing, in-
volving different comets at different times. Moreover, in the case
of stellar injections, we later demonstrate that the largest ones
occurring per orbital period are much larger than the “target”,
i.e., the interval 0 < q < 5 AU. Thus, the target is difficult to
reach, and overshoots will be the rule.

We now attempt to determine the difference between the in-
jection rates from the Oort Cloud, if we include or exclude the
stellar perturbations during the last revolution of the comets. We
have seen that these perturbations may both cause and prohibit
injections, and we now wish to compare these two effects. For
the triggering effect, we can use the sample of injected, quiescent
comets during the last 3 Gyr of our simulations and calculate the
fraction that are no longer injected, if we remove the stellar per-
turbations during the last revolution. For the prohibiting effect,
we consider the injected comets during the first 2 Gyr in a dif-
ferent simulation using only the Galactic tides, and we calculate
the fraction that are no longer injected after stellar perturbations
are added during the last revolution.

The bottom panel of Fig. 4 plots these two fractions versus
the semi-major axis at injection. Since the tides are unable to
inject comets for a < acrit, the stellar triggering effect is obvi-
ously at work in this range, while the prohibiting effect is not
defined. Between acrit and 36 000 AU, the triggering effect is
clearly larger than the prohibiting one. The largest difference is
obtained for ainj ∼ 25 700 AU, where the star-triggered fraction
amounts to nearly 71%, while the prohibited one is only 40%.

Above a ≃ 36 000 AU, the two effects balance and grow to
unity in the outer Oort Cloud. In this region, we have seen that
the injections appear to be mainly tidal. However, as noted above
comet injection is actually a delicate balance, and stellar pertur-
bations are so important that injections with and without stars
are completely different matters. If injection happens when stars
are included, it likely vanishes when the stars are excluded, and
conversely, if it happens without the stars, it likely disappears
when the stars are added.

The upper panel of Fig. 5 shows the appearance of our sim-
ulated Oort peak for quiescent comets as a histogram of the
1/a distribution. Different colours are used to denote the con-
tributions of the G and S sets as explained in the figure caption.
In white, we see the extent of the synergistic contribution with a
maximum around 30 000 AU. The S set injections are predomi-
nant at small semi-major axes, but overall they contribute only a
small fraction and disappear completely beyond 60 000 AU. The
G set dominates the peak at a > 30 000 AU, but we have to point
out two features. The first is that this is due to the phenomenon

Fig. 5. Fraction f of quiescent injected comets with respect to the to-
tal number (6119) plotted as a histogram versus the inverse of the
semi-major axis at injection (the upper horizontal scale gives the cor-
responding semi-major axis). Two percent of the injected comets have
ainj < 10 000 AU and fall to the right of the diagram. In the upper panel,
the dark-blue area corresponds to comets belonging exclusively to set
G, the sky-blue area corresponds to comets belonging to sets G and G′

but not to set S, the grey area corresponds to comets belonging to setsG
and S, the red area corresponds to comets belonging to only set S, and
the white area to comets belonging to neither set. In the lower panel,
the green line gives the estimated fraction of injections when the stellar
perturbations are turned off during the last revolution. The orange and
grey areas correspond to the excess and shortage, respectively, of the
number of injections in this case.

of TAZ filling, for which massive stars are largely responsible
(see FFRV11). The second is what we drew attention to above,
namely, that the injections in the outer Oort Cloud are caused by
an intricate interplay between the tides and the stars such that we
cannot ascribe the main cause to either one alone.

In the lower panel, we attempt to compare the triggering and
prohibiting effects of stars during the last revolution. The black
histogram is the same as in the upper panel. We can correct the
fraction of comets in the G′ set by increasing it using the per-
centages of tidal injections prohibited by stars as plotted in the
bottom panel of Fig. 4. This enables us to get an estimate of the
number of injections, shown by the green histogram, for the case
in which the stellar perturbations were turned off for the last rev-
olution. The orange area corresponds to the stellar prohibiting
effect and the grey one to the stellar triggering effect. We see
that in the outer part of the Oort peak there is a range where the
stellar prohibiting effect slightly dominates but this is more than
compensated for by the predominance of the triggering effect in
the inner part of the peak and the region inside it.

We emphasize that only the sky-blue area in the upper panel
of Fig. 5 corresponds to comets that are essentially injected by
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Fig. 6. Medians and 99.9th percentiles of the absolute value of the per-
turbation of perihelion distance. Solid curves correspond to negative
perturbations and dotted curves to positive perturbations. The upper
plots show the median versus the semi-major axis (left) and versus
the perihelion distance (right). The lower plots show the same for the
99.9th percentile.

the tides so that stellar perturbations are of no consequence.
Since this area amounts to a total of only ∼1/3 of the injec-
tions and never exceeds 1/2 of the injections in any bin of the
histogram, we conclude that the action of stars during the last
revolution is critically important for most new comets injected
from the Oort Cloud.

We note that the distribution shown in Fig. 5 is a long-term
time average, and it is worth asking, whether one can expect a
nearly continuous flux of comets across the whole range of 1/a
that we have plotted. Taking a = 10 000 AU as an example, and
requiring a rather close stellar encounter to accomplish the in-
jection of such a comet, we find that a solar encounter distance
of d⊙ ∼ 20 000 AU is needed. Such encounters are expected at
the rate of one per 10 Myr approximately, so even though it may
be that a star injects comets that arrive at perihelion over an ex-
tended period of time, we cannot expect a truly continuous flux.
Moreover, according to Fig. 2, most stars that pass at such a close
distance are enhancement-producing stars, which we do not con-
sider in Fig. 5. We conclude that the whole far tail extending to
the right of the Oort peak is of sporadic occurrence and should
not necessarily be represented in the sample of observed new
comets.

3.2. The role of stars

In Fig. 6, we show the behaviour of the median and the
99.9th percentile (1 perturbation out of 1000 is larger than this)
of |∆q| for positive and negative stellar perturbations versus a and
q. The sample in question is the 20 446 injected comets that we
discussed above – both quiescent and non-quiescent ones. The
number of individual perturbations during the last revolutions is
about 5 × 106.

The medians of the negative and positive perturbations be-
have identically versus a. The curve shows a break in the slope
for a ∼ 40 000 AU, which we relate to, based on previous re-
sults, stellar perturbations for smaller semi-major axes being im-
portant to comet injection, while for larger semi-major axes the
Galactic tides would be perfectly capable of injecting comets on
their own.

Similarly, we see a strong asymmetry of the 99.9th per-
centiles building up and increasing with decreasing a for
a < 40 000 AU. The values are much larger for negative

Fig. 7. Upper plot: fraction (pdef) of quiescent comets for which nopt is
defined versus ainj. Lower plot: mean nopt versus ainj for the same set of
comets.

perturbations, because these are the ones that inject the comets.
The positive perturbations obviously have nothing to do with the
injections and thus are not biased toward large values by this
selection. The increase in the negative values toward smaller a
flattens out at a ∼ 15 000 AU, where the injections start to be
completely dominated by stellar perturbations.

That this asymmetry is more or less absent for a >
40 000 AU tells us that the injected comets in this range are typ-
ical of comets in general and do not require exceptionally large
stellar perturbations. The number of stellar encounters during
the last revolution is indeed generally larger than 300, so the
99.9th percentile should be a rough estimate of the largest indi-
vidual perturbation experienced by an injected comet. We thus
see that those comets tend to have experienced very significant
stellar perturbations of q, amounting to tens or hundreds of AU.

The larger values of the 99.9th percentile for positive pertur-
bations found at the smallest perihelion distances demonstrate
the effect already noted by Öpik (1932), namely that stellar per-
turbations preferentially lead to an increase in the perihelion dis-
tance, when the initial orbit – in a similar way to those of mete-
ors and observed comets – has a small perihelion distance. The
reason is obvious, i.e., a large negative change in the angular mo-
mentum along the vector itself, when the absolute value is small
to begin with, will increase this absolute value (and thus the per-
ihelion distance) while reversing the sense of motion. We indeed
see that the largest negative perturbations (as approximated by
the 99.9th percentile) are exactly equal to the initial perihelion
distance, while the largest positive ones are much larger.

We now consider whether the stellar influence on comet in-
jections is generally due to only one star or to several stars. We
investigate this by considering for each quiescent injected comet
all the stars that perturbed its motion during the last revolu-
tion and counting the minimum number of stars needed to build
up a total decrease in q larger than 10 AU (corresponding to a
jump across the Jupiter-Saturn barrier).We call this number nopt,
where “opt” stands for optimistic, because there is no guarantee
that the perturbations in question actually led to a crossing of the
barrier.

Figure 7 plots, versus ainj, the fraction pdef of quiescent
comets for which nopt is defined (i.e., for which it is possible to
reach a decrease in q by more than 10 AU by adding individual
perturbations) and, for those comets, the mean nopt.
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The fraction for which nopt is defined is less than unity only
for ainj between 16 000 and 44 000 AU – the same interval where
the direct synergy in comet injection was noted. This fraction in-
deed follows almost exactly the behaviour of pS + pG as shown
in Fig. 4. From 16 000 AU to acrit, there are many comets for
which neither the tides nor the stars are able to perform the in-
jections on their own, so that the synergy is strictly necessary. In
addition, while it appears that a single star may be responsible
for injections below a ∼ 20 000 AU, for larger semi-major axes
several stars usually contribute.

Below a = 16 000 AU and above 58 000 AU, we have strictly
nopt = 1, so that the injections might be due to a single star.
While this is certainly the case below 16 000 AU, since Fig. 4
shows that pS ≃ 1, we know that above 58 000 AU the situation
is quite different. Figure 6 provides an indication that stellar per-
turbations are systematically strong for such large semi-major
axes, and if there had been no Galactic tides, they would cer-
tainly have injected comets on their own. However, we saw in
connection with Fig. 4 that the same can be said of the Galactic
tides. As discussed above, each comet injection is indeed likely
caused by the interplay of both perturbers and would disappear
if either of them were removed.

4. Star detection by HIPPARCOS and Gaia

In the previous section, we saw that stellar perturbations play an
important and direct role in comet injections from all parts of
the Oort Cloud, and that this role is crucial for semi-major axes
smaller than about 25 000 AU. Figure 6 (lower left panel) shows
that stellar perturbations leading to a significant decrease in q oc-
cur in general for injected comets. However, in the Introduction,
we referred to the work of Dybczyński (2006), which concluded
that none of the observed stars that passed near the Sun in
the recent past caused any significant perturbation of the new
Oort Cloud comets. To investigate the origin of this apparent
conflict, we have to see whether the responsible stars behind the
currently observed comets may be hiding from discovery along
with most other stars that recently encountered the Sun.

4.1. Observational data

The identification of previous close encounters between other
stars and the Sun has been discussed by, for example
García-Sánchez et al. (2001); Dybczyński & Kwiatkowski
(2003); Dybczyński (2006). The following discussion repeats
some points made in these papers.

As a simplified approach, we judge the observability of stars
and the access to relevant data on their positions and velocities
by considering two space missions – one past and one future.
The ESA H mission (1989−1993) represented a mile-
stone in the mapping of the solar Galactic neighbourhood. It led
to much improved parallaxes and proper motions of good qual-
ity for about 120 000 stars (Perryman et al. 1997) and revolu-
tionized searches for recent close encounters of stars with the
Solar System (García-Sánchez et al. 2001). However, its limited
magnitude coverage makes it reasonably complete only within
a minute volume around the Sun relative to the extent of the
Galaxy. A new revolution is expected from the ESA Gaia mis-
sion, to be launched in 2012. This will survey significant vol-
umes with respect to all stellar types considered as Oort Cloud
perturbers in this paper, including both accurate proper motion
measurements and – with the aid of ground-based follow-up pro-
grammes – good-quality radial velocities.

H observed all the stars with visual magnitude V <
7.5−9 (depending on direction), and had a limiting magnitude
V = 13 (García-Sánchez et al. 2001). In our experiments, we as-
sume that H observed all stars with V < 8 (independent
of direction) and use a linearly decreasing detection probability
between V = 8 and V = 13. We also consider that Hwas
able to measure proper motions larger than the limit accuracy,
i.e., 1 mas/yr. Radial velocities were not observed by H
but could often be found from the literature for the relatively
bright stars in question (Dybczyński 2006).

For Gaia, the magnitude criterion is V < 20, and we can
assume that detection is practically complete everywhere on the
sky for stars brighter than this limit. The parallax accuracies, as
currently specified, are such that all stars within 500 pc will have
their parallaxes accurately measured, including almost all recent
Oort Cloud perturbers. Moreover, although somewhat dependent
on stellar spectral type, these accuracies can be used to deduce
the limits of detectability for proper motions of 4 µas/yr for V <
12, 10 µas/yr for 12 < V < 17, and 160 µas/yr for 17 < V < 20.

The radial velocities measured by Gaia or later merit special
attention. A relative error of ∼10% is a reasonable goal in order
to identify whether a given star has passed near the Oort Cloud
or not, and this translates into a few km/s for most stars. Even
though Gaia is expected to measure radial velocities, this goal
will not be easy for early-type stars (B or A), whose spectra have
only few and broad spectral lines. Hence, we may only be able
to study stars with magnitudes as bright as V < 8, and early-type
stars more distant than 100 pc may not be able to have Gaia-
measurable radial velocities. The later types on the other hand
can be both relatively close and relatively faint at the same time.
It appears that Gaia can then reach the required radial-velocity
accuracy only down to V ∼ 14, thus again excluding most of the
detected stars.

We now consider the problem of identifying the possible
Oort Cloud perturbers that have affected the currently observed
new comets. We assume that all stars in our simulations are of
this category (dmin < 4 × 105 AU ≈ 2 pc). In a forthcoming
paper, we will examine in more detail the possibility of using
more restrictive criteria. The stars of interest must have passed
during the last revolution of the new comets with the longest pe-
riods. Since our quiescent Oort peak is mostly contained within
a < 60 000 AU, we use a time interval extending 15 Myr into the
past. On the basis of the estimated stellar encounter frequency,
we expect there to be ∼600 such stars. Assume that a star is
found at distance d, which is measured with good accuracy. If
d < 2 pc, the star must obviously be identified independently of
its motion, but this is a very unlikely outcome – in practically
all cases the observed stars are much farther away. In these sit-
uations, the radial velocity vr carries important information. If
vr < 0, the star is approaching and may thus be discarded. For
vr > 0, we may compute a good estimate of the time since closest
approach (tmin) from

tmin ≈ d

vr
, (3)

and if tmin > 15 Myr, the star can be discarded. Otherwise the
proper motion µ may be used to estimate dmin from

dmin ≈ µd
2

vr
, (4)

using vt = µd for the transverse velocity.
If both vr and µ are known, it is thus a trivial decision about

whether to earmark the star. However, since these stars are only
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Table 1. Absolute visual magnitudes for the 13 different spectral types used in our simulations.

B0 A0 A5 F0 F5 G0 G5 K0 K5 M0 M5 gi wd
−2.95 0.55 1.85 3 3.8 4.35 5.1 5.95 7.25 9 13.95 1 12

Table 2. Statistics on the stars perturbing injected comets during their last orbital period.

Stars All 10 best 5 best 2 best Best
Gaia 70%; 96% 85%; 90% 85%; 88% 86%; 85% 87%; 84%
Hipp 9%; 74% 22%; 38% 25%; 33% 26%; 26% 26%; 20%

〈V⋆〉 (km s−1) 52.8 44.2 43.3 42.3 42.0
〈M⋆〉 (M⊙) 0.46 0.90 1.00 1.07 1.09

Notes. “All” refers to all the stars, “10 best” to the stars responsible for the ten largest negative perturbations of the perihelion distances, etc. Line
“Gaia” gives the mean percent of stars detected by Gaia (first number) and, among the detected stars, the proportion for which the proper motion
is above the corresponding limit accuracy of Gaia (second number). Line “Hipp” gives the same values for H. The two last lines give the
mean of the stellar encounter velocity and stellar mass.

a minority, we have to consider the case where either or both
are unknown. If only vr is unknown, one may use a likely upper
limit such as, e.g., 100 km s−1 (see Dybczyński 2006) and thus
obtain a minimum value of dmin. Stars that are found to have
certainly passed beyond 2 pc may then be discarded, while the
remaining ones will be considered as suitable targets for radial
velocity observations.

The procedure just described is the motivation behind us-
ing proper motion information in the identification process. The
proper motion serves to discard stars for which no radial velocity
observations have to be carried out. If on the other hand neither
vr nor µ is known, µ must be smaller than the above-mentioned
limits and there is no way to exclude the possibility of a very
close encounter.

To characterize this case, we estimate µmax by inserting
(vr)max = 100 km s−1 into Eq. (4). For d = 100 pc, we then ob-
tain µmax ≈ 4 mas/yr. Since the majority of H-detected
stars are closer than this, an undetected proper motion almost
necessarily means that the star is a possible Oort Cloud per-
turber. For Gaia, the proper motion detection limits are smaller,
and out to about 500 pc an undetectable proper motion will al-
ways mean that the star is an interesting candidate for a radial
velocity measurement, but we note that this will only yield a
maximum value for the closest approach distance.

4.2. Simulations

For each injected comet in our simulations, we study all the
stars that encountered the Oort Cloud during the last revolution
of the comet, and for each star we compute its visual magni-
tude V , its proper motion, and its radial velocity at the time when
the comet reaches its observable perihelion. In performing these
calculations, we use the straight-line approximation rather than
tracing the actual Galactic orbits. This is justified for time in-
tervals of just a few Myr but may lead to significant errors in
cases of >10 Myr. For the absolute magnitudes, we use the val-
ues given in Table 1 for the different spectral types. Every star
considered here is regarded as an Oort Cloud perturber, although
the actual perturbations affecting the injected comets are mostly
very small.

From the calculated V magnitude, we determine whether the
star would have been detected by H assuming that the
comet is passing its perihelion at the present time, and whether
it will be detected by Gaia. We also calculate the proper mo-
tion and determine whether this would have been measurable by

H and will be measurable by Gaia. Finally, for the ra-
dial velocity we consider two scenarios for Gaia. According to
the “optimistic” case, the radial velocities will be measurable for
all stars that could possibly be Oort Cloud perturbers, while in
the “pessimistic” scenario no velocities will be attainable from
the ground, and the magnitude limits for Gaia-observed radial
velocities will apply, as given above.

Table 2 presents some statistics on the stars perturbing the
quiescent injected comets during their last orbital period. We list
the fraction of stars detected by Gaia and H and, for
the detected stars, the fraction for which the proper motion is
accessible. The mean velocity and mass of the perturbing stars
is also given. Each quantity is listed first for all the perturbing
stars, and then for only the stars with the ten, five, two, and one
largest negative perturbations of the perihelion distance.

Looking at the entries for all the stars in Table 2, we note
that H detects only 9% of the perturbing stars, whereas
Gaia should detect 71% of these stars. Since the current stel-
lar observations rely mainly on the H catalogue, most
close-encounter stars are thus being missed. If we instead fo-
cus on the stars that provide the most important contributions to
the decrease in the perihelion distance, these detection percent-
ages increase for both Gaia and H. For the latter, de-
tection rises from 22% (for the ten most effective stars) to 26%
(for the single most effective star), and Gaia detection similarly
rises from 85% to 87%. These increases in the detection proba-
bility are caused by the stars that have the greatest effect on the
perihelion distances being those of both low velocity and high
mass. They will have bright apparent magnitudes, because they
are close by (owing to the small velocity) and luminous (ow-
ing to the large mass). We indeed note in Table 2 that the mean
velocity decreases and the mean stellar mass increases, when go-
ing from all stars to the 10 best, 5 best, 2 best, and the very best
among the stars (in terms of their contributions to the decrease
in perihelion distance).

We also note that, because of its very high astrometric ac-
curacy, Gaia will be able to measure the proper motions of the
vast majority of Oort Cloud encountering stars, while the per-
formance of H was not as good in spite of the detected
stars being on the average closer3. Counting all the stars, the
fraction with proper motion measurements is 96% for Gaia and
74% for H. Focussing on the most effective perturbing

3 The most accurate proper motions currently available do not use only
H data but also ground-based astrometry obtained far earlier.
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Fig. 8. Top: mean number of perturbing stars during the last orbital pe-
riod of injected comets versus the semi-major axis at injection (black
line) and number of perturbing stars detected by Gaia (red line) and
H (blue line). Only quiescent comets are considered. Bottom:
fraction of perturbing stars observed by Gaia (red line) and H
(blue line) versus the semi-major axis at injection.

stars, i.e., the closest and slowest encounters, the fraction de-
creases for both Gaia and H, but while it falls all the
way to ∼20% in the H case when zooming in on the
best star, for Gaia it remains above 80%. Regarding radial ve-
locities, these velocities were often available in the literature for
H stars, and for Gaia stars even in the pessimistic case,
the fraction of detected stars for which the radial velocity is mea-
sured is 35% according to our simulations.

4.3. Detection efficiencies

The probability of the detection by each satellite strongly de-
pends on the semi-major axis at injection (ainj). This is because
with increasing orbital period, the time from stellar encounter to
cometary perihelion statistically increases, so that the stars will
tend to be more distant and thus fainter at the time of comet in-
jection. Figure 8 shows, versus ainj, the mean number of stars
perturbing the quiescent injected comets during their last orbital
period (this varies more or less as a

3/2
inj ), the mean numbers of

these stars detected by Gaia and H, and the correspond-
ing fractions of detected stars in the Gaia and H cases.
We see how the probability of detection decreases with increas-
ing semi-major axis. We note that Gaia detects all the perturbing
stars for comets with a < 15 000 AU and 78% of the perturbing
stars for a ∼ 30 000 AU. The detections by H are never
complete with only 20% of stars detected for a ∼ 15 000 AU and
10% for a ∼ 30 000 AU.

Figure 9 is another clear indication of the improvements to
be expected from Gaia. The diagrams show, for four different in-
stants chosen at random during the last 3 Gyr of our simulations,
the stars that passed within 400 000 AU at times no later than
3 Myr before that instant. This time interval corresponds to the
orbital period of comets with a ∼ 20 000 AU. For larger semi-
major axes, the relevant stars for injection could have passed
further back in time. The four random instances are interpreted
as the perihelion times of injected comets.

For each star, the closest encounter distance is plotted ver-
sus the time of closest encounter measured from the cometary
perihelion time (t = 0). When we find the star to be detectable
by H, we indicate it with a sky-blue dot (left panels),

and detectability by Gaia is marked by red dots (right panels).
In each diagram, we have also plotted these data for the real stars
found by Dybczyński (2006) as a representation of the best that
could be done with the H data. We have also indicated
at which distance a comet on a parabolic or elliptic orbit would
have been as a function of time, if it reaches perihelion at time
zero. The “elliptic” curve corresponds to aphelion passage at the
times in question.

The number of stars detected by H is clearly very
small, and we see that the work of Dybczyński (2006) corre-
sponds well to the criteria used in our simulation. Recent en-
counters are strongly preferred, and thus the most effective stars
are generally missed. For encounters further back in time, the
stars tend to have moved to distances beyond the detectability
limit of H. On the other hand, the diagrams for Gaia
illustrate the hope that one can place in this mission, when it
comes to clarifying the origin of the observed, new Oort Cloud
comets.

Finally, we performed the integration of the last orbital pe-
riod of injected comets once more, taking into account only the
stars detectable by either H or Gaia. Figure 10 shows
the number of quiescent comets that become injected versus the
semi-major axis ainj, taking into account all the stars, only the
H stars, and only the Gaia stars. We have also plotted
the fraction of injected comets using each sub-sample of stars
with respect to the case where all the stars are taken into account.

Using only the stars detectable by H, we obtained a
flux of injections that is less than half of the total flux, except
near the maximum at ainj ∼ 33 000 AU, where the H
stars and the tides are able to inject a little more than 65% of the
total. We note, however, that most of these injections are essen-
tially tidal as in case 1a of Fig. 3.

The calculations taking into account only the Gaia-
detectable stars show that we have more than 80% of the total
quiescent flux for ainj < 40 000 AU. Then, however, the flux
decreases to less than 10% of the total for ainj ∼ 100 000 AU.
Nevertheless, since the observed Oort spike is certainly situated
mainly at a < 40 000 AU, one can hope that, when the Gaia
mission is over, it will be possible to simulate the last period of
the observed comets far more reliably than one can do with the
current data.

The fall-off in both H and Gaia relative fluxes to-
ward very large semi-major axes illustrates an important feature
of comet injection dynamics. In Fig. 4, we saw that practically
all the injected comets with ainj > 50 000 AU belong to theG set,
and this means that they might have been injected by the Galactic
tides alone. However, as noted above, this result carries no infor-
mation on the relative roles of stars and tides in the real injec-
tions. What we can now see in Fig. 10 is that the stars play a de-
cisive role in comet injection at large semi-major axes, because
even the removal of a small fraction of them mostly inhibits the
injections that were found using the entire sample.

5. Summary and conclusions

We have performed three simulations of the evolution of the
Oort Cloud, using one million test comets in each case.
Perturbations due to the Galactic tides and passing stars have
been incorporated. The three simulations differ in the selection
of initial orbits and the sequence of stellar encounters. Each sim-
ulation extends over 5 Gyr, and during the last 3 Gyr we register
over 20 000 comet injections, i.e., comets passing from perihelia
q > 15 AU to q < 5 AU in one revolution. We have analysed
in detail which events took place during these final revolutions
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Fig. 9. For four different instants (one per line), we plot the encounter distance of stars versus the time of encounter counted from the perihelion
passage of an injected comet (t = 0). The two curves indicate at which distance the comet would have been on a parabolic (dotted) or elliptic orbit
(solid; the comet being at aphelion in this case). The black dots correspond to all the simulated stars passing during the 3 Myr time span. In the
left column, the sky-blue dots show the stars detected by H. The same is done using red dots in the right column for the stars detected by
Gaia. The green asterisks indicate the real stars identified by Dybczyński (2006). His sample extends to larger encounter distances than those of
our simulation.

Fig. 10. Top: number of injected quiescent comets versus the semi-
major axis at injection taking into account all the stars (black line),
only the H stars (blue line), and only the Gaia stars (red line).
Bottom: fraction of injected comets using each sub-sample with respect
to the all stars sample.

and assessed the roles played by the Galactic tides and by the
passing stars.

One new feature of our analysis is the way in which we dis-
tinguish between cometary showers and the intervening, quies-
cent periods. We do not divide the time axis into shower and
quiescent periods but instead classify each injected comet ac-
cording to whether its last revolution could have been affected
by an efficient, enhancement-producing stellar encounter or not.
Our criterion has been chosen to be conservative in the sense that
quiescent comets have to be injected only under the influence of
stars with unremarkable injection efficiencies.

For quiescent comets, our simulated Oort peak agrees with
the shapes found in other simulations with a maximum at a semi-
major axis of about 33 000 AU. We have found that the sharp
decline in the injected flux with increasing semi-major axis be-
yond the maximum is consistent with the increasing difficulty
in sending a comet to perihelion when the perihelion distance
is shorter than the observable limit. The distribution for non-
quiescent comets is quite flat, as expected for a situation where
the loss cone is filled at practically any semi-major axis.

We have defined two sets of injected comets according to
whether the post-injection orbit could have been reached by a
purely tidal injection (G set) or whether an actual jump from
q > 15 AU to q < 5 AU was caused by a stellar encounter
(S set). The smallest semi-major axis found in the G set is
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about 23 000 AU, which is the limit below which it is impos-
sible for the Galactic tides to inject comets on their own. On
the other hand, for semi-major axes larger than 50 000 AU al-
most all the injected comets belong to the G set, which is unsur-
prising, because for these semi-major axes the tides will always
have time to remove the perihelion from the observable zone
during one orbital revolution of the comet. We conclude that the
tides, in principle, could have injected the comets, but that it is
impossible to state whether they actually did so. We argue that
owing to the short timescales and large perturbations involved,
comet injection from the outer part of the Oort Cloud is quite a
precarious operation, involving a fine tuning of stellar and tidal
perturbations.

The S set comprises essentially all the injections at semi-
major axes of about 10 000 AU, which shows the predominance
of stellar injections in this range, but drops to smaller fractions
around 15 000 AU. We have identified a range of semi-major
axis, extending from ∼15 000 AU to ∼45 000 AU, where the
union of the S and G sets fails to cover the ensemble of all in-
jected comets – indicating that a synergy is at work between
the two perturbers. This synergy is found to reach its maximum
close to the critical limit of tidal injections, where as much as
70% of the actual injections can be ascribed to the synergy, and
extends across most of the Oort peak.

We also investigated whether the inclusion of stellar pertur-
bations during the last revolution has either a positive or negative
effect on the number of injected comets. The result is that the
overall effect is positive because of an increase in the injection
efficiency inside and at the inner part of the Oort peak, while at
the outer part the differences are very small.

After demonstrating that passing stars should have had a
large influence on most of the injections responsible for the ob-
served new Oort Cloud comets, we checked the observability of
those stars using our simulations by computing the magnitude,
proper motion, and radial velocity of each perturbing star at the
moment the injected comet reaches perihelion. We then com-
pared these results with the detectability limits of both H
and Gaia. One result that we found is that H is mostly
unable to detect the perturbing stars, even when we concentrated
on the stars causing the largest decrease in perihelion distance,
while Gaia is likely to detect nearly all the most efficient per-
turbers and most of the perturbers at large. We have thus shown
why Dybczyński (2006) was unable to identify the stellar pertur-
bations that affected the new comets, while confirming that his
search for stars using H data was about as good as one
can reasonably expect. We also note that using only the stars that
H could have detected and the tides, our simulated flux
of quiescent injected comets is much reduced.

The proper motions of the perturbing stars have been gen-
erally difficult to obtain using H data but will become
accessible in the vast majority of cases using Gaia. Regarding
the radial velocities, Gaia will provide them in many cases,
and we argue that in the remaining cases, these velocities will
likely be attainable using ground-based follow-up observations.
Therefore, the prospects for clarifying the origin of the new
comets after Gaia look rather good.

Finally, we comment on what is lacking in our model. We
note that we have only studied the present situation, using
the Galactic tides and stellar perturbations typical of the
Sun’s present position in its Galactic orbit, while owing to radial

and vertical orbital oscillations of the Sun, large changes may
be expected with time (Gardner et al. 2011). Since our study has
not been concerned with comet injection at other times in the
history of the Solar System, this may not be a large problem,
but obviously the past motion of the Sun – including possible
encounters with GMCs as well – may have left its imprints on
the structure of the Oort Cloud in ways that our model does not
account for.

A potentially more serious problem is that our model of
comet injection does not incorporate a realistic treatment of
planetary perturbations. For instance, it may not be in reality im-
possible for comets to enter into orbits with perihelion distances
shorter than 5 AU via a preceding passage with q ∼ 10 AU.
Kaib & Quinn (2009) started to investigate this problem, but
their model did not include the stellar perturbations during the
analysed time interval except as a check, and we propose that a
careful study of the complete dynamics of comet injection will
be needed to reach safe conclusions. We intend to perform such
a study in the near future, and the present one will then serve as
a useful comparison case.
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3.2 Interaction entre les perturbateurs galac-

tiques et les perturbations planétaires

3.2.1 Implications sur le flux de comètes observables

On a vu, dans Fouchard et al. (2013) qu’une modélisation réaliste des
perturbations planétaires conduit à un système solaire bien plus transparent
que ce qui est considéré lorsqu’on utilise le concept de loss cone. Ainsi une
comète peut passer à de nombreuses reprises à l’intérieur de la barrière de
Jupiter et de Saturne, i.e. à moins de 15 UA du Soleil, tout en restant dans le
nuage de Oort, même si les perturbations planétaires vont modifier le demi-
grand axe de ces comètes. Or une modification du demi-grand axe change
de manière significative l’efficacité des marées galactiques et des étoiles à
modifier la distance périhélique des comètes et donc à les rendre observables.

Cette interaction entre perturbations planétaires et perturbations galac-
tiques nous a permis de mettre en valeur les propriétés suivantes du flux de
comètes observables (ces résultats correspondent à ceux de l’article (Fouchard
et al., 2014a) inséré ci-après) :
• près de la moitié des comètes sont observables grâce à une perturbation

planétaire reçue lors du passage au périhélie précédent. Sous l’effet de
cette perturbation, le demi-grand axe a considérablement augmenté
permettant ainsi aux marées galactiques, avec éventuellement l’aide
des étoiles, de rendre ces comètes observables ;
• entre 15% (lorsqu’on tient compte des étoiles) et 25% (sans les étoiles)

des comètes observables ayant franchi la barrière de Jupiter-Saturne
sont passées à moins de 15 UA du Soleil au cours de leur histoire ;
• au total plus de la moitié des comètes observables se trouvait à une dis-

tance inférieure à 15 UA du Soleil lors du passage au périhélie précédant
l’observabilité ;
• le pic de Oort est réduit à une distance de l’ordre de 30 000 UA avec

2/3 des comètes se trouvant vers la partie interne du nuage ;
• enfin, les comètes observables faisant des passages répétés à une dis-

tance inférieure à 15 UA du Soleil sont très largement sur des orbites
rétrogrades, conduisant à une proportion totale de comètes observables
sur des orbites rétrogrades de l’ordre de 60%.
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a b s t r a c t

We present Monte Carlo simulations of the dynamical history of the Oort cloud, where in addition to the
main external perturbers (Galactic tides and stellar encounters) we include, as done in a companion
paper (Fouchard, M., Rickman, H., Froeschlé, Ch., Valsecchi, G.B. [2013b]. Icarus, in press), the planetary
perturbations experienced each time the comets penetrate to within 50 AU of the Sun. Each simulation
involves an initial sample of four million comets and extends over a maximum of 5 Gyr. For better under-
standing of the outcomes, we supplement the full dynamical model by others, where one or more of the
effects are left out. We concentrate on the production of observable comets, reaching for the first time a
perihelion within 5 AU of the Sun. We distinguish between four categories, depending on whether the
comet jumps across, or creeps through, the Jupiter–Saturn barrier (perihelion distances between 5 and
15 AU), and whether the orbit leading to the observable perihelion is preceded by a major planetary per-
turbation or not. For reasons explained in the paper, we call the strongly perturbed comets ‘‘Kaib–Quinn
comets’’.

We thus derive a synthetic picture of the Oort spike, from which we draw two main conclusions
regarding the full dynamical model. One is that 2/3 of the observable comets are injected with the aid
of a planetary perturbation at the previous perihelion passage, and about half of the observable comets
are of the Kaib–Quinn type. The other is that the creepers dominate over the jumpers. Due to this fact, the
spike peaks at only 31000 AU, and the majority of new comets have semi-major axes less than this value.
The creepers show a clear preference for retrograde orbits as a consequence of the need to avoid unti-
mely, planetary ejection before becoming observable. Thus, the new comets should have a 60/40 prefer-
ence for retrograde against prograde orbits in apparent conflict with observations. However, both these
and other results depend on our model assumptions regarding the initial structure of the Oort cloud,
which is isotropic in shape and has a relatively steep energy distribution. We also find that they depend
on the details of the past history of external perturbations including GMC encounters, and we provide
special discussions of those issues.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

In a previous paper (Fouchard et al., 2013a), we have developed
a model to simulate the planetary perturbations on Oort cloud
comets. That paper, in the following referred to as Paper I, was
devoted to an analysis of these perturbations in order to evaluate
precisely the dynamical opacity of the planetary system and the

long term evolution of an Oort cloud of comets under their effect
only. It was shown that the opacity of the Solar System is far from
the step function of perihelion distance assumed in the definition
of the loss cone, and rather decreases continuously from almost
one (all the comets are lost) inside Jupiter’s orbit to almost zero
close to 15 AU. As regards the long term dynamics, it was shown
that different regimes prevail from inside 15 AU, where the orbital
energy of the comets evolves rapidly, to outside the orbit of Nep-
tune, where a smooth diffusion is at work.

The aim of the present paper, i.e., Paper II, and the following one
(Fouchard et al., 2013b) which we will call Paper III, is to examine
what happens, when Galactic tides and stellar perturbations
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operate together with the planetary perturbations. The output of
long term simulations using different models including different
perturbers will be compared in order to highlight the way in which
these perturbers interact and to reach a deeper understanding of
the effects displayed by the complete model. The present paper
is devoted to the flux of observable comets, i.e., comets that reach
heliocentric distances smaller than 5 AU for the first time, while
Paper III will deal with the long term evolution of the cloud and
the production of decoupled comets, entering into semi-major axes
less than 1000 AU.

Our initial conditions and models used are presented in Sec-
tion 2. The fluxes of observable comets obtained with each model
are compared in Section 3. Section 4 is devoted to an analysis of the
obtained Oort spikes. We discuss our main results and draw con-
clusions in Section 5.

2. Initial conditions and different models

We consider an initial, thermalized Oort cloud containing
4� 106 comets. The shape of the initial distribution of orbital en-
ergy is as given by Duncan et al. (1987), and we take the initial
semi-major axis between 3000 and 100000 AU. All comets have
perihelion distances q > 32 AU, so that the loss cones are initially
cleaned out. The Galactic tides and stellar encounter effects are
modeled as in our previous papers (Rickman et al., 2008; Breiter
et al., 2007; Fouchard et al., 2007). The planetary perturbations
are applied as described in Paper I, and we simulate the dynamics
of the Oort cloud over a time span of 5 Gyr, using different models.
The reason for sticking to one model of the initial Oort cloud, which
may not even be realistic, is that we want to focus attention on the
dynamics rather than on interpreting the observed orbits. The
latter will be the goal of forthcoming papers, where the choice of
initial conditions will indeed be crucial. Here we will limit our-
selves to a preliminary discussion in Section 5.

Four models are considered: tides only (T), tides and passing
stars (TS), tides and planets (TP), and tides, passing stars and
planets (TSP). For the TS and TSP models, four different random se-
quences of passing stars are used, leading to different evolutions of
the Oort cloud. These are just different realizations of the same
underlying model, using different random number seeds. The sub-
script i ¼ 1; . . . ;4 after the letter S will indicate the stellar sequence
used. As we shall see, there are significant differences between the
four sequences – nrs. 3 and 4 contain more encounters at close
range with dramatic consequences than nrs. 1 and 2.

During the simulation, the orbital elements of the comets are al-
ways given in a fixed Galactic frame centered at the barycenter of
the Solar System. Each time a comet enters into distances from the
barycenter1 less than rC ¼ 50 AU, a planetary kick is applied to the
comet. The osculating, barycentric ecliptic elements are computed
at peribaryon, and based on these, an integration of planetary
perturbations only is carried out within a limiting distance
rL ¼ 100 AU. After this, the new barycentric elements are applied
at peribaryon, and we compute new elements in the fixed Galactic
frame. Then the integration goes on with Galactic tides and passing
stars until the next perihelion passage. See Paper I for details.

As regards the passage between ecliptic and Galactic coordi-
nates, we use the present ecliptic coordinates of the Galactic pole
throughout the integrations, thus assuming that the two
fundamental planes do not precess with respect to each other
(e.g., Levison et al., 2006). This is in line with neglecting the
non-circularity and secular changes of the Sun’s Galactic orbit,
which are additional approximations of our long term model.

The T and TS models do not consider planetary perturbations
explicitly, but the masses of the four giant planets are added to
the Sun. Moreover, it is not a question of neglecting the planetary
perturbations but of treating them by the classical loss cone2 recipe.
Each comet is integrated for a maximum time span of 5 Gyr, unless it
reaches an end state. It may escape from the Solar System, i.e., reach
a heliocentric distance larger than 4� 105 AU, suffer a collision with
the Sun or a giant planet (when planets are explicitly modeled) or
penetrate within 15 AU of the Sun (when the loss cone model is
used), or evolve into orbits with semi-major axis less than
1000 AU. The last end state corresponds to the decoupled comets.

In the present paper, our analysis will focus on the observable
comets, i.e., comets reaching for the first time a heliocentric dis-
tance less than 5 AU. Since we are now mainly interested in the ef-
fect of planetary perturbations, all the results are expressed using
barycentric and ecliptic elements of the comets. The focus will be
placed on the TP and TSP models, while the T and TS models will
serve mainly as material for comparison.

3. Production of observable comets

3.1. Time dependence of the flux

The numbers of observable comets produced by our models per
period of 50 Myr are plotted versus time in Fig. 1. The fluxes of
models without stellar perturbations are the same in each panel,
while the panels differ with respect to the specific stellar se-
quences used in the TS and TSP models. For these models the back-
ground fluxes are seen to be similar in all panels whereas the high
peaks are related to comet showers, caused by close stellar
encounters that obviously differ between the four sequences.

The long term synergy between the tides and the stellar effects
is visible in the difference between the T and TS models. This is
caused by the filling of the so-called Tidally Active Zone (TAZ),
where an integrable tide is able to make comets observable, via
stellar perturbations. The effect was discussed in previous papers
(Rickman et al., 2008; Fouchard et al., 2011a).

In the TP model we also observe a large increase of the flux of
observable comets over the T model. However, in contrast to the
difference between the T and TS models, where the synergy needs
about 2 Gyr to reach its maximal effect, the difference between the
T and TP models is seen from the very beginning. This is because
the planetary perturbations help to inject observable comets
through an almost real time interference with the tides, allowing
a new path from the Oort cloud to the observable region (Kaib
and Quinn, 2009). From Fig. 1 we can see that, toward the end of
our simulations, the TS and TP models yield roughly similar in-
creases of the new comet flux with respect to the T model. We re-
gard this similarity as coincidental, since no obvious reason can be
identified.

Could there also be a long term synergy in the TP model, like in
the TS model, due to TAZ filling? The chances for such a synergy are
reduced by two effects: (i) the comets affected by the planets are
already close to, if not inside, the TAZ; (ii) the planets mainly affect
the orbital energy, while the amplitude of the eccentricity cycle
caused by the tides is almost unaffected, and consequently the
planets have to reduce the semi-major axis in order to reduce
the minimal perihelion distance and send a comet into the TAZ
(Matese and Whitman, 1992; Fouchard et al., 2011a). This in turn
makes the tides work more slowly in making the comet
observable.

1 From now on, all the orbital parameters will refer to the barycenter, but the terms
perihelion, aphelion, etc. will mostly be used for simplicity.

2 This means that below a threshold in angular momentum, represented by a
perihelion distance below 15 AU, comets are modeled as lost from the Oort cloud;
otherwise their orbits remain unchanged.
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However, as shown by Kaib and Quinn (2009), planetary pertur-
bations may shift a comet from the inner TAZ, i.e., semi-major axis
a < 20000 AU, into the central TAZ, i.e., semi-major axis
20000 < a < 50000 AU – thereby drastically speeding up their
injection. Using the loss cone concept, we have seen (Fouchard
et al., 2011a) that the tides are unable to directly inject observable
comets from the inner TAZ, whereas they are very efficient from
the central TAZ.

When adding the stellar perturbations in the TSP models, com-
paring with the TP model, we again see a large increase of the flux
of observable comets. We interpret this to show that the TAZ filling
that was not performed by planetary perturbations is now at work.
In conclusion, the role of stars, at least in the long term, is still rel-
evant for the flux of observable comets, since these are the only
perturbers among the three kinds considered, which are able to
efficiently inject comets into the TAZ.

Finally, we note that the increase of the TSP new comet flux
over that of the T model is roughly equal to the sum of the in-
creases exhibited separately by the TS and TP models. This means
that there is no extra synergy introduced by combining the stellar
and planetary perturbations.

3.2. Definition of observable classes

In our previous papers, where planetary perturbations were re-
placed by the loss cone concept, a comet could become observable
only if its perihelion distance decreased sharply from above 15 AU
to below 5 AU during one orbital period. On the other hand, when
the planetary perturbations are modeled more realistically as de-
scribed in Paper I, the perihelion is allowed to diffuse through
the Jupiter–Saturn barrier before reaching the observable region.
In a complete model, both mechanisms of comet injection must
coexist, and in the following we will separate the observable com-
ets into two classes, which we call jumpers and creepers. Specifi-
cally, creepers are comets that become observable without
performing the above-described jump, and thus their preceding
perihelion passage took place within the Jupiter–Saturn barrier.

There is another very important aspect of planetary perturba-
tions concerning comet injection, related to their effects on the
orbital energy. Levison et al. (2001) argued that the inner part of
the Oort cloud could be a source of Halley-type comets and thus
provide an explanation for the observed preference for prograde
orbits among such comets. The dynamical route to follow should
involve planetary perturbations of orbital energy in order to ex-
pose these inner Oort cloud comets to the Galactic tides and make
them observable. In a similar vein, Levison et al. (2006) proposed
that scattered disk objects would reach into the realm of Galactic
tides and contribute to the flux of long-period comets via planetary
perturbations due to the outer giants.

Following these ideas, Kaib and Quinn (2009) highlighted a pre-
viously unexplored route into observability in the Oort cloud,
which may in fact dominate the new comet flux. It concerns Oort
cloud comets with semi-major axis smaller than 20000 AU – i.e.,
the inner part of the cloud. In this region, while passing stars are
able to inject comets on their own across the Jupiter–Saturn bar-
rier, the Galactic tides are too weak, even with the help of back-
ground stellar perturbations, and the perihelion distance
normally evolves slowly under the influence of tides and stars
(Fouchard et al., 2011b). On the other hand, in the course of this
diffusion a planetary perturbation may push the semi-major axis
of a comet to a value larger than 20000 AU, at which the tides
are able to make the comet observable in a single orbital period.

Due to the similarity between the explicit results of Kaib and
Quinn (2009) and some of our results to be presented below, we
will refer to comets injected by such a mechanism as Kaib–Quinn
comets. This group involves both jumpers and creepers. Its inherent
feature is that the comets are kicked by the planets strongly en-
ough at the perihelion preceding observability that, by increasing
the semi-major axis, the effect of the Galactic tide may be effec-
tively turned on. Specifically, we require an increase from the last
unobservable to the first observable perihelion passage of the
original3 orbital energy z ¼ �1=a by more than 1� 10�5 AU�1.

(1) (2)

(3) (4)

Fig. 1. Number of observable comets per period of 50 Myr versus time for the four different models: T (green line), TSi (black line), TP (red line) and TSiP (blue line). The
number to the left above each plot indicates the index of the stellar sequence used. For the 4th sequence, the numbers on the right side of the highest peaks give the ordinate
of the top, when the flux exceeds the plotted range. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3 This means the value of the corresponding quantity on the ingoing orbital branch,
before the planetary perturbations are applied.
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This number is arbitrary, but we have found it convenient in or-
der to catch the above-described concept. For instance, the thresh-
old may correspond to a jump in semi-major axis from 20000 to
25000 AU, i.e., from the inner Oort cloud into the part where the
tides are efficient injectors of observable comets. Such an increase
is consistent with the results of Kaib and Quinn (2009) and also
with those of Fouchard et al. (2011b) and Rickman et al. (2012).
In the latter papers we showed that the tides, even when helped
by stars, are unable to make comets jump across the Jupiter–Saturn
barrier if the semi-major axis is smaller than 20000 AU, while the
tides are able to make comets observable on their own for semi-
major axis a > 23000 AU.

In summary, four classes of injected comets will be treated fol-
lowing the above definitions: ‘‘jumpers’’, ‘‘creepers’’, ‘‘Kaib–Quinn
jumpers’’ and ‘‘Kaib–Quinn creepers’’. Fig. 2 provides a schematic
illustration of the respective injection types.

3.3. Injection types and dynamical models

When stars operate, comet showers may occur. Since we want
the results of such models to be reasonably representative of the
current Solar System, and because it appears unlikely that an
important shower would be directly responsible for the current
flux of new comets (Dybczyński, 2002), we have decided to filter
out all comets sent in by shower-producing stars. In addition, we
want the long term synergy between the stars and the tides to
be fully operational. Consequently, for the TS and TSP models, only
the quiescent observable comets during the last 3 Gyr are taken
into consideration. A quiescent comet as defined by Fouchard
et al. (2011b) is a comet for which no enhancement-making star
has passed close to the Sun during the last orbital period of the co-
met, and an enhancement-making star is a star that would inject
more than five comets in the simulations by Fouchard et al.
(2011a). As shown by Fouchard et al. (2011b), only stars injecting
several times more than this limit would be able to contribute a
majority of the new Oort cloud comets presently observed.

For the T and TP models, obviously all comets are quiescent.
However, we want the tidal injection efficiency in these models
to be at its maximum, i.e., we want the TAZ to be nearly full. There-
fore, only the comets observable during the first 2 Gyr are consid-
ered. These differences between the models prevent quantitative
comparisons between them, but nonetheless we are able to reveal
and study the conditions for comet injection that characterize the

respective models by comparing the relative distributions of injec-
tions of various kinds.

Table 1 gives the total number of observable comets during the
corresponding interval, as mentioned above, for each model. The
fractions of comets belonging to the jumper, creeper, Kaib–Quinn
jumper and Kaib–Quinn creeper classes (pj; pc; pkqj and pkqc , respec-
tively), and the fractions of prograde orbits in each class are also
given.

Clearly, in the T model all the observable comets are jumpers.
Using the loss cone concept, both the creeper categories are ruled
out, and since the tides do not change the orbital energy of a comet
much, the Kaib–Quinn jumpers are also lacking. Regarding the
ecliptic inclination, the T model produces almost the same num-
bers of prograde and retrograde comets.

Very similar conclusions can be drawn for the TS model. There
are important differences in the total numbers of observable com-
ets between the four realizations, which are due to the differences
in the stellar sequences that we already commented upon. Indeed,
even though the comets counted are all quiescent, ‘‘comet drizzles’’
arise, resulting in an increase of the flux of quiescent observable
comets for hundreds of Myr after major showers (Fouchard et al.,
2011a).

The TS model is actually able to produce a few Kaib–Quinn
jumpers, since stars may occasionally cause dramatic injections
of single comets by very close encounters, even if they are not of
the enhancement-making type. Such injections may produce
Kaib–Quinn jumpers, since the large decrease of perihelion dis-
tance would generally be accompanied by a large perturbation of
the orbital energy. As seen in Table 1, these cases are very rare.
Note that they are different from the normal Kaib–Quinn jumpers,
since their energy jump is produced by a star, not a planet.

When the planetary perturbations operate, the situation
changes drastically. In the TP model, the fraction of jumpers is only
about 44%, and the remaining 56% of the observable comets have
followed routes involving planetary perturbations. Most of these
comets are Kaib–Quinn creepers (about 38% of the total), while al-
most 13% are creepers and the remaining 5% are Kaib–Quinn
jumpers.

The total number of jumpers, i.e., nobs times pj, increases by 38%
from the T to the TP model. Consequently, even considering only
the jumpers, we see a synergy between the tides and the planetary
perturbations. As already noted, this synergy is due to a diffusion in
orbital energy, which drives the comets from the inner part of the
Oort cloud that is initially more populated into the central and out-
er parts, where the tides are able to decrease the perihelion dis-
tance of the comets in the way appropriate for the jumpers. This
synergy does not affect the fraction of prograde orbits.

In the TSP model, the fraction of jumpers has decreased from
44% to about 34%, while the fractions of creepers and Kaib–Quinn
creepers have increased by about 5% each. The number of jumpers
has dropped, since the interval during which the observable com-
ets are counted is now the last 3 Gyr instead of the first 2 Gyr for
the TP model. Hence the TAZ has been depleted, especially in com-
ets that are quickly injectable. This in turn reduces the rate of
production of jumpers though not necessarily that of creepers or
Kaib–Quinn creepers.

Comparing the TS and TSP models in terms of numbers, we note
that the latter is about 3–4 times more efficient than the former in
providing observable comets. Looking at the details, the number of
jumpers shows only a moderate increase, and the main change is
the appearance of the creeper groups. In fact, this is one of our
most significant results. The full dynamical model produces more
creepers than jumpers, and most of the creepers are of the Kaib–Quinn
type. The latter feature is common to the TP and TSP models and is
likely caused by the difficulty of avoiding large planetary kicks,
when the perihelion diffuses inside Saturn’s orbit.

a

q q

a
aa

Jumper

KQ CreeperCreeper

KQ Jumper

Fig. 2. Schematic view of the observable classes. The horizontal blue arrows
correspond to the effect of the tides and passing stars on the comet during the last
orbital period before it becomes observable, and the red vertical arrows to the effect
of the planets at the perihelion preceding the observability. The gray zones mark
the Jupiter–Saturn barrier. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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The predominance of retrograde orbits among both the creeper
groups is a striking feature, which results from a risk for the creep-
ing process of being discontinued by planetary perturbations – a
risk that is obviously larger for comets on prograde orbits. This pre-
dominance increases somewhat from the TP to the TSP models.

3.4. Descriptions and illustrations

Let us now illustrate the different groups of observable comets
and the underlying mechanisms by plots similar to Fig. 1 of (Kaib
and Quinn, 2009), showing the orbital evolutions of comets until
their injections. We choose examples from the TP model, which
is the simplest one that exhibits all the relevant features. Each plot
shows the evolution of a comet in the ðq; aÞ plane. At each perihe-
lion passage, two positions are plotted: the original one (before
planetary perturbation) and the future one (after planetary pertur-
bation) – except for the last perihelion at observability, for which
only the original position is plotted. The dot color indicates the
ecliptic inclination according to the scale on the right hand side
of the plot. Consecutive positions are joined by a black line. The
horizontal black lines are at a ¼ 20000 and 25000 AU, and the
gray area covers perihelion distances between 5 and 15 AU (the
‘‘Jupiter–Saturn barrier’’).

The comet shown in Fig. 3 enters the region where planetary
perturbations are applied (q < 50 AU) with an inclination of 104�
and a ’ 18000 AU. The perihelion distance decreases under tidal
effects, while the semi-major axis diffuses outward under plane-
tary perturbations. When the latter reaches a ’ 26000 AU, the
tides are strong enough to directly inject the comet. In this case
the last energy kick before the comet becomes observable is below
the threshold chosen for the Kaib–Quinn comets, and thus the co-
met is a jumper. But, specifically, the kick amounts to
0:88� 10�5 AU�1, so the comet does not fail by much to be a
Kaib–Quinn jumper. In fact, the classification of individual comets
is a matter of chance in cases like the one shown. The dividing line

is a borderline – not a gap that easily separates groups with en-
tirely different properties.

The case in question shows how the TP model allows to obtain
jumpers by a synergy between the tides and the planets. The Kaib–
Quinn jumpers are in fact a special case of this synergy, where the
diffusion of the orbital energy is ended by a strong planetary kick
at the perihelion preceding the observability. Almost 2/3 of the
comets in this group are prograde, since such orbits are more af-
fected by planetary perturbations.

A typical Kaib–Quinn jumper is shown in Fig. 4. When this co-
met first arrives at q < 50 AU, its inclination equals 28� and its
semi-major axis is a ¼ 4010 AU. As long as q > 30 AU, a slow diffu-
sion of the semi-major axis, lasting for 123 Myr, brings the comet
to a ’ 7000 AU. Then a first planetary kick by Neptune leads to
a ¼ 16000 AU, and a second one several revolutions later by Ura-
nus, when q ¼ 19 AU, leads to a ¼ 35000 AU, from where the co-
met is directly injected into the observable region by the tides.

The Kaib–Quinn creepers follow paths similar to those of the
Kaib–Quinn jumpers, except that their perihelion distance at the
perihelion preceding the injection is less than 15 AU. This implies
two important differences with respect to the Kaib–Quinn jumpers:
(i) since the pre-injection perihelion may be close to the orbits of
Jupiter or Saturn, the chance to have a large enough energy pertur-
bation to qualify for Kaib–Quinn status is much larger, explaining
the much higher fraction of Kaib–Quinn creepers than Kaib–Quinn
jumpers (38% against 5% in the TP model); (ii) since the perihelion
distance of Kaib–Quinn creepers must diffuse through the Jupiter–
Saturn barrier, and because the planetary perturbations are stronger
for prograde orbits, the risk of interrupting the process by ejection
into interstellar space is more easily avoided for retrograde orbits
(about 60% of this group are retrograde), contrary to the Kaib–Quinn
jumpers. In fact, for the latter the prograde orbits are strongly pre-
ferred because of the need to undergo a large energy kick due to Ura-
nus or Neptune, which are weak perturbers and almost unable to
produce such perturbations unless the inclination is low.

Table 1
For each model type, described in the first column, the following columns give the total number of observable comets and the fraction in percent of prograde comets, and
thereafter the fractions in percent of jumpers, creepers, Kaib–Quinn jumpers and Kaib–Quinn creepers followed by the corresponding fractions of prograde orbits. For the TS and
TSP models, the data are averaged over the four TSi (resp. TSiP) realizations.

Model nobs % prog pj (%) % prog pc (%) % prog pkqj (%) % prog pkqc (%) % prog

T 11884 50.0 100.00 50.0 0.00 0.00 0.00
TS 8504 50.1 99.84 50.1 0.00 0.16 0.00
TP 36828 44.5 44.40 49.3 12.56 31.5 4.58 65.7 38.46 40.2
TSP 30172 41.9 33.84 48.9 17.24 28.8 4.96 65.3 43.96 39.1

Fig. 3. Evolution in the ðq; aÞ plane (see text for details) for a jumper comet, using
the TP model.

Fig. 4. Same as Fig. 3 for a Kaib–Quinn jumper, using the TP model. The critical
energy kick preceding its injection amounts to 5:17� 10�5 AU�1.
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Fig. 5 shows an example of a Kaib–Quinn creeper. It enters into
q < 50 AU with a semi-major axis a ¼ 3200 AU and an inclination
equal to 138�. The perihelion distance slowly diffuses inward until
q ’ 15 AU. At this point the semi-major axis starts to diffuse more
rapidly by first decreasing almost to 1000 AU, and then increasing
again. A few moderate planetary kicks finally drive the semi-major
axis slightly above 10000 AU. When the perihelion distance
reaches 8 AU, a kick by Saturn sends the comet into the central
Oort cloud with a ¼ 25400 AU. At this point, the tides may easily
make the comet observable.

The comet shown in Fig. 5 is untypical of the Kaib–Quinn creep-
ers only in one sense – the large number of perihelion passages in-
side the Jupiter–Saturn barrier. This is to be expected for comets
originating in the inner core of the Oort cloud and moving on
high-inclination, retrograde orbits, for which strong planetary per-
turbations are rare. However, it clearly demonstrates why creepers
in general tend to be of the Kaib–Quinn type. Sooner or later, it is
likely that a large planetary kick arises, like in the case shown,
leading to observability via the Kaib–Quinn mechanism.

For the creepers, there cannot be a final planetary perturbation
large enough to qualify for the Kaib–Quinn scenario, and the peri-
helion has to diffuse through the Jupiter–Saturn barrier. Conse-
quently, the fraction of retrograde orbits is even higher than for
the Kaib–Quinn creepers (almost 70%).

An example of a creeper is shown in Fig. 6, where the comet en-
ters into q < 50 AU with a semi-major axis a ¼ 13800 AU and an
inclination equal to 70�. After a sequence of small or moderate
planetary kicks, the comet is finally injected into the observable re-
gion with a ¼ 19700 AU and an inclination of 80�. Like the previ-
ous comets, it remains within the TAZ with a steadily decreasing
perihelion distance due to the tides. The step size of this continu-
ous decrease is clearly related to the semi-major axis.

A remark has to be made regarding the past history of the
injected, observable comets. We have observed that 25% of the
jumpers in the TP model have passed at least once inside q < 15
AU – and, obviously, not just one revolution before their observ-
ability. How can such a large fraction be explained? Consider a co-
met that is sent by a planetary kick into the range of semi-major
axis beyond 50000 AU, i.e., the outer part of the cloud. This is an
extreme case, but it serves well for illustration. As discussed by
Fouchard et al. (2011b), the likelihood for such a comet to become
observable is then limited by what we may call a timing problem.
By the time the comet comes back to its next perihelion, the tidal
eccentricity cycle will likely have made the perihelion distance
pass its minimum and return to larger values. However, the comet
being in the TAZ (with no possibility to get out from it since the
stars are not present in this model), it can become observable

many orbital periods later, when the timing condition is met for
the first time and the comet can actually pass perihelion within
5 AU of the Sun.

Such an injection is shown in Fig. 7. The triggering planetary
kick is given at t = 110 Myr with a perihelion distance equal to
13 AU. The resulting semi-major axis is a ’ 67000 AU. Then the co-
met escapes the planetary region of the Solar System for many or-
bits and comes back at t = 1990 Myr with an almost unchanged
semi-major axis.

The type of evolution in question is most clearly exemplified by
the outer Oort cloud comets but is not strictly limited to them. The
perihelion timing problem also concerns comets with
a � 40000 AU, belonging to the central part of the cloud, though
to a lesser extent. Concerning the TSP models, because of the pres-
ence of the stars, which can eject comets from the TAZ, the fraction
of jumpers that have visited the Jupiter–Saturn region before their
injection is lower, amounting to 15–20%.

4. The Oort spike

4.1. General shape and jumper class

Let us now discuss the orbital distribution of observable comets
in more detail. An important remark has to be made at the outset,
namely, that the energy distribution within the cloud reflects the
assumed, initial energy distribution, and thus the quantitative re-
sults to be presented are to some extent model dependent. With

Fig. 5. Same as Fig. 3 for a Kaib–Quinn creeper, using the TP model. The critical
energy kick preceding its injection amounts to 4:83� 10�5 AU�1.

Fig. 6. Same as Fig. 3 for a creeper, using the TP model. The critical energy kick
preceding its injection amounts to 0:59� 10�5 AU�1.

Fig. 7. Same as Fig. 3 for a jumper that has visited the Jupiter–Saturn region during
its past history, using the TP model.
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other assumptions, the results would likely be different. The extent
of these differences is not known and remains to be explored.

Fig. 8 shows histogram distributions, normalized with respect
to the total number of observable comets, of the original orbital en-
ergy zo ¼ �1=ao for the observable samples of the four models
(black lines). We recall that this quantity refers to the first time
these comets pass perihelia with q < 5 AU. The bell-shaped curves
thus displayed will be referred to as Oort spikes. In addition, the
distributions of initial orbital energy zi ¼ �1=ai at the start of the
simulations (t ¼ 0) for the same observable comets are also shown
(green lines). For the TS and TSP models, these distributions are
averaged over the four simulations with different sequences of
stellar encounters. In order to evaluate the separate contributions
of different injection scenarios, within each orbital energy bin,
the red area is proportional to the number of jumpers, the blue
area to the number of creepers, the orange area to the number of
Kaib–Quinn jumpers and the violet area to the number of Kaib–
Quinn creepers.

The distributions in the T and TS models were already described
at length by Fouchard et al. (2011b) and Rickman et al. (2012). The
main difference between them is that the TS Oort spike peaks at a
smaller semi-major axis, i.e., 34000 versus 48000 AU. A feature not
previously emphasized is that for the TS model, the distribution of
ai for the observable comets is very different from their ao distribu-
tion. Specifically, a diffusion from the inner part of the Oort cloud
into the central and outer parts is seen to have occurred from t ¼ 0
to the time of observability.

On average, we find that 43% of the observable comets in the TS
model come from the inner Oort cloud, i.e., ai < 20000 AU and

almost 10% even from ai < 10000 AU. But the process that we va-
guely described as diffusion may in fact have a significant compo-
nent caused by a few dramatic events. In Paper III we will show
that a large-scale migration occurs inside the Oort cloud, caused
by the closest and strongest stellar encounters. At this point, let
us note that the four different TS models with different stellar
encounter sequences yield quite different results regarding the
above-mentioned percentages. In model TS1, which is the most
quiescent, we find that 30% of the observable comets have mi-
grated from the inner Oort cloud and 5% from ai < 10000 AU, while
in the relatively dramatic TS3 model, we find 52% and 15%, respec-
tively. Finally, note that, as expected, no migration is observed for
the T model, since the tides are not able to significantly change the
orbital energy, even on long time scales.

In the TP model, the Oort spike peaks at about 31000 AU. This
decrease from the T model is mainly due to the existence of creep-
ers and Kaib–Quinn creepers, whose distributions peak at smaller
ao. However, even considering only the jumpers, their distribution
peaks at 38000 AU versus 48000 AU for the T model. This differ-
ence is caused by the already mentioned synergy in observable co-
met injection between planetary perturbations and Galactic tides.
Specifically, comets from the inner part of the cloud, where the
tides are unable to inject them, migrate outward under planetary
perturbations. During this process, the tides inject them as soon
as possible, which favors the smaller semi-major axes of the inject-
able range.

Measuring the amount of synergy by the relative increase of the
number of jumpers from the T to TP models, it reaches its maxi-
mum (about 53% in contrast to the overall 38% increase) for

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

-0.0001 -8e-05 -6e-05 -4e-05 -2e-05

10000 15000 20000 30000 50000 100000

F

z

a

T
0.0
0.0
0.0
0.0
0.0

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

-0.0001 -8e-05 -6e-05 -4e-05 -2e-05

10000 15000 20000 30000 50000 100000

F

z

a

TS
9.3
2.2
0.0
0.1
0.0

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

-0.0001 -8e-05 -6e-05 -4e-05 -2e-05

10000 15000 20000 30000 50000 100000

F

z

a

TP
25.6
0.0
0.6
0.0
0.3

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

-0.0001 -8e-05 -6e-05 -4e-05 -2e-05

10000 15000 20000 30000 50000 100000

F

z

a

TSP
40.0
0.5
1.4
<0.1
0.9

Fig. 8. Oort spikes (black lines) formed by four samples of observable comets along with the distributions of initial orbital energy (green lines). The histograms are
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reader is referred to the web version of this article.)
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ao ’ 38000 AU, coinciding with the maximum of the number of TP
jumpers. On the other hand, below ao ’ 24000 AU, neither TP
jumpers nor T jumpers exist, since the planets are unable to con-
tribute directly to the decrease of the perihelion distance.

A clear sign of the semi-major axis diffusion caused by the plan-
ets is that 51% of the observable comets in the TP model have
ai < 20000 AU. This is higher than we obtained in the TS models,
even though the observability is reached in the TP model already
during the first 2 Gyr. This reflects the fact that planetary perturba-
tions are much more efficient than the usual stellar perturbations
in changing the orbital energy of Oort cloud comets.

Note that the Oort spike in the TP model differs from the TS
model by an important number of very large semi-major axes
(ao > 50000 AU) even though it peaks at a lower value. This is al-
most exclusively caused by jumpers. Since the ao and ai distribu-
tions are identical, we conclude that the comets have not
suffered any change in semi-major axis before their injection.
Hence, they cannot have visited the Jupiter–Saturn region and
most likely have not entered into the planetary system. In the ab-
sence of stars and a well-defined TAZ, they may have orbited many
times since the start of the simulation with perihelia beyond
50 AU. They might indeed be victims of the ‘‘timing problem’’, such
that the tides repeatedly brought their perihelion distances below
5 AU but never at the time of a perihelion passage.

In the TSP model, the peak of the Oort spike is located at the
same place as in the TP model, i.e., at 31000 AU. However, 67% of
the observable comets have ao < 31000 AU in the TSP model, com-
pared to only 47% in the TP model. Several factors may contribute
to this difference. During the preceding 2 Gyr of the TSP model, the
stars have depleted the outer part of the Oort cloud, and this deple-
tion continues throughout the time interval under consideration,
thus favoring the inner and central parts. Moreover, stars play a
role in comet injection via the real time synergy with the Galactic
tides, and whether we consider jumpers or creepers, this help is
mainly of importance for semi-major axes small enough for the
tides to be inefficient. Another important role is that they may
clean comets away from the TAZ and thereby reduce the number
of the above-described ‘‘delayed entries’’ at ao > 50000 AU, which
was found important in the TP model.

The TSP jumpers have a maximum at 38000 AU. This is slightly
higher than in the TS model but equal to that of the TP jumpers.
The synergy between the planets and the Galactic tides is still ac-
tive with an overall increase of about 20% in the number of jump-
ers from the TS to the TSP models. The amount of this synergy, as
defined above, is rather low (5%) for ao < 20000 AU, and reaches a
maximum (30%) at about 42000 AU. This global shift to higher
semi-major axes of the jumpers is caused by the diffusion toward
larger semi-major axis due to the planets. The price to pay is that
the stars may now eject the comets from the Oort cloud, thus
reducing somewhat the synergy between the planets and the tides.

Another consequence of this diffusion is that the number of
jumpers with small semi-major axis coming from stellar injections,
in particular those with ao < 10000 AU, is reduced from the TS to
the TSP models. This region of the Oort cloud has suffered some
depletion due to planetary perturbations in the latter models –
especially comets with perihelion distances in the range from 15
to 50 AU, which tend to reach the decoupled end state in the course
of more than 2 Gyr.

4.2. Effects of long-term evolution

The diffusion in orbital energy due to the planets also causes the
percentage of observable comets with ai < 20000 AU in the TSP
model to be higher than in the TS model. In Table 2 we present
those fractions for all models except T, where the percentage is al-
ways zero. We give the results for the simulated intervals before

and after 2 Gyr in order for the TP model to be comparable to the
others. We see that the TP and TSP models yield nearly the same
results, while the TS model has a lower fraction of comets originat-
ing in the inner Oort cloud, especially in the beginning. It thus
seems that, when planetary perturbations are at work, they largely
conceal the star-induced migration and diffusion effects on orbital
energies. However, a detailed analysis of the percentages resulting
from the different versions of the TS model with different stellar
encounter sequences reveals a clear correlation between these per-
centages and the strength of the strongest encounters, indicating
an important role of star-induced migration. This correlation also
exists for the TSP models but is weakened by the planetary effects.

A salient feature of Table 2 is the important increase of the frac-
tion of observable comets originating in the inner part of the cloud
from the first two to the last 3 Gyr of the simulations. This amounts
to about 40% for the TP and TSP models and a full factor four for the
TS model. Two phenomena that play important roles in controlling
the feature are TAZ filling and the Kaib–Quinn mechanism, and
comparing the TS and TP models, we realize that the TS model
has only TAZ filling, while the TP model has only the Kaib–Quinn
mechanism.

Actually, the results are then somewhat counter-intuitive, be-
cause TAZ filling is what keeps the injection rate of observable
comets at a higher level toward the end of the simulation in the
TS than in the TP model (cf. Fig. 1), and this means a continued pro-
duction of observable comets mainly from the outer part of the
cloud. Hence, the very large increase of the inner cloud fraction
in the TS model needs yet another explanation, and the obvious
candidate is the star-induced outward migration of comets.

Such migration must be present in the TSP model too, but the
effect is much smaller in this case. Moreover, even though the
star-induced migration is absent in the TP model, the results are
very similar in the TP and TSP models. As far as we can judge,
the Kaib–Quinn mechanism is the main reason why observable
comets come from the inner cloud in both cases, and the increase
of the fraction toward the end of the simulation is due to the
decreasing contribution by the outer cloud due to the depletion
of the TAZ.

4.3. Creepers and Kaib–Quinn comets

Let us now discuss the creepers and the two Kaib–Quinn
groups. These kinds of observable comets are absent in the T and
TS models, whereas, as already mentioned, they represent the
majority of the injections when planetary perturbations are in-
cluded (TP and TSP models).

In particular, we shall consider the number of passages within
the Jupiter–Saturn barrier, i.e., perihelion passages with
5 < q < 15 AU, before the comet becomes observable (by defini-
tion, this number is at least 1 for creepers and Kaib–Quinn creep-
ers). We denote the number by njsb. For each model, we split the
sample of four million comets into four equal samples of one mil-
lion each. Then, for each such sample, we compute the median of
njsb in each bin of ao. The arithmetic mean of the four median val-
ues, denoted njsb, is considered for analysis along with the arithme-
tic means of the related 10th and 90th percentiles.

Table 2
Fraction (in percent) of observable comets during the period given in the first row (in
Gyr) initially in the inner Oort cloud (ai < 20 000 AU).

Model ½0;2� ½2;5�

TS 11 43
TP 51 72
TSP 53 73
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Fig. 9 shows for each group (creepers, Kaib–Quinn creepers, and
Kaib–Quinn jumpers), and from top to bottom, the value of njsb, the
fraction of prograde orbits, and the number of comets in the
respective group, all versus zo ¼ �1=ao, and finally the number of
comets versus the original orbital energy at the last perihelion pre-
ceding the observable one (zp). The left panel is for the TP model,
and the right one shows the average of the TSP models.

As a general result, our analysis of the 10th and 90th percentiles
shows that njsb is a quantity with a broad distribution. However,
both the upper and lower fractions of the population behave sim-
ilarly to the median concerning the variation with zo. We note that
the values presented for njsb are consistent with our findings in Pa-
per I, where it was shown in Fig. 8 that only the comets with
q < 5 AU had been strongly depleted by planetary perturbations
after 10 revolutions, while those with somewhat larger perihelion
distances were largely remaining.

4.3.1. TP model results
We first discuss the TP model. Here, for the creepers, the origi-

nal semi-major axis at observability (ao) has its maximum near
26000 AU, and for the Kaib–Quinn creepers the maximum is at
about 28000 AU. But while the maximum of ap ¼ �1=zp is at the
same position as that of ao for the creepers, it is close to
17000 AU for the Kaib–Quinn creepers. Indeed, for the latter group
the distribution of zp extends to very small semi-major axes, even
including 317 comets with ap < 3000 AU. More than 90% of the
Kaib–Quinn creepers were in the inner Oort cloud
(ap < 20000 AU) one orbital period before their observability,
whereas this fraction is less than 20% for the creepers.

These are obvious consequences of the strong planetary kicks
imparted to the Kaib–Quinn comets at their perihelia preceding
the injection. This also explains why njsb is generally one order of
magnitude larger for the Kaib–Quinn creepers than for creepers.
Since their orbital energy before the injection was much smaller,
the decrease of the perihelion distance caused by the tide was
much slower. By contrast, the majority of the creepers are fast
creepers, i.e., comets that made only a single passage within the
Jupiter–Saturn barrier before their injection.

The large values of njsb that are seen at ao > 50000 AU for creep-
ers and Kaib–Quinn creepers result from the contributions of a few
comets that made many passages within the Jupiter–Saturn barrier
with small semi-major axes before receiving one or two planetary
kicks that sent them into a semi-major axis larger than 50000 AU.
At that point they could become observable as creepers or Kaib–
Quinn creepers on the condition of avoiding the above-mentioned
timing problem. However, since only single or very few comets
contribute in this range of ao, the results have no statistical
significance.

The variations of njsb and the prograde fraction are broadly
correlated, i.e., the fewer the previous entries within the Jupiter–
Saturn barrier, the higher the fraction of prograde orbits. Both
these properties correlate positively with the value of ao. Beyond
ao ¼ 20000 AU, we note a steeper increase with ao of the prograde
fraction for Kaib–Quinn creepers than for creepers. This is ex-
plained by the fact that most of the Kaib–Quinn creepers (more
than 90%) had ap < 20000 AU, so that for increasing ao the strength
of the last planetary kick should typically be larger, which calls for
a larger prograde fraction.

Below ao ¼ 20000 AU, the prograde fraction is small for both
creepers and Kaib–Quinn creepers, showing relatively little varia-
tion with ao. We mentioned the reason for the retrograde predom-
inance above, namely, the risk of ejection by planetary
perturbations before the creeping is over.

The behavior of the Kaib–Quinn jumpers is naturally quite dif-
ferent. Due to the constraint of a large tidal decrease of q leading
to observability, their distribution of ao peaks around 34000 AU,
and no Kaib–Quinn jumpers are found below 24000 AU, as for
the other jumpers. Similar to the Kaib–Quinn creepers, the distri-
bution of ap peaks at around 20000 AU, i.e., much less than for
the ao distribution. Again, for this group, a majority of the comets
(about 63%) were in the inner Oort cloud one orbital period before
becoming observable. Obviously, as expected for Kaib–Quinn
jumpers, in general njsb is always zero.

The prograde fraction of Kaib–Quinn jumpers is naturally high,
since they have to receive a strong planetary kick. The trend for
this fraction to decrease with ao is at first glance surprising. How-
ever, if we had counted the inclination at the perihelion preceding
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Fig. 9. For each group, i.e., creepers (blue lines), Kaib–Quinn creepers (violet lines), and Kaib–Quinn jumpers (orange lines), the value of njsb (top plot), the fraction of prograde
orbits (middle top plot) and the number of comets (middle bottom plot) are shown versus zo , and the number of comets in each group also versus zp (bottom plot). The left
and right panels show results of the TP and TSP models, respectively. Note that the absolute numbers shown in the lower plots cannot be straightforwardly compared
between TP and TSP, since the respective time periods are different. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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the injection instead of at observability, then a flat fraction of pro-
grade orbits around 70–80% would have been obtained. This is ex-
plained by the effect of the Galactic tides during the last orbital
period. Indeed, the third component of the angular momentum
with respect to the Galactic plane is a quasi-constant of motion,
and consequently, if the perihelion distance undergoes a drastic
change, so does the Galactic inclination. And obviously, the larger
is the semi-major axis, the larger is the jump experienced in one
orbital period. The inclination of the Galactic plane with the eclip-
tic finishes the job, introducing a loss of memory of the ecliptic
inclination from the perihelion preceding the injection (Levison
et al., 2006; Dones et al., 2005).

4.3.2. TSP model results
We now turn to the TSP model, illustrated in the right-hand pa-

nel of Fig. 9. Let us first consider the creepers and Kaib–Quinn
creepers. As we remarked when discussing Table 1, their total
numbers do not change much between the TP and TSP models,
and we can now see that the plotted ao distributions are also very
similar (to within about a factor 2).

One difference between the models is that the TSP model has
two agents (stars and tides) causing changes of the perihelion dis-
tance, which is of particular importance in the inner part, where
the tides are very inefficient. This tends to increase the speed of
creeping and hence also the number of both kinds of observable
creepers.

A clear indication of the help offered by the stars to creepers is
the decrease of njsb from TP to TSP models, generally for
ao < 23000 AU. In accordance with the lower value of njsb, the pro-
grade fraction is somewhat higher in the TSP than in the TP model
for this inner part of the cloud. However, for ao > 23000 AU, things
work in the opposite sense. Here, in the TP model, all the creepers
are fast, having njsb ¼ 1, which means that the tides are working
quite efficiently, so the ‘‘help’’ of the stars is no longer appreciated.
In fact, it turns into an obstacle, since stars are also able to slow
down the decrease of the perihelion distance caused by the tides.

A typical example of a creeper, for which the injection is facili-
tated by stellar perturbations, is shown in Fig. 10. We note that,
contrary to the TP model, the steps in perihelion distance are not
related to the value of the semi-major axis. Large decreases may
occur even for moderate semi-major axes. This example also shows
that an enhancement-making star (the ones that we exclude from
the statistics of observable comets; see above) may have had some
importance in the past evolution of the real comets, helping to re-
duce their perihelion distances. Such an encounter may produce a
reservoir of future creepers and Kaib–Quinn creepers. Clearly, then,
close stellar encounters with the Sun will not only produce comet
showers in the form of jumpers, but for some time after such an
event they also produce an increase in the numbers of both kinds
of creepers.

The stars have a small but noticeable effect on the distribution
of ap. For the TSP model, the maxima of ap are at 24000 AU for the
creepers and 15000 AU for the Kaib–Quinn creepers – in both cases
about 2000 AU less than for the TP model. The fractions of comets
with ap < 20000 AU are almost 95% for the Kaib–Quinn creepers
and 32% for the creepers.

Finally, as regards the Kaib–Quinn jumpers, a similar effect of
stars as for the creepers and Kaib–Quinn creepers is observed,
i.e., an increase of the injections toward small semi-major axis
(that is extremely clear here, since the TP model was not able to
produce Kaib–Quinn jumpers at all below 24000 AU) and a de-
crease of the injections at large semi-major axis. About 70% of this
group were in the inner Oort cloud at the perihelion passage pre-
ceding the injection. The stellar effects below 24000 AU may be
separated into two categories: between 20000 and 24000 AU the
injections are mainly tidal but the real time synergy with stars is

needed, while below 20000 AU we essentially deal with stellar
injections at rare, close encounters.

4.4. Comparison with Kaib and Quinn

Since our TP model is very similar to the one used by Kaib and
Quinn (2009), we need to compare our results with theirs. For in-
stance, we find that 53% of the observable comets had their initial
orbits in the inner Oort cloud (ai < 20000 AU), while they found
56% with an initial inner to outer population ratio of 1.5 and 72%
with a ratio of 3.5. In our case this ratio is 2.8, so we should find
something in between. The reason that we find a somewhat smal-
ler percentage likely stems from the fact that we count observable
comets from time t = 0 to 2 Gyr, while they focused on injections
after at least 1 Gyr. Since most of ours occur before 1 Gyr (see
Fig. 1), the comets have had less time to migrate to larger semi-
major axes than in their case. Indeed, our percentage of observable
comets that started in the inner Oort cloud increases to 72%, if we
instead consider the time from 2 to 5 Gyr.

The statistics of injection scenarii are not easy to compare, since
Kaib and Quinn (2009) count comets that move outward across the
a ¼ 20000 AU limit at the perihelion preceding the final revolu-
tion, while we define Kaib–Quinn comets based on the size of
the last planetary kick. If we make the reasonable assumption that
all our Kaib–Quinn comets were initially in the inner Oort cloud,
we find that 81% of all initially inner Oort cloud comets that be-
come observable belong to the Kaib–Quinn category (mostly
Kaib–Quinn creepers) – quite close to the value of 85% found by
Kaib and Quinn (2009).

5. Summary and conclusions

We have produced several models of the dynamics of a large
sample of Oort cloud comets affected by the Galactic tides, passing
stars and giant planets over the age of the Solar System. The mod-
els differ in the kind of perturbers taken into account, or the se-
quence of passing stars used. Attention was paid to the
observable comets, which enter within 5 AU of the Sun for the first
time.

We classified the observable comets into the jumper group, for
which the perihelion jumped across the Jupiter–Saturn barrier in a
single orbital period, and the creeper group, for which at least one
perihelion passage occurred inside this barrier. In addition, if the
original orbital energy had undergone an increase larger than
10�5 AU�1 between the perihelion preceding the injection and

Fig. 10. Same as Fig. 3 for a creeper using the TSP model. The three major
downward jumps in q are caused by dwarf stars penetrating to less than 10000 AU
from the Sun, which also cause moderate changes in the inclination.
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the one at observability, then the comets were also flagged as
Kaib–Quinn comets.

Generally, led by previous experience, we may characterize our
results in terms of synergies, and the main one explored in this pa-
per is that between the planets and the tides. It is driven by the dif-
fusion of the orbital energy under planetary perturbations, which
may push the semi-major axis of the comets to large values, help-
ing the tides to directly inject them. We verify the results by Kaib
and Quinn (2009), and we find this synergy to be responsible for all
the Kaib–Quinn comets (43% of the observable comets in the model
with tides and planets) as well as an increase of about 38% in the
number of jumpers. One feature of the synergy is that 15� 20%
of the jumpers (corresponding to about 6% of all the observable
comets) in the TSP model have made a previous passage inside
the Jupiter–Saturn barrier long before they get observable. During
those passages, the orbital energy is strongly increased due to the
planets. The tides being very efficient, the perihelion moves away
from the planetary region during the following orbital revolution.
Hence, the comets have to wait at least one tidal perihelion cycle
(often several) before becoming observable.

The other key feature is the non-complete dynamical opacity –
or ‘‘leakiness’’ – of the Jupiter–Saturn barrier, which was studied in
Paper I. This implies the existence of creepers, and most of the
Kaib–Quinn comets indeed belong to the creeper category. In addi-
tion to the above-mentioned 43% of the observable comets being of
the Kaib–Quinn type in the TP model, another 13% are creepers
lacking the large energy jumps of the Kaib–Quinn comets. All in
all, mainly due to the introduction of the Kaib–Quinn and creeper
categories, the injection rate of observable comets shows a dra-
matic increase, when planets are added to the tides.

The same happens, when we add planets to the model of tides
and stars. We note that the flux of observable comets is 3–4 times
larger in the average TSP model than in the average TS model. Since
this may concern the present time, it is worth emphasizing that the
number of comets in the Oort cloud derived from the observed flux
of new comets passing perihelion will be roughly 3–4 times less
using our current results for TSP models than it would have been
based on our previous papers, e.g., (Rickman et al., 2008). Another
interesting feature is that, considering Kaib–Quinn comets and
others together, creepers dominate over jumpers. This means that
we have found a likely explanation to the phenomenon noted by
Królikowska and Dybczyński (2010) – namely, that many comets
traditionally called new seem to have passed their previous perihe-
lia deep within the planetary system. These may in fact be creepers
like we predict for the majority of new comets. Further discussion
of this is given by Rickman (2013).

The large abundance of creepers prompts a somewhat specula-
tive remark as follows. If indeed the Oort cloud was formed as a by-
product of scattered disk formation within the Nice Model scenario
(Brasser and Morbidelli, 2013), the lack of a clear chemical distinc-
tion between Oort cloud and ecliptic comets (A’Hearn et al., 2012)
has a natural explanation, since all comets were formed in the
same trans-planetary disk. However, one can imagine that the
jumper categories of new comets might show some special charac-
teristics, because they did not approach the Sun to less than 15 AU
before becoming observable. If so, one should expect that less than
half the new comets would have those properties, and when look-
ing for the fingerprints of chemical pristinity, it would be a mistake
to lump all new comets together.

We will now consider the interpretation of the observed new
comet flux in terms of the Oort cloud population, but we have to
caution that using the numbers presented in this paper for such
an estimate is subject to uncertainties, because we count only
the ‘‘quiescent’’ observable comets applying a very strict definition.
Thus, in case the current conditions are less quiescent than we re-
quire, we would be underestimating the injection efficiency.

According to Table 1, the TSP model yields on the average
3� 104 comets with q < 5 AU in 3� 109 yr for an initial Oort cloud
population of 4� 106. The observed new comet flux with q < 5 AU
can be taken as 4 yr�1 with total absolute magnitude HT < 11
(Francis, 2005), and this yields an initial Oort cloud population of
1:6� 1012. Noting that the average TSP model has 5:3� 105 survi-
vors in the classical (i.e., central and outer parts) Oort cloud4 after
5 Gyr, we estimate 6� 105 at the present time, assuming the Oort
cloud to have formed in the early Solar System. This means that
the classical Oort cloud should currently have 2:4� 1011 members
with HT < 11. But the entire Oort cloud should have about 1� 1012

– significantly more than estimated by Kaib and Quinn (2009) using
the same estimate by Francis (2005).

Even though the magnitude limit HT < 11 is useful for compar-
ison with other investigations like the one just made, it is worth
mentioning that, according to Fernández and Sosa (2012), this will
on the average correspond to comet nuclei as small as 0.6 km in
diameter, for which there are serious issues regarding both physi-
cal lifetime and discovery completeness. Using HT < 6:5 as a proxy
for nuclei with radii exceeding 1 km, the distribution function
yields a cumulative number of about 40% of that for HT < 11, so
our estimate can be expressed as 4� 1011 km-sized comet nuclei
in the entire Oort cloud. We finally note that this is model depen-
dent, being coupled to our assumption for the initial energy distri-
bution of the cloud. Also, the ratio between the populations of the
total and classical Oort cloud is subject to a similar modeling
uncertainty. Therefore, the issue of the total number of Oort cloud
comets needs further study.

A case in point is the recent study of the origin of the Oort cloud
by Brasser and Morbidelli (2013) in the framework of the Nice
Model. This indicates that the mechanism explored is viable,
though a problem still exists with the large number of comets in
the present cloud, as indicated by previous papers and, tentatively,
by this paper too. A resolution of this issue would be a major step
forward, and we conjecture that a serious study of the population
size of the Oort cloud by our present model, based on a realistic
picture of the initial conditions for the newly formed cloud at the
proper time (about 4 Gyr ago according to the Nice Model) will
be an essential part of such a project.

The synthetic Oort spike produced by our TSP model is domi-
nated by the creeper category (mostly of the Kaib–Quinn type). It
peaks around 30000 AU, but 2/3 of the comets are on the inside of
the peak, and this is caused by the creeper predominance. This fea-
ture of our results, like the creeper predominance itself that we com-
mented upon above, is in agreement with what Królikowska and
Dybczyński (2010) found from their non-gravitational orbit deter-
minations, i.e., that real comets seem to prefer smaller ao values than
earlier believed.

An interesting result is found concerning the inclination distri-
bution of Oort spike comets. Jumpers are equally prograde and ret-
rograde, but Kaib–Quinn jumpers are mostly prograde and
creepers are mostly retrograde. Considering the relative contribu-
tions, we find that nearly 60% of the comets are retrograde. This
varies to some extent across the spike, because in the largest
semi-major axis range, the efficiency of the Galactic tides to change
the ecliptic inclination, even on a single orbital period, is so large
that the fractions of prograde and retrograde orbits tend to be
equalized. On the other hand, the creeper predominance on the in-
side of the peak causes an even larger excess of retrograde orbits
there.

There is an obvious discrepancy between our expected retro-
grade predominance in most parts of the Oort spike and the appar-
ent nearly uniform distribution of cos i for new Oort cloud comets.

4 This result is discussed in Paper III.
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In their Supporting On-line Material, Kaib and Quinn (2009) pre-
sented inclination distributions for the observable comets pro-
duced in their simulations, and they found a retrograde excess of
55% versus 45% even for a model, where the inner core of the cloud
was taken to be predominantly prograde. Thus, the even stronger
retrograde excess that we find cannot be canceled out by assuming
such a flattened inner core. Our preferred explanation for the dis-
crepancy is that the Oort cloud underwent a major external pertur-
bation less than 1 Gyr ago, which caused a massive TAZ refilling.
This may have been a GMC encounter (Hut and Tremaine, 1985),
but an extremely strong stellar encounter is another possibility.
As a result, the current new comets would have a larger jumper
contribution (with an equal mix of prograde and retrograde com-
ets) than we have found, thus largely offsetting the creeper pre-
dominance. This would in turn mean a larger comet injection
efficiency than we have estimated and thus a lower estimate for
the Oort cloud population.

As a final remark, our results have a clear bearing on the discus-
sion of the real structure of the Oort cloud and scattered disk based
on the inclination distributions of new, long-period and Halley
type comets. The issues just mentioned concerning the inclination
distribution of new comets, along with the one raised by Levison
et al. (2006) concerning the contribution of the scattered disk to
the flux of new comets and Halley types, need further study – in
particular, incorporating realistic estimates for the initial energy
distribution of the cloud, its age, its initial degree of flattening,
and the effects of so far unmodeled perturbing agents such as
GMC encounters.
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3.2.2 Implications sur la production à long terme d’ob-
jets du disque étendu

Comme on vient de le voir, les perturbations planétaires provoquent des
fluctuations sur le demi-grand axe des comètes du nuage de Oort. Lorsque
le demi-grand axe devient inférieur à 1 000 UA alors on considère que la
comète n’est plus dans le nuage de Oort et qu’elle fait partie des objets
du disque étendu (ou éventuellement des centaures ou des comètes à courte
période suivant la valeur du demi-grand axe et de la distance périhélique).
Ces comètes ne sont soumises aux effets des marées galactiques et des étoiles
passantes que de manière marginale. Ainsi on peut considérer ces comètes
comme découplées des perturbateurs galactiques.

Le modèle dynamique que j’ai conçu n’est pas encore habilité à poursuivre
l’évolution dynamique des comètes découplées (les effets des résonances ne
seraient pas pris en compte). Cependant, on s’est intéressé à la production
de tels objets pendant les 5 milliards d’années d’intégrations des simulations
effectuées pour l’article Fouchard et al. (2014a). Les résultats obtenus sont
présentés dans l’article Fouchard et al. (2014b) inséré ci-après.

Les résultats principaux sont les suivants :
• pendant 5 milliards d’années, l’évolution du nuage de Oort est telle que

sa partie interne est très érodée par les perturbations planétaires et
les perturbations d’étoiles passant très proche du Soleil. Cette érosion
se fait principalement au bénéfice de la partie centrale du nuage et
d’un flux de comètes découplées. Pour ce qui est des comètes de la
partie externe, prêt de 40% d’entre elles sont éjectées dans le milieu
interstellaire sous l’effet des perturbations stellaires ;
• alors que le découplage d’une comète est essentiellement dû aux planètes,

il existe une importante synergie entre les étoiles et les planètes générant
des pluies de comètes découplées similaires aux pluies de comètes ob-
servables. Le découplage d’une comète pendant une pluie se fait en
deux temps, une perturbation stellaire commence par placer la dis-
tance périhélique de la comète dans la région de Jupiter et Saturne,
puis la perturbation d’une de ces planètes va découpler la comète lors
d’un passage à son périhélie (plusieurs passages peuvent être nécessaires
avant que le découplage se fasse).
• 30% des comètes découplées ont une distance périhélique inférieure à

5 UA, formant une source potentielle de comètes de type Halley, les
70% restant formant une source potentielle de centaures.
• Les comètes découplées ayant une distance périhélique inférieure à 5 UA

viennent (i) d’un flux continu de comètes observables dont le demi-
grand axe est fortement modifié par une perturbation planétaire lors
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de leur passage au périhélie, et (ii) d’un flux sporadique lors de pluies
cométaires. Les orbites de ces comètes ne montrent pas de préférence
entre les mouvements progrades et rétrogrades, mais ce résultat est
évidemment dépendant du choix fait sur notre nuage de Oort initial
qui est isotropique.
• Les comètes découplées ayant une distance périhélique supérieure à

5 UA viennent préférablement de la partie interne du nuage de Oort
suite à une diffusion très lente (i) de leur demi-grand axe sous l’effet
d’Uranus et Neptune, (ii) et de leur distance périhélique sous l’effet
des marées galactiques. Les pluies provoquées par les passages d’étoiles
restent importantes puisqu’elles injectent de nombreuses comètes dans
la région d’Uranus et Neptune qui pourront alors les découplées sur
de grandes échelles de temps. Les orbites de ces comètes découplées
ont une préférence pour les orbites progrades, mais ici aussi ce résultat
dépend du choix de notre nuage de Oort initial.
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a b s t r a c t

We present Monte Carlo simulations of the dynamical history of the Oort cloud, where in addition to the
main external perturbers (Galactic tides and stellar encounters) we include, as done in a companion
paper (Fouchard, M., Rickman, H., Froeschlé, Ch., Valsecchi, G.B. [2013b]. Icarus, in press), the planetary
perturbations experienced each time the comets penetrate to within 50 AU of the Sun. Each simulation
involves an initial sample of four million comets and extends over a maximum of 5 Gyr. For better under-
standing of the outcomes, we supplement the full dynamical model by others, where one or more of the
effects are left out. In the companion paper we studied in detail how observable comets are injected from
the Oort cloud, when account is taken of the planetary perturbations. In the present paper we concentrate
on how the cloud may evolve in the long term and also on the production of decoupled comets, which
evolve into semi-major axes less than 1000 AU. Concerning the long-term evolution, we find that the
largest stellar perturbations that may statistically be expected during the age of the Solar System induce
a large scale migration of comets within the cloud. Thus, comets leave the inner parts, but the losses from
the outer parts are even larger, so at the end of our simulations the Oort cloud is more centrally con-
densed than at the beginning. The decoupled comets, which form a source of centaurs and Halley type
comets (roughly in the proportions of 70% and 30%, respectively), are mainly produced by planetary per-
turbations, Jupiter and Saturn being the most efficient. This effect is dependent on synergies with the
Galactic tide and stellar encounters, bringing the perihelia of Oort cloud comets into the planetary region.
The star-planet synergy has a large contribution due to the strong encounters that produce major comet
showers. However, outside these showers a large majority of decouplings may be attributed to the tide-
planet synergy.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

In a recent paper (Fouchard et al., 2013a), we have developed a
model to simulate the planetary perturbations on Oort cloud com-
ets. This has been used to implement planetary perturbations into
a more general model able to account also for the effects of the
Galactic tides and stellar encounters. The flux of observable com-
ets, i.e., comets that reach a heliocentric distance smaller than
5 AU for the first time, when planetary perturbations interact with
the Galactic tides and stellar effects was studied in a companion

paper of the present one (Fouchard et al., 2013b). In the following,
we will refer to the two mentioned papers as Paper I and Paper II.

The present paper (Paper III) will focus on two aspects. One is
how the Oort cloud evolves on Gyr time scales from the initial con-
ditions that we imposed. The other is the production of decoupled
comets (see Paper I), i.e., comets reaching a semi-major axis
a < 1000 AU. The dynamics of this sample may be considered as
protected from the effects of Galactic tides and stellar passages
(except for the rare, shower-producing encounters). The objects
form a potential source of both centaurs and Halley type comets
by means of further evolution under planetary perturbations.

Among previous papers dealing with similar subjects we note in
particular (Wiegert and Tremaine, 1999), where the dynamical
model was similar to one of those that we employ here (the TP
model). However, we regard this model as useful only as a tool
to understand the workings of the full dynamics (TSP model),
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and comparisons are limited by the different choices made for the
initial cloud structure, the observability criterion, and the organi-
zation of the output. In future papers, where we study the produc-
tion of the above-mentioned short-period objects quantitatively,
we will make an attempt to compare our findings with both the
mentioned paper and others, like for instance, (Levison et al.,
2001, 2006).

Our initial conditions and models used are briefly presented in
Section 2. Section 3 is devoted to the time dependence of the pro-
duction of decoupled comets. The long term evolution of the Oort
cloud is studied in Section 4. Section 5 deals with the characteris-
tics of the population of decoupled objects. We summarize our
main results and draw conclusions in Section 6.

2. Initial conditions and dynamical models

We refer to the description given in Paper II, since the results to
be presented here come from exactly the same calculations. How-
ever, for convenience, we will briefly repeat the most important
aspects.

The initial state of the cloud is modeled as isotropic and ther-
malized, as concerns the distributions of inclination and eccentric-
ity, and the energy distribution is taken from Duncan et al. (1987)
with semi-major axis between 3000 and 100000 AU. All initial or-
bits have perihelion distances q > 32 AU so as to avoid any initial
planet crossers. We emphasize that our choices are somewhat
arbitrary and are not intended to be the most realistic. Thus, care
has to be exerted when interpreting our results to the extent that
these may be specific to the chosen model of the initial cloud. We
will come back to this point whenever needed.

Our four dynamical models involve: tides only (T), tides and
passing stars (TS), tides and planets (TP), and tides, passing stars
and planets (TSP). The TS and TSP models use the same four ran-
dom sequences of passing stars, which are different realizations
of the same underlying, statistical model (Rickman et al., 2008).
The subscript i ¼ 1; . . . ;4 after the letter S will indicate the stellar
sequence used.

In the T and TS models the masses of the four giant planets are
added to the Sun, and the planetary perturbations are treated by
the loss cone1 recipe. In the TP and TSP models on the other hand,
planetary perturbations are applied as described in Paper I.

3. Time dependent production of decoupled comets

The numbers of observable and decoupled comets produced by
our models per period of 50 Myr are plotted versus time in Fig. 1.
The upper panels represent observable comets and are the same
as in Fig. 1 of Paper II, while decoupled comets are shown in the
lower panels. In both cases, the fluxes of models without stellar
perturbations are the same in each panel, while in the TS and
TSP models the panels differ with respect to the specific stellar se-
quences used. For these models the background fluxes are seen to
be similar in all panels, whereas the high peaks are related to co-
met showers, caused by close stellar encounters that obviously dif-
fer between the four sequences. Note that there are significant
differences between those sequences – nrs. 3 and 4 contain more
encounters with dramatic consequences than nrs. 1 and 2.

The flux of observable comets was discussed in Paper II, so we
now focus on the decoupled comets. Clearly, this flux is always
equal to zero for the T model (Galactic tides are unable to signifi-
cantly change the semi-major axis of a comet). For the TS models,

very few comets get decoupled, and this happens only during co-
met showers. However, the situation changes drastically, when
the planetary perturbations are included. Planets act very effi-
ciently in decreasing the semi-major axis of Oort cloud comets,
whereas a star needs to have an impact parameter comparable to
the final aphelion distance of the comet in order to be able to
decouple it.

In the TP model we obtain a maximum flux after about 700 Myr,
and then the flux decreases slowly. This decrease is partly due to
the absence of a TAZ refilling mechanism, which causes a drop in
the tidal injection rate of comets into planet-crossing orbits. By
TAZ we mean the set of Oort cloud orbits, which are connected
with observable orbits by the dynamics of the Galactic disk tide,
and the refilling is performed by stellar perturbations, in case these
are modeled. The delay of the maximum may be explained by the
fact that the production of decoupled comets requires, first, a dif-
fusion of the perihelion into the planetary region, and second, a dif-
fusion of the orbital energy that may be very slow (see Paper I).

When stars are included along with the planets (TSP models),
the background flux of decoupled comets is close to but somewhat
larger than that obtained with the TP model. The slow decrease
after the maximum is now likely coupled to the gradual depletion
of the Oort cloud. In addition, many peaks stand out above the
background, and each one is related to a shower seen in the flux
of observable comets.

An important difference has to be noted between the observa-
ble and decoupled comets. For the observable comets of the TS
and TP models, there are two categories: some result from the
Galactic tide as found in the T model, and the rest are due to syn-
ergies with the stars or the planets (see Paper II). If we add the TS
and TP fluxes of observable comets and subtract the T flux, we may
expect to see what a simple addition of stellar and planetary syn-
ergies with the Galactic tide would yield. Now, note that the TSP
observable flux is close to this prediction, showing that the obser-
vable comets are essentially due either to the tide alone or to either
of the two independent synergies. But for the decoupled comets
the situation is different. Here the T and TS fluxes are essentially
zero, and we have to compare the TP and TSP fluxes. As already
noted, the latter is clearly larger than the former.

We tentatively conclude that, while the injection of observable
comets is largely a matter for the tide, assisted independently by
stars and planets, the decoupling of comets is primarily a matter
for the planets, assisted independently by synergies with the tide
and stars. An easy way to view the star-planet synergy is to con-
sider stellar perturbations as an important way to bring comets
into the influence of planetary perturbations by reducing the peri-
helion distances (see Section 5).

Observing in detail what happens during a shower2 (Fig. 2), we
note that the production of decoupled orbits with perihelia outside
the region where planetary perturbations are applied, i.e., beyond
50 AU, is identical for the TS and TSP models (above q ¼ 50 AU, blue
circles overlap red triangles), while it is zero for the TP model. This
shows that the tides contribute nothing, and all these decouplings
are due to the stellar perturbation causing the shower. They form
a ‘‘spike’’ near the time t ¼ t� of the star’s perihelion (indicated as
t ¼ 0 in Fig. 2), which can be discerned for perihelion distances down
to about 20–30 AU, and the rest of the decouplings are due to plan-
etary perturbations.

The latter are found in the TP and TSP models for q < 50 AU. In
the TP model the rate of decouplings cannot change at t ¼ t�, but in
the TSP model there may be a large increase caused by the comet
shower. For the range 15 < q < 50 AU, the increase in the rate of

1 This means that below a threshold in angular momentum, represented by a
perihelion distance below 15 AU, comets are modeled as lost from the Oort cloud;
otherwise their orbits remain unchanged.

2 The one selected is one of the strongest that we have modeled and is seen in panel
(4) of Fig. 1 at t ¼ 1:774 Gyr.
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decouplings is weak at best, in agreement with the fact that Uranus
and Neptune are known to take 0.1–1 Gyr to scatter comets (Ferná-
ndez and Ip, 1981), but the situation is drastically different for
q < 15 AU. Here, the number of decoupled comets is very large in
the TSP model, and their production occurs mostly during the first
million years after the stellar encounter but continues for several
Myr afterwards.

The sudden appearance of the decoupled comets at t ¼ t�
proves that the phenomenon is due to comet injections caused
by the star. We have found that the vast majority of these decou-
pled objects come from the inner core of the Oort cloud with orbi-
tal periods less than 1 Myr. In fact, most of the periods are less than
0.1 Myr (roughly, a < 2000 AU). Thus, we conclude that first, the
star sends the perihelia of the comets into the Jupiter–Saturn re-
gion, and then the comets receive the planetary kick that decouples
their orbits after some extra time has passed. The delay may be
seen as a waiting time in order for a large enough perturbation
to arise.

We also note that the decoupled comet flux drops much faster
for Jupiter-crossing orbits than for those that only may approach
Saturn. Hence, the decoupling waiting time is longer for Saturn
than for Jupiter, which is of course to be expected. Considering
the typical orbital periods of the injected comets (see above), we

find that the decoupling typically requires from tens to hundreds
of orbital revolutions to occur.

At least for Jupiter crossers, we can clearly speak of a shower of
decoupled comets analogous to the shower of observable comets,
and since the time between stellar encounters of this strength is
typically larger than 100 Myr, Saturn crossers can also be included
into the shower. On the other hand, Uranus and Neptune crossers
have such a long scattering time scale that they respond only va-
guely to the stellar injection episode, so their decouplings do not
show the shower features.

The shower duration is not easy to evaluate for decoupled ob-
jects. Most of the production occurs within 4 My after the stellar
encounter, but as mentioned, this is strongly dependent on the
perihelion distance. At the end of the plotted interval in Fig. 2
(t = 10 Myr), there is nothing left of the shower for Jupiter-crossing
orbits, while the shower is still ongoing though subsiding for peri-
helia near Saturn’s orbit.

4. Long term evolution of the Oort cloud

Let us now analyze the way the Oort cloud evolves and loses
comets, and compare the efficiency of the loss mechanisms
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Fig. 1. Number of observable (upper diagram) and decoupled (lower diagram) comets per period of 50 Myr versus time for the four different models: T (green line), TSi (black
line), TP (red line) and TSiP (blue line). The number to the left above each plot indicates the index of the stellar sequence used. For the 4th sequence, the numbers on the right
side of the highest peaks give the ordinate of the top, when the flux exceeds the plotted range. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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between the different models. We divide the cloud into three parts:
inner, central and outer, containing comets with a < 20000 AU,
20000 < a < 50000 AU, and a > 50000 AU, respectively. The ini-
tial population and the final populations for each model are shown
in Table 1. The fractions of comets in each part of the cloud are
also given along with the corresponding losses from the initial
population (in percent). The negative sign means an increase of
the corresponding number. Note that the final population is the
one at the end of the simulation after 5 Gyr, but we do not present
information on the lifetimes of the lost objects or the distribution
of their exit times.

For the total population, the fractions of comets that are lost
from the cloud in the different models are given along with some
information on the end states reached. For this purpose, we divide
the exits into two parts. Independent of the model, comets that
leave the cloud by reaching a distance larger than 4� 105 AU are
counted in the out category. The remaining exits depend to some
extent on the model used. All decouplings belong to this category
independent of the model, but in the T and TS models we count
all comets that reach the end state of q < 15 AU, some of which
will actually be ejected while the rest become decoupled. We de-
note this category by qd. The total loss (in percent) for any given
model is the sum of the ‘out’ and ‘qd’ losses.

For the T model, comets are lost from the cloud practically only3

because they pass at heliocentric distance less than 15 AU. Each part
of the cloud contributes rather evenly to the total loss.

In the TS models, the Oort cloud loses between 25% and 40% of
its total initial population. The worst case is the TS3 model, which
is also the model with the largest number of comet showers
according to Fig. 1. The differences between individual models re-
flect mainly the numbers of comets in the ‘out’ category (from 14%
to 30%) and of comets originating in the inner Oort cloud, suggest-
ing that they arise from showers ejecting comets into interstellar
space. We will return to this point below. The central and outer
parts are depleted in a more similar way for different stellar se-
quences, probably because they both lose and gain comets – the

former due to interstellar ejection, and the latter due to replenish-
ment from the inner part of the cloud. The fraction of comets lost
by q < 15 AU (the decoupled ones are negligible) is about 12% for
each model. This is twice the loss fraction in the T model, again
illustrating the synergy between the tides and the stars for comet
injection from the Oort cloud (Rickman et al., 2008).

The tides and planets model (TP) is remarkably similar to the T
model as regards the total population. The fact is that comets that
are now not lost by q < 15 AU will likely be removed from the
cloud by planetary perturbations anyway, given enough time,
either by decoupling or by ejection into interstellar space. This is
easily seen by comparing the ‘qd’ and ‘out’ fractions between the
T and TP models. The non-complete opacity of the planetary sys-
tem below 15 AU (Paper I) gives only temporary relief and does
not save the comets from being lost in the long run.

The losses from individual parts of the Oort cloud in the TP
model are quite different from those in the T model. The loss
now arises mainly from the inner Oort cloud, whereas the outer
Oort cloud gets even more populated than at the beginning. The
last feature is caused by the diffusion of the orbital energy that is
now allowed by the planetary perturbations.

The TSP models gather the characteristics of the TS and TP mod-
els, where the loss from the inner part is mainly caused by close
stellar encounters, whereas the outer parts become both depleted
and replenished, as noted above. Comparing TSP to TS models, we
note the same thing as when we compared TP to T models, namely,
a shift of the majority of lost comets from the ‘qd’ to the ‘out’ cat-
egory. This shift is now even more important.

In both TSP and TS models, the total losses are large and vari-
able due to the statistical fluctuations in the number and strength
of the most important stellar encounters. Moreover, even though
the majority of lost comets come from the inner Oort cloud, in rel-
ative terms the losses are more important for the central and outer
parts, so at the end of the simulations the cloud is even more dom-
inated by its inner part than at the beginning.

The data presented in Table 1 allow us to roughly estimate the
relative importance of the few, most dramatic stellar encounters
for the total loss of comets from the Oort cloud. We concentrate
on the TP and TSP models, but the T and TS models would give
the same result. The total loss in the TP model amounts to about
6% due to the tidal injection of comets into unstable, planet cross-
ing orbits, and we may estimate that the corresponding fraction in
the TSP models is somewhat higher – perhaps �10% – due to the
TAZ filling performed by the stars. The rest of the TSP losses are
due to the stars, either by injection into planet crossing orbits or
by the energy transfer performed by the stellar impulses. If we as-
sume that the only reason for the difference in loss percentage be-
tween the four models is the effect of the strongest encounters, we
see that about half the losses in the TS3P model are due to a few
encounters exceeding all encounters of the TS1P model. We may
then conclude that the losses are largely due to the strongest
encounters.

Let us now offer some comments in support of this conclusion.
Consider the very strongest encounters among all the four se-
quences. One of these is the one considered in Fig. 2, caused by a
G0 star with impact parameter 690 AU relative to the Sun. For
common stellar encounters, penetrating only the outer parts of
the Oort cloud, it is well known that the perturbations of heliocen-
tric orbital energy are very small, and any ejections from the Solar
System will be due to a slow diffusion in energy. But the situation
is very different for an encounter like the one of Fig. 2. The impulse
per unit mass imparted to the Sun is then of order 0.1 km/s, and
this directly affects the heliocentric motions of all the comets in
the Oort cloud.

One consequence is a massive migration of comets between the
different parts of the cloud. For instance, one easily finds that a
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Fig. 2. Perihelion distance versus time for comet decouplings around a very close
stellar encounter (t ¼ 0 corresponds to the perihelion time of the star). Red triangles
correspond to comets decoupled in the TS4P model, green squares to decouplings in
the TP model and open blue circles to decouplings in the TS4 model. The horizontal
black lines correspond to the thresholds at 15 AU (the outer limit of the loss cone)
and 50 AU (below which planetary perturbations are applied). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

3 Actually, very few (about 300) are lost by reaching heliocentric distances larger
than 4� 105 AU. This is possible, since the dynamics of a tides only model is not
strictly integrable, and consequently the orbital energy may undergo some variations.
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comet of the inner core with a ¼ 10000 AU may even be ejected
from the Solar System, if it is moving in the inner part of its orbit
and the heliocentric impulse due to the star is favorably oriented.
In more typical situations, the comet is likely to be moved most
of the way, or all the way, into the central part by increasing its
orbital energy. Comets belonging to the central or outer parts are
even more vulnerable.

It is thus clear that an instantaneous, large-scale migration of
individual comets and rearrangement of the orbital energy distri-
bution of the Oort cloud must occur at each of the extreme stellar
encounters. Less extreme encounters, of the kind that is expected
to happen several times during the age of the Solar System, will
have large effects as well. Since there is always an associated loss
of comets into interstellar space, and the outward migration from
the densely populated inner part of the cloud must dominate over
the return flow from the other parts, the features seen in Table 1
are easily understood.

We remind the reader that the quantitative results found in this
Section are specific to the assumption made as to the initial energy
distribution of the Oort cloud. Changing the initial fraction of com-
ets in the inner part of the cloud would lead to changes in the loss
rates and amounts of transferred comets. However, the migration
phenomenon itself also leads to a certain loss of memory of the ini-
tial conditions that tends to reduce the sensitivity to those.

5. Dynamics of decoupling

5.1. General results

We now turn to the decoupled comets, i.e., the ones that reach
semi-major axes less than 1000 AU and as a consequence have
their integrations stopped. Among the three perturbing agents that
we consider, the Galactic tide is integrable for this range of semi-
major axis and hence cannot contribute to the decoupling. Only

two processes remain: either a planetary perturbation that kicks
the comet across the border close to perihelion passage, or a stellar
encounter that can occur anywhere in the orbit but acts like an
impulsive kick in a similar way.

In each of these two cases, the size of the decoupling kick is in
principle arbitrary, but it carries interesting information on the
nature of the decoupling process, and thus we will consider this
as a diagnostic parameter. On one side of the spectrum, the comet
may diffuse smoothly across the border, and on the other side, it
may suffer a major energy perturbation that kicks its orbit a long
way, thereby passing the border.

The number of planetary perturbations applied to the comet be-
fore it gets decoupled offers a supplementary parameter with a
similar bearing, since a decoupling process characterized by large
planetary perturbations will in general require fewer orbits than
one where the perturbations are small. A stellar decoupling, on
the other hand, may in fact occur without any previous planetary
perturbation.

Consequently, we will pay attention to both the last energy kick
suffered by a decoupled comet and the number of planetary per-
turbations applied to the comet before it gets decoupled. This is
equal to the number of perihelion passages at less than 50 AU,
when planetary perturbations are modeled (TP and TSP models).

For classification purpose, we use the decrease of the orbital en-
ergy at the last planetary perturbation in the TP and TSP models, or
between the last perihelion passage before and the first one after
the decoupling in the TS model. Table 2 lists, for each model, the
total number of decoupled comets (nd), the numbers (and corre-
sponding fractions) of decoupled comets for which this decrease
in orbital energy exceeds 10�5 AU�1 (n5), 10�4 AU�1 (n4) and
10�3 AU�1 (n3), and the number of decoupled comets with orbital
period less than 200 yrs (nSP). These are just the general statistics,
and further information on how the decouplings are distributed
over q and cos i is given in the next subsections.

Table 1
The first row gives the initial population of the Oort cloud and the fraction of comets in each of its parts. Then, for each model, the ‘‘tot’’ column gives the total final population of
the cloud, and columns ‘‘inner’’, ‘‘central’’ and ‘‘outer’’ the fraction, in percent, of comets in each part. The ‘‘loss’’ columns give the decreases (in percent) of each population
separately. The ‘‘qd’’ and ‘‘out’’ columns provide a split-up of the total losses according to the end state reached (see text for details).

Model initial Tot

4� 106

(Loss – qd – out) Inner
74.1

(Loss) Central
17.2

(Loss) Outer
8.7

(Loss)

T 3:74� 106 (6.6–6.6–0.0) 74.3 (6.4) 17.1 (7.3) 8.6 (7.0)

TS1 2:97� 106 (25.7–11.4–14.4) 83.0 (16.8) 11.6 (50.2) 5.4 (53.5)

TS2 2:79� 106 (30.1–11.4–18.8) 83.7 (21.1) 10.7 (56.4) 5.5 (55.4)

TS3 2:33� 106 (41.8–12.6–29.1) 80.3 (36.9) 11.6 (60.9) 8.2 (45.2)

TS4 2:67� 106 (33.2–12.0–21.1) 83.5 (24.7) 10.7 (58.6) 5.9 (54.8)

TP 3:75� 106 (6.3–1.7–4.6) 73.1 (7.6) 17.6 (4.4) 9.3 (�1.1)

TS1P 3:04� 106 (24.0–2.2–21.8) 80.8 (17.1) 12.6 (44.3) 6.5 (42.8)

TS2P 2:86� 106 (28.5–2.2–26.3) 81.6 (21.3) 11.8 (51.1) 6.6 (45.5)

TS3P 2:37� 109 (40.8–2.4–38.4) 78.8 (37.1) 12.3 (57.8) 9.0 (38.1)

TS4P 2:73� 106 (31.6–2.3–29.4) 81.5 (24.9) 11.7 (53.7) 6.9 (45.7)

Table 2
Statistics of the strength of decouplings. For each model, described in the first column, the next column gives the total number of decoupled comets nd , and the following columns
are described in the text. All fractions are given with respect to the relevant nd .

Model nd n5 (frac %) n4 (frac %) n3 (frac %) nSP

T 0 0 (–) 0 (–) 0 (–) 0
TS1 5 5 (100.0) 5 (100.0) 0 (0.0) 0
TS2 9 9 (100.0) 9 (100.0) 1 (11.1) 0
TS3 138 137 (99.3) 129 (93.5) 25 (18.1) 0
TS4 105 102 (97.1) 99 (94.3) 31 (29.5) 0
TP 68478 54263 (79.2) 32532 (47.5) 7416 (10.8) 8
TS1P 87851 74810 (85.2) 50729 (57.7) 11777 (13.4) 12
TS2P 89032 76025 (85.4) 51182 (57.5) 11840 (13.3) 4
TS3P 94549 83148 (87.9) 58028 (61.4) 13844 (14.6) 19
TS4P 90386 78679 (87.0) 54623 (60.4) 12815 (14.2) 14
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As already noted, the T model is unable to produce any decou-
pled comets. In the TS model, very small numbers of decoupled
comets are found, and as noticed in Section 3, these comets are
decoupled via close stellar encounters4. The stellar perturbations
causing decouplings are almost always larger than 10�4 AU�1 but
smaller than 10�3 AU�1 in at least 70% of the cases. They are hence
likely to be generally in the range of several times 10�4 AU�1, so at
the last perihelia before the comets were decoupled, their semi-ma-
jor axes were likely about 2000 AU or less. Thus they have typically
undergone an evolution of orbital energy caused by stellar perturba-
tions before the final, decoupling star appeared.

In the TP model the number of decoupled comets is significant.
For about 20% of them, the decoupling occurs via a smooth diffu-
sion in orbital energy, since they do not even contribute to n5.
We will call these smoothly decoupled comets. But for almost half
of the decoupled comets the reason is a significant planetary kick
(larger than 10�4 AU�1), so we refer to them as strongly decoupled
comets. For 11% of the decoupled comets the decoupling kick is
even larger than 10�3 AU�1. Remarkably, eight short-period comets
are produced in this model. All of these have periods larger than
20 yrs, but three have a Tisserand parameter5 larger than 2. They
have very small inclinations and perihelion distances beyond 2.6 AU.

In the TSP model the fraction of smoothly decoupled comets is
less than 15%, and about 60% are strongly decoupled. Comparing to
the TP model, the number of decoupled comets has increased by
28% (TS1P) to 38% (TS3P). One can also see that the number of
smoothly decoupled comets decreases by 8% (TS1P) to 20% (TS3P),
while the number of strongly decoupled comets increases by 56%
(TS1P) to 78% (TS3P).

Since the number of stellar decouplings is very small in the TS
model, it must be very small in the TSP model too. Consequently,
in both TP and TSP models, the decouplings are essentially caused
by the planets. Thus, strong decouplings are favored by the pres-
ence of strong perturbations, when the perihelion distance is close
to or inside the orbit of Saturn, while smooth decouplings should
dominate at larger values of q. This will be shown graphically be-
low. At this point, we may conclude that the presence of stars in
the TSP model helps to bring comets into orbits with small perihe-
lion distances. This, too, will be shown graphically below.

There are two ways, in which this may happen. One is the pres-
ence of comet showers in the TSP model with consequences illus-
trated in Fig. 2, and the other is the continuous TAZ filling that
helps the tide to inject comets into low-q orbits from the central
part of the Oort cloud. This favors the appearance of strong decou-
plings rather than smooth ones. Indeed, for a typical, smoothly
decoupled comet the perihelion has to stay for a long time in the
outer part of the planetary system in order for the energy diffusion
to take place.

The decoupling of an Oort cloud comet typically requires, first,
that the perihelion is brought into the realm of the planets, and
then, that the planets perform the decoupling by perturbing the
orbital energy. This dynamics is similar to, though acting opposite
to, the one whereby the Oort cloud was initially formed by the out-
ward scattering of planetesimals by planets and storage into high-q
orbits by external perturbers. Understanding this is aided by con-
sidering the basic time scales introduced by Duncan et al. (1987),

namely, that of energy diffusion caused by planetary perturbations
(tD) and that of changing the perihelion distance by Galactic tides
(tq). Further discussion of these time scales was given by Kaib
et al. (2009).

Duncan et al. (1987) showed that, for semi-major axes less than
several thousand AU and perihelion distances in the range between
the orbits of Uranus and Neptune, tD is less than tq. Thus, in our TP
model, comets from the inner core of the Oort cloud with
a < 10000 AU will typically be subject to energy diffusion by Nep-
tune or Uranus before their perihelia reach into the Jupiter–Saturn
region. In the model used in Paper I involving only planetary per-
turbations (P model), tq was artificially set to infinity, and plane-
tary diffusion acted to decouple the comets at a rate that only
depended on their initial perihelion distance. As we now introduce
the Galactic tide, the decouplings are shifted to lower perihelion
distances, increasing the importance of strong decouplings. And
when we also introduce the stellar perturbations as in the TSP
model, this trend is further accentuated.

On the other hand, comets from the outer parts of the Oort
cloud – especially with a > 20000 AU – will quickly descend into
low-q orbits and thereafter take some extra time to get decoupled.
In Paper II we discussed the importance of ‘‘creepers’’ for the Oort
spike and the struggle between tidal/stellar and planetary pertur-
bations that such comets have to undergo. While in that case the
goal was to reach a certain range of semi-major axis (relevant for
injection into observable orbits) before the planets caused hyper-
bolic ejection, in the present case the issue is about reaching a
rather far away limit of negative orbital energy before any excur-
sion into positive values. The smaller the perihelion distance, the
larger the typical step size of energy diffusion, and the larger the
chance of reaching the decoupling limit, but the success rate is al-
ways limited by the risk of hyperbolic ejection.

Thus, comparing the TP and TSP models, we expect that the
stellar perturbations help to decouple comets by decreasing their
perihelion distances into the range, where the planetary perturba-
tions are efficient. This contributes to the difference of decoupling
rate shown in Table 2.

We may crudely estimate the importance of the major showers
in this process by noting in Fig. 1 that the background level of the
decoupled comet flux in the TSP models is of the order of 10% lar-
ger than the flux of the TP model. According to Table 2, this would
mean that the difference of slightly more than 20000 between the
nd values of the TSP and TP models has a contribution of about
7000 from this elevated background, while the rest would come
from the shower peaks. Those peaks are hence seen to be quite
important in relative terms, but except for the highest peaks, the
difference of the decoupled comet flux between TSP and TP is small
compared to the flux of the TP model.

In Table 3 we show data regarding the provenance of the decou-
pled comets in the TP and TSP models together with their range of
perihelion distance as the decouplings occur (less than or larger
than 10 AU). The first thing to note is that most of the decoupled
comets stem from the innermost region of the Oort cloud with
ai < 10000 AU, and less than 20% have their origin at
ai > 20000 AU. This is similar to, but even more extreme than,
the case for quiescent observable comets during the last 3 Gyr as
found in Paper II. In that case, 73% came initially from orbits with
ai < 20000 AU. The reason why we now find an even larger frac-
tion may be connected with the inclusion of shower comets. The
comets from the innermost region mostly get decoupled with
q > 10 AU, while a vast majority of the decoupled comets from
the outer part of the cloud have q < 10 AU.

In fact, the TSP models bring an increased fraction of decoupled
comets from the outer part, showing that TAZ filling must be a con-
tributing phenomenon. At the same time, these models also show
an increased fraction of low-q decouplings for the comets from the

4 For simple geometrical reasons, the stellar encounters have to be very close. Since
the resulting comet aphelion distance is less than 2000 AU, the culprit stars have to
penetrate within this distance from the Sun and preferably much closer. Hence the
expected number of passages during 5 Gyr is very small, and it is easy to understand
why different realizations of our TS model yield very different results.

5 The distinction between Halley type and Jupiter family comets is usually made by
means of the Tisserand parameter T. If T > 2, a short-period comet is considered as a
Jupiter family comet, and otherwise it is a Halley type comet (Carusi et al., 1987).
Another distinction is sometimes made by means of the orbital period, such that a
Jupiter family comet has P < 20 yr.
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innermost part. This is a clear sign of the importance of comet
showers, which is also borne out by the quite large differences in
those numbers between the quiescent and dramatic versions of
the TSP model – cf. Fig. 1, where the excess number of decouplings
in the TSP models is seen to be mostly concentrated to the shower
periods.

Consequently, it appears that the synergy between the stars and
the planets for the production of decoupled comets is caused by
both the few strongest and closest stellar encounters and the
long-term TAZ filling provided by more normal encounters. These
mechanisms easily account for the increase seen in the number
of strong decouplings by bringing comets efficiently into the hands
of Jupiter and Saturn, but this will happen at the expense of
smooth decouplings by Uranus and Neptune, which are indeed
seen to decrease in number. In that sense, the smooth decouplings
rather suffer an anti-synergy between stars and planets.

Once more, we have to emphasize that the statistics shown here
are specific to our choice of the initial energy distribution of the
Oort cloud. A less populated inner part would have reduced the
importance of shower comets as well as the overall number of
decoupled comets.

5.2. The decoupled comets in the TP model

Let us now discuss in more detail the sample of decoupled com-
ets, beginning with the TP model. Fig. 3 shows the number of
decoupled comets over the entire period of 5 Gyr for this model
in the ðq; aÞ and ðq; cos iÞ planes using color coding, and versus
q; a and cos i individually. The positions of the short-period comets
are highlighted in the color plots.

The effects of diffusion in orbital energy are similar to what we
observed in Paper I: (i) a large-step evolution that is particularly
evident for perihelia close to the semi-major axes of the planets;
(ii) a very weak diffusion outside the planetary region
(q > 30 AU), where all the decoupled comets pile up near the
1000 AU limit. Hence, the number of strongly decoupled comets
peaks along the planetary semi-major axes, but the comets that
are not strongly decoupled (large numbers occurring close to
a ¼ 1000 AU) show a more uniform q distribution.

As regards the inclination, in the region inside Saturn’s orbit
(q < 10 AU), there is no apparent preference, but in the range
10 < q < 30 AU the decoupled comets are preferentially prograde.
Beyond 30 AU we mainly note a paucity of strongly retrograde or

Table 3
Statistics on the provenance and perihelion distance of decoupled comets. For the TP and TSP models, we list the total number of decoupled comets (the same as in Table 2) and, in
the following three pairs of columns, the fractions of those numbers in three different ranges of ai (left) and the fractions thereof with perihelion distances less than 10 AU at the
moment of decoupling (right).

Model nd <1� 104 AU q < 10 AU ð1—2Þ � 104 AU q < 10 AU >2� 104 AU q < 10 AU

TP 68478 0.724 0.279 0.133 0.692 0.143 0.910
TS1P 87851 0.606 0.344 0.199 0.789 0.195 0.928
TS2P 89032 0.629 0.364 0.202 0.789 0.169 0.924
TS3P 94549 0.637 0.433 0.202 0.803 0.161 0.924
TS4P 90386 0.619 0.404 0.207 0.792 0.174 0.925
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Fig. 3. Number of decoupled comets (color-coded with scale to the right) over all 5 Gyr for the TP model in the ðq; aÞ plane (top color panel) and the ðq; cos iÞ plane (bottom
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prograde comets. The short-period comets have perihelion dis-
tances less than 5 AU, and the majority (six out of eight) have pro-
grade orbits. The Jupiter family comets are extreme in this regard.

Fig. 4 shows the median number of planetary perturbations npp

experienced by the decoupled comets and the median absolute va-
lue jDzj of the last planetary perturbation of the orbital energy (the
one actually decoupling the comets) in each cell of the ðq; cos iÞ
plane. As expected, npp and jDzj show patterns of similar shape
but opposite in color. Indeed, the smaller the typical planetary per-
turbations acting on the comets, the higher is the probability for
the comets to return. Remarkably, even inside Jupiter’s orbit npp

is larger than 10, and it grows to values larger than 100 between
Jupiter and Saturn except at low inclination. This was noticed for
the case of shower comets in the discussion of Fig. 2. Between Ura-
nus and Neptune for retrograde orbits, npp grows beyond 4000, and
beyond Neptune, it may be even larger than 10000.

The jDzj diagram in Fig. 4 illustrates the point already made,
that the strongly decoupled comets mainly have perihelia inside
Saturn’s orbit. We also see that the smoothly decoupled comets
are limited to orbits beyond Neptune except for retrograde orbits
with perihelia between Uranus and Neptune.

Let us also illustrate in some more detail our findings about the
provenance of decoupled comets, presented in Table 3 above. We
now split the initial Oort cloud into four parts: the innermost part
that contains comets with semi-major axis less than 10000 AU,
the inner part containing comets with semi-major axis in the range
[10000, 20000 AU], and the central and outer parts, where the

comets have semi-major axis in the ranges [20000, 50000 AU]
and larger than 50000 AU, respectively.

Fig. 5 shows the fraction of decoupled comets (in percent) com-
ing initially from each part of the Oort cloud versus the perihelion
distance upon decoupling. The total number of decoupled comets
is also shown versus this perihelion distance in the figure. Note
the log scale used in this case, meaning that the number of decou-
plings falls off very rapidly outside Neptune’s orbit. Of the four
Oort cloud regions, the innermost dominates at all values of q.
The other regions are of some importance only for perihelia close
to or inside the orbit of Saturn, and they become marginal already
before Uranus’ orbit is reached. Obviously the smoothly decoupled
comets tend to occupy only orbits, where the innermost part of the
initial Oort cloud dominates.

5.3. Decoupled comets in the TSP models

In Fig. 6 we show the number of decoupled comets in the ðq; aÞ
and ðq; cos iÞ planes and versus q; a and cos i for the TS3P and TS4P
models – the most dramatic ones among the TSP variants. At first
glance, the same features are seen as for the TP model in Fig. 3. A
new feature of all TSP variants is the presence of decoupled comets
with perihelia beyond 50.5 AU (6, 10, 144, 103 for the TSiP models
with i ¼ 1; . . . ;4, respectively) and strongly decoupled comets with
q > 32 AU (3, 7, 145, 104 for the same four models). Note that
many of these comets are not seen in Fig. 6, since they extend to
perihelion distances much larger than 60 AU. They are decoupled
by stellar perturbations on their own, since the planets do not af-
fect them or are too inefficient. An interesting question is whether
these decouplings lead to Sedna-type orbits, and the answer is yes.
However, from the numbers just given, we can see that they are
very few and strongly dependent on the presence or absence of
the strongest stellar encounters that we have found in all our sim-
ulations. Even in the TS3P and TS4P models, the efficiency of creat-
ing Sednas is only �10-5, which means that even the existence of
one object as large as Sedna is unlikely to arise from stellar decou-
plings. Finally, the short-period comets are somewhat more
numerous for the two plotted models than for TP (cf. Table 2), still
showing some preference for prograde orbits.

The influence of the stars is illustrated in Fig. 7, where the frac-
tional excess (or deficiency) in the number of decoupled comets
obtained with each TSiP variant compared to the number obtained
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with the TP model is shown versus perihelion distance. In confir-
mation of the arguments given above, the synergy between stellar
and planetary perturbations is seen to be at its maximum for
q < 15 AU, with more than 80% more comets decoupled below
5 AU, whereas an anti-synergy may be noted for q > 23 AU. Com-
paring the different TSP variants, we note that the stronger the
synergy below 15 AU, the stronger is the anti-synergy above
23 AU. Thus, the maximum synergy occurs for orbits, where
strongly decoupled comets dominate, and the anti-synergy occurs,
where comets tend to be smoothly decoupled. Finally, at the edge
of 50 AU, the synergy returns to positive, since the planets become
very inefficient in decoupling comets, so that the decoupled com-
ets are mainly due to the stars.

Fig. 8 shows the same as Fig. 4 for the TS3P model, which is the
model with the strongest synergy. While no clear difference is seen
in the jDzj diagram, it appears that the values of npp are globally
smaller than in the TP model. This is a confirmation that it is more
difficult for comets to keep their perihelia inside the planetary re-
gion in the TSP models than in the TP model, which is also the rea-
son for the anti-synergy noted for smoothly decoupled comets.

Finally, looking at the initial semi-major axis of the decoupled
comets in the TS3P model, we see from Fig. 9 that the behavior is
very similar to that of the TP model, shown in Fig. 5. The main dif-

ference concerns decoupled comets with q > 50 AU, which were
not produced by the TP model. All these comets come from the
innermost part of the initial Oort cloud. This is consistent with
the fact that the stellar decouplings are mainly due to very close
encounters with the Sun, which principally perturb comets in the
innermost part of the cloud.

6. Summary and conclusions

We have produced several dynamical models for a large sample
of Oort cloud comets affected by the Galactic tides, passing stars
and giant planets over the age of the Solar System. The models dif-
fer in the kind of perturbers taken into account, or the sequence of
passing stars used. Attention was paid to the decoupled comets
obtaining a semi-major axis less than 1000 AU (upon which the
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integrations are stopped) and the long-term evolution of the Oort
cloud resulting from the combined action of the perturbers.

The picture of the long-term evolution of the Oort cloud that
emerges from our TSP model simulations is a very dynamic one,
where two phenomena stand out. We typically expect one or a
few very strong comet showers to occur during the 5 Gyr interval
under consideration, which lead to a massive reshuffling in the
cloud and the loss of an important fraction of its members. This
is like a small-scale version of the effects expected from GMC
encounters (Biermann, 1978; Hut and Tremaine, 1985), implying
large consequences for the cloud. The classical Oort cloud
(a > 20000 AU) is mostly lost to interstellar space but is replen-
ished by outward migration from the inner core. To this comes a
leakage from the cloud that occurs all the time but peaks during
the showers, because comets get injected into the planetary region
(and sometimes they become observable), and they are mostly
ejected on hyperbolic orbits by the planets.

We divide the decoupled comets into three classes: the
smoothly decoupled comets, where the orbital energy jumps
across the limit by less than 10�5 AU�1, the strongly decoupled
comets whose jumps are larger than 10�4 AU�1, and the rest which
are intermediate as to the size of the jump. Smooth decouplings are
characteristic of perihelia in the outermost parts of the planetary
system, especially for large inclinations, while strong decouplings
characterize the region close to Saturn’s orbit and inside, as well
as all perihelion-tangent orbits. Smoothly decoupled comets
mainly come from the innermost part of the Oort cloud, while
strongly decoupled ones probe the whole cloud.

Two agents provide decoupled comets: planetary and stellar
perturbations. We find in the full model that the planetary decou-
plings contribute close to 100%. However, they need the help of the
Galactic tide or stellar encounters in order to bring the cometary
perihelia into the realm of the planets. In this sense, the tide is
the main contributor – the stars accounting for an additional 25%
as a long term average. This addition is largely due to the major co-
met showers, and during quiescent periods we estimate the stellar
contribution at �10%. Thus, given that the Solar System is unlikely
to be experiencing one of these very rare showers currently, the
production rate of decoupled comets is not sensitive to whether
or not there is a minor shower going on.

We find that 30% of the decouplings lead to orbits with
q < 5 AU, forming a likely source for Halley type comets, while
the rest is obviously a potential source for centaurs. The Halley
type progenitors come from two main sources: a continuous flux
of Oort spike comets, and intermittent, major comet showers.
The centaur progenitors usually come from the inner parts of the
Oort cloud via a slow, mainly tidal evolution of the perihelion dis-

tance, and they are mostly decoupled in the smooth way by Uranus
or Neptune – though some manage to approach Saturn too. The
showers are important, because they bring lots of comets into or-
bits with perihelia in the Uranus–Neptune region. Due to the long
scattering time scale of those planets, such comets get decoupled
nearly continuously, although they originate from intermittent
showers.

In addition, we have direct stellar decouplings as another conse-
quence of the shower-producing stars, involving perihelia well be-
yond the planetary system. These are always of the strong type.
Apparently, even though Sedna type orbits may be produced by
this mechanism, such events are likely too rare to offer a viable
scenario for the origin of Sedna.

On the other hand, decoupled Oort cloud comets do form a
source of other, more nearby objects. For centaurs it is likely
important, especially concerning the ones on high inclination
(Brasser et al., 2012) or large semi-major axis orbits (Emel’yanenko
et al., 2005; Kaib et al., 2009). The low inclination part involves
some that evolve into Jupiter family comets as well. This said, we
have to emphasize that the Kuiper belt and scattered disk are addi-
tional sources of centaurs, which may dominate among the low-
inclination objects with small semi-major axes that feed the Jupiter
Family (Duncan and Levison, 1997; Levison and Duncan, 1997). In
addition, we naturally see the decouplings of many comets on ob-
servable orbits. As far as dynamics is concerned, these will often
lead into Halley type comets, although issues remain about their
physical survivability (Levison et al., 2002).

Finally, we emphasize that a quantitative study of these prob-
lems should await a more realistic modeling of the Oort cloud,
allowing for different possibilities as to its initial energy and incli-
nation distributions as well as the possibility of a recent major per-
turbation (see also Paper II).

For instance, our result that Halley type progenitors have a flat
cos i distribution and large-q centaur progenitors are concentrated
to prograde orbits is clearly dependent on our assumption that the
initial Oort cloud is altogether isotropic. Thus, modeling the incli-
nation distributions of Halley types and centaurs requires attention
to the issue of potentially flattened sources like the Oort cloud in-
ner core (Levison et al., 2001) or the scattered disk (Levison et al.,
2006).
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Chapitre 4

Conclusion et perspectives

Le modèle numérique pour la dynamique des comètes du nuage de Oort
que j’ai conçu s’est révélé particulièrement efficace et fiable pour effectuer des
simulations à très long terme d’un grand ensemble de comètes initialement
dans le nuage de Oort. On a pu obtenir des résultats qui ont changé signi-
ficativement notre compréhension de cette dynamique comme, (i) la synergie
entre les marées galactiques et les effets des étoiles passantes, (ii) les effets
des perturbations planétaires qui sont loin de l’image de loss cone souvent
utilisée avec un système solaire interne plus transparent que ce que l’on pou-
vait croire, et enfin (iii) on a obtenu des résultats sur la quantification des
routes dynamiques menant du nuage de Oort vers la région d’observabilité
lorsque marées galactiques, étoiles et planètes sont à l’œuvre.

Nous ne sommes finalement qu’au début de l’exploitation de ce modèle.
En effet, à court terme on devrait pouvoir mettre en place des simulations
massives permettant de reproduire de manière précise un pic de Oort après
4.5 milliard d’années. Ceci nous permettra alors de mieux contraindre la
distribution de comètes dans le nuage à l’instant présent mais aussi à l’instant
initial. De même, en tenant compte le plus possible des observations, on
devrait pouvoir établir des lois d’extinction pour les comètes du nuage de
Oort. L’établissement de telles lois est déterminant dans l’évaluation du flux
de comètes et permettra aussi de discuter du problème de fading des comètes
à longue période.

Par la suite, le modèle peut et doit être amélioré sur deux points :
• prise en compte plus réaliste de la trajectoire du Soleil autour de la

Galaxie, comme dans Gardner et al. (2011) ;
• modélisation des effets de la rencontre du système solaire avec un nuage

moléculaire géant.
D’autre part, la dynamique des comètes ayant des demi-grands axes
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inférieurs à 1 000 UA, nest pas encore implémentée dans le modèle. Ceci
constitue un des objectifs principaux à court terme. En effet, ce sont ces
comètes qui vont nous permettre de faire le lien entre le nuage de Oort ini-
tial et la production de comètes de type Halley, de centaures, d’objets du
disque étendu, voire même de comètes de la famille de Jupiter. L’analyse de
l’évolution orbitale de ces comètes est donc une priorité.

Enfin, le 29 septembre 2013, le satellite GAIA aura été envoyé (sauf catas-
trophe !) pour commencer sa mission de 5 ans d’observations. Ce satellite sera
une source d’informations précieuses pour la dynamique des comètes et en
particulier celles venant du nuage de Oort. En effet, dans Fouchard et al.
(2011b) et Rickman et al. (2012) on a mis en évidence le fait que GAIA ob-
servera 80% des étoiles qui auront eu un effet sur la trajectoire des comètes
observées pendant leur dernière période orbitale. Même si les observations de
GAIA devront être complétées par d’autres observations pour déterminer de
manière précise la vitesse radiale de certaines de ces étoiles, il n’en reste pas
moins que cet apport sera décisif pour pouvoir reconstruire de manière fiable
la dernière période orbitale des comètes observées. Cette reconstruction nous
permettra alors de mieux comprendre la dynamique de ces comètes et donc
de préciser les contraintes sur la forme et la population du nuage de Oort.

GAIA ne devrait pas découvrir de nombreuses comètes, quelque soit leur
famille, mais en revanche ses observations non biaisées de comètes, une loi
de balayage de la voûte céleste parfaitement connue, une astrométrie de très
haute précision et le fait que toutes les observations sont effectuées par un
même instrument permettront entre autres :
• de mieux évaluer les populations des différentes familles de comètes, et

on a vu combien ceci est important pour contraindre la formation du
nuage de Oort ;
• d’améliorer la détermination des forces non-gravitationelles, en par-

ticulier pour les comètes à longue période pour lesquelles ces forces
peuvent être déterminantes pour la détermination du demi-grand axe
original.



Annexe A

Autres travaux de recherche et
publications

A.1 Un modèle statistique de perturbations

planétaires

Dans les années 80 des méthodes de Monte Carlo ont été mises en place
pour modéliser la dynamique à long terme d’ensemble de comètes (Rick-
man et Vaghi, 1976; Froeschlé et Rickman, 1980, 1981). Ces méthodes con-
sistaient essentiellement à calculer au préalable un ensemble de perturba-
tions planétaires recouvrant tout l’espace d’étude. L’espace d’étude était en-
suite divisé en cellules, et chaque cellule se voyait attribuer un ensemble
de perturbations planétaires. Ensuite l’évolution de l’ensemble de comètes
fictives était effectuée en appliquant une perturbation planétaire choisie au
hasard dans l’ensemble de perturbations associé à la cellule dans laquelle
se trouve la comète. Cette perturbation planétaire se traduisant par une
variation de tous les éléments orbitaux de la comète considérée. Fouchard
et al. (2003) ont montré qu’une telle méthode ne peut pas rendre compte des
résonances, puisque les perturbations successives appliquées à une comète
sont décorrélées. Ainsi une telle méthode n’était pas appropriée à l’étude de
la dynamique des comètes de la famille de Jupiter.

En revanche, pour les comètes se trouvant sur des trajectoires presque
paraboliques, comme celles qui viennent du nuage de Oort, leur période or-
bitale est telle qu’il ne peut y avoir de résonances affectant leur mouvements,
donc une méthode de Monte Carlo du type décrit précédemment redevient
applicable.

Cependant, on a vu dans Fouchard et al. (2003) que le nombre de pertur-
bations pré-calculées doit être suffisamment grand pour que les perturbations
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les plus fortes mais aussi les plus rares soient bien représentées. D’autre part,
l’espace d’étude est relativement vaste, ainsi le nombre de perturbations à
calculer au préalable et à stocker peut devenir considérable, nécessitant l’u-
tilisation de tableaux de taille prohibitive.

Une solution serait donc de remplacer les échantillons de perturbations
pré-calculées par des lois de probabilité dont les paramètres dépendent de la
localisation dans l’espace d’étude. Ceci constitue l’objectif d’une collabora-
tion en cours avec Radu S. Stoica du laboratoire Painlevé de l’université de
Lille 1.

Le premier article publié (Stoica et al., 2010) correspond à une première
ébauche de cette étude. On a pu mettre en évidence le fait que les distribu-
tions de perturbations planétaires correspondent bien à des distributions à
“queue lourde” et donc non gaussiennes. L’évaluation de certains paramètres
statistiques caractéristiques de ce genre de distributions (comme le calcul de
percentils) faisait apparâıtre les mêmes structures que celles obtenues par la
bien connue théorie de Öpik.

Le modèle utilisé dans ce premier travail était un modèle “complet” dans
lequel les quatre planètes géantes affectaient un objet de masse négligeable
sur une orbite presque parabolique. Il s’avéra alors que l’espace d’étude était
trop complexe et la quantité de perturbations calculées était loin d’être suff-
isante pour obtenir une bonne fiabilité sur l’estimation des paramètres de loi
de probabilité.

Ce travail est donc repris, mais en considérant le modèle dynamique le
plus simple possible, i.e. une seule planète géante sur une orbite circulaire qui
perturbe des objets sur des trajectoires initialement paraboliques. Ce travail
est en cours.

Article publié :

Is the dynamics of Jupiter family comets amenable to
Monte Carlo modelling ?

Fouchard, M. ; Froeschlé, Ch. ; Valsecchi, G. B.

MNRAS, 2003, 344, 1283-1295.

abstract

In order to explore the range of applicability of Monte Carlo modelling,
we reconsider in depth the Monte Carlo simulations of Froeschlé & Rickman
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aimed at the study of the orbital evolution of Jupiter family comets. We first
analyse the computation of perturbation distributions, and find that to get
statistically significant results, the sample size of these distributions must be
larger than several times 105. We then show the necessity of introducing a
procedure, referred to as the Spurious Perturbations Removal (SPR) proce-
dure, to clean the perturbation distribution of any spurious contribution due
to comets undergoing a close encounter with Jupiter at the beginning or/and
the end of the perturbation computations. The partition of element space
into 30 boxes in the (Q, q) plane (4 ≤ Q ≤ 13 au and 0 ≤ q ≤ 7 au) does
not lead to dynamically homogeneous boxes, as is required for Monte Carlo
simulations ; these inhomogeneities are due to various reasons. Different ways
to make such a partition are discussed. The strong influence of mean motion
resonances on the dynamics of Jupiter family comets implies that resonances
must be taken into account in any Monte Carlo simulation.

Article publié :

Order statistics and heavy-tail distributions for plan-
etary perturbations on Oort cloud comets

Stoica, R.S. and Liu, S. and Davydov, Y. and Fouchard, M. and Vienne,
A. and Valsecchi, G.B.

A&A, 2010, 513, A14.

abstract

Aims. This paper tackles important aspects of comet dynamics from a
statistical point of view. Existing methodology uses numerical integration to
compute planetary perturbations to simulate such dynamics. This operation
is highly computational. It is reasonable to investigate a way in which a sta-
tistical simulation of the perturbations can be handled more easily. Methods.
The first step to answer such a question is to provide a statistical study of
these perturbations in order to determine their main features. The statistical
tools used are order statistics and heavy-tailed distributions. Results. The
study carried out indicated a general pattern exhibited by the perturbations
around the orbits of the planets. These characteristics were validated through
statistical testing and a theoretical study based on the Öpik theory.
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A.2 Satellites irréguliers de Jupiter

Le travail de recherche concernant les satellites irréguliers de Jupiter a
été mené par Julien Frouard dans le cadre de sa thèse de doctorat que j’ai
co-dirigée avec Alain Vienne. Les satellites irréguliers sont des satellites qui
se trouvent très éloignés de la planète sur des trajectoires généralement bien
plus excentriques et inclinées que celle des satellites plus proches. Ces car-
actéristiques font que ces satellites ont très probablement été capturés par la
planète au cours de l’évolution du système solaire.

La résonance d’évection correspond à une commensurabilité entre le mou-
vement moyen d’une planète et le mouvement de la longitude du péricentre
d’un satellite de cette planète. Cette région représente la région de stabilité
la plus lointaine pour des satellites d’une planète. Dans Frouard et al. (2010),
cette résonance est étudiée, tant d’un point de vue analytique que d’un point
de vue numérique. Un modèle analytique de la résonance y est développé.
Ce modèle constitue une amélioration notable de modèles précédents, no-
tament parce qu’il est valable à n’importe quelles excentricités. Cependant,
pour Jupiter, il ne permet pas de rendre compte de manière précise de la
localisation de la résonance à cause de la moyennisation des équations ef-
fectuée pour obtenir le modèle et de la grande valeur du demi-grand axe des
satellites se trouvant au voisinage de la résonance. Une étude précise de la
résonance est effectuée de manière numérique en utilisant des indicateurs de
type Lyapunov pour la stabilité et par le biais de surface de section pour la
localisation. De plus, la localisation de la résonance d’évection induite par
l’applatissement d’une planète est aussi étudiée de manière analytique.

Dans Frouard et al. (2011) une étude à long terme de la stabilité des
satellites irréguliers de Jupiter est effectuée. Cette étude est faite par le biais
de cartes de stabilité faisant aparâıtre le réseau de résonances autour des
satellites. Il a été montré que la majorité des satellites ont un comportement
chaotique, bien que deux familles de satellites (Ananke et Carme) le sont
faiblement.

Les cartes de stabilité ont permis de mettre en évidence le rôle important
que semble jouer la grande inégalité entre Jupiter et Saturne. En particulier
les familles Ananke et Carme se trouve au voisinage d’une résonance faisant
intervenir la grande inégalité, ce qui a pu avoir jouer un rôle dans l’histoire
dynamique passée de ces familles.
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Article publié :

About the dynamics of the evection resonance

J. Frouard, M. Fouchard, and A. Vienne

2010, A&A, 515, A54.

abstract

Context. The evection resonance appears to be the outermost region of
stability for A prograde satellite orbiting a planet, the critical argument of the
resonance indeed being found librating in regions surrounded only by chaotic
orbits. The dynamics of the resonance itself is thus of great interest for the
stability of satellites, but its analysis by means of an analytical model is not
straightforward because of the high perturbations acting on the dynamical
region of interest.

Aims. It is thus important to show the results and the limits inherent
in analytical models. We use numerical methods to test the validity of the
models and analyze the dynamics of the resonance.

Methods. We use an analytical method based on a classical averaged ex-
pansion of the disturbing function valid for all eccentricities as well as nu-
merical integrations of the motion and surfaces of section.

Results. By comparing analytical and numerical methods, we show that
aspects of the true resonant dynamic can be represented by our analytical
model in a more accurate way than previous approximations, and with the
help of the surfaces of section we present the exact location and dynamics of
the resonance. We also show the additional region of libration of the resonance
that can be found much closer to the planet due to its oblateness.

Article publié :

The long-term dynamics of the Jovian irregular satel-
lites

J. Frouard, A. Vienne, and M. Fouchard

2011, A&A, 532, A44.
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abstract

Context. The dynamical region of the Jovian irregular satellites presents
an interesting web of resonances that are not yet fully understood. Of par-
ticular interest is the influence of the resonances on the stochasticity of the
individual orbits of the satellites, as well as on the long-term chaotic diffusion
of the different families of satellites.

Aims. We make a systematic numerical study of the satellite region to de-
termine the important resonances for the dynamics, to search for the chaotic
zones, and to determine their influences on the dynamics of the satellites. We
also compare these numerical results to previous analytical works.

Methods. Using extensive numerical integrations of the satellites along
with an indicator of chaos (MEGNO), we show global and detailed views
of the retrograde and prograde regions for various dynamical models of in-
creasing complexity and indicate the appearance of the different types of
resonances and the implied chaos.

Results. Along with secular and mean motion resonances that shape the
dynamical regions of the satellites, we report a number of resonances involv-
ing the Great Inequality, and which are present in the system thanks to the
wide range of the values of frequencies of the pericenter available for the
satellites. The chaotic diffusion of the satellites is also studied and shows
the long-term stability of the Ananke and Carme families, in contrast to the
Pasiphae family.

A.3 Travaux de recherche reliés à la genèse

du modèle dynamique pour les comètes

du nuage de Oort

La construction du modèle de marées galactiques s’est faite en plusieurs
étapes. La première a eu lieu en fin de thèse. Dans ce premier travail (Fouchard,
2004) un modèle de marées galactiques sous forme de mapping, c’est-à-dire
d’une application qui permettait de modéliser les effets des marées galac-
tiques sur une période orbitale de la comète, a été construit. En fait il s’agit
d’une série de mappings dont la précision peut être arbitrairement grande,
pourvu que le demi-grand axe des comètes reste modéré.

Ce modèle a ensuite été amélioré dans Fouchard et al. (2005). En effet, les
mappings construits dans Fouchard (2004) utilisaient les variables hamiltoni-
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ennes de Delaunay, et avait une singularité. Un autre ensemble de variables
hamiltoniennes, appelées variable de Matese dans Fouchard et al. (2005), a
permis de déplacer cette singularité mais pas de l’éliminer.

Un premier modèle hybride de marée a été utilisé dans Fouchard et al.
(2006) afin d’étudier les effets à long terme des marées galactiques, et en
particulier du choix des paramètres intervenant dans la modélisation de la
marée.

Finalement c’est dans le cadre d’une collaboration avec S lawomir Breiter
de l’observatoire de Poznan (Pologne) que le modèle hybride final de marées
galactiques a été construit (Breiter et al., 2007).

Article publié :

New fast models of the Galactic tide

M. Fouchard

2004, Mon. Not. R. Astron. Soc., 349, 347-356.

abstract

New models of the action of the Galactic tide on the motion of the Oort
Cloud comets are investigated. The first one consists of the Hamiltonian
form of the equations of motion which are averaged over the mean anomaly
including the radial component of the tide. The second is a series of mappings
which allows a noticeable reduction of the computer time. These models are
checked in three different frames, and some of them turn out to be reliable
for a wide range of initial conditions. In the last experiment we simulate
the transport of 105 Oort Cloud comets to the inner Solar system under
the Galactic tide impulse alone. For such a simulation, the best compromise
between reliability and computer time is given by a mapping of order 3
which is more than 500 times faster than the usual numerical integrations
and may be safely used when the comet semimajor axes a < 30 000 au. The
present study highlights the qualitative effects of the radial component of
the Galactic tide. The models built here will be used in a forthcoming paper
for a more realistic study of the transport of long-period comets including
planetary perturbations.
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Article publié :

Comparison Between Different Models of Galactic
Tidal Effects on Cometary Orbit

M. Fouchard, Ch. Froeschlé, J. J. Matese and G. B. Valsecchi

2005, Celestial Mechanics and Dynamical Astronomy, 93, 229-262.

abstract

Different models of the action of the galactic tide are compared. Each
model is a substitute for direct numerical integrations allowing a drastic
decrease of the computation time. The models are built using two different
techniques, (i) averaging of the fast variable (the mean anomaly) over one
cometary period and (ii) fixing the comet in its aphelion direction. Moreover,
we consider two different formalisms (Lagrangian and Hamiltonian) and also
two different sets of variables. As expected, we find that the model results
are independent of the formalism and the set of variables considered, and are
highly accurate, whereas mathematical technique (ii) leads to poor results.
In order to further reduce the computation time, mappings are built from the
development of the solution of the models. We show that for these mappings,
the set of variables giving the most accurate results is strongly dependent on
the cometary eccentricity, e, and semimajor axis, a.

Article publié :

Long-term effects of the Galactic tide on cometary dy-
namics

M. Fouchard, Ch. Froeschlé, G. B. Valsecchi and H. Rickman

2006, Celestial Mechanics and Dynamical Astronomy, 95, 299-326.
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abstract

We introduce a model for integrating the effects of Galactic tides on
Oort cloud comets, which involves two procedures, according to the values
of the osculating semi-major axis a and eccentricity e. Ten simulations of
the dynamics of 106 comets over 5 Gyr are performed using this model. We
thus investigate the long-term effects of the Galactic tide with and without
a radial component, the effects of the local density of the Galactic disk,
and those of the Oort constants. Most of the results may be understood in
terms of the integrability or non-integrability of the system. For an integrable
system, which occurs for moderate semi-major axes with or without radial
component, the dynamics is explained by periodic variation of the cometary
perihelion, inducing the depletion of the outer region of the Oort cloud, a
constant flux from the inner region after 500 Myr, and the quick formation
of a reservoir of comets with argument of perihelion near 26.6◦. When the
system is non-integrable, the efficiency of the tide in reducing the cometary
perihelion distance is enhanced both by replenishing the Oort cloud domain
from which comets are sent toward the planetary system, and by reducing the
minimal value that the perihelion distance may reach. No effects of varying
the Oort constants were observed, showing that the flat rotation curve is a
satisfactory approximation in Oort cloud dynamics.

Article publié :

Two fast integrators for the Galactic tide effects in the
Oort Cloud

S. Breiter, M. Fouchard,R. Ratajczak, W. Borczyk

2007, Mon. Not. R. Astron. Soc., 377, 1151-1162.

abstract

Two fast and reliable numerical integrators for the motion of the Oort
Cloud comets in the Galactic tidal potential are presented. Both integra-
tors are constructed as Hamiltonian splitting methods. The first integrator
is based upon the canonical Hamiltonian equations split into the Keplerian
part and a time-dependent perturbation. The system is regularized by the
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application of the Kuustanheimo-Stiefel variables. The composition rule of
Laskar and Robutel with a symplectic corrector is applied. The second in-
tegrator is based on the approximate, averaged Hamiltonian. Non-canonical
Lie-Poisson bracket is applied allowing the use of non-singular vectorial el-
ements. Both methods prove superior when compared to their previously
published counterparts.

Article publié :

Algorithms for Stellar Perturbation Computations on
Oort Cloud Comets

H. Rickman, M. Fouchard, G. B. Valsecchi and Ch. Froeschlé

2005, Earth Moon and Planets, 97, 411-434.

abstract

We investigate different approximate methods of computing the perturba-
tions on the orbits of Oort cloud comets caused by passing stars, by checking
them against an accurate numerical integration using Everhart’s RA15 code.
The scenario under study is the one relevant for long-term simulations of the
clouds response to a predefined set of stellar passages. Our sample of stel-
lar encounters simulates those experienced by the Solar System currently,
but extrapolated over a time of 1010 years. We measure the errors of perihe-
lion distance perturbations for high-eccentricity orbits introduced by several
estimators including the classical impulse approximation and Dybczyński’s
(1994, Celest. Mech. Dynam. Astron. 58, 1330-1338) method and we study
how they depend on the encounter parameters (approach distance and rela-
tive velocity). We introduce a sequential variant of Dybczynśki’s approach,
cutting the encounter into several steps whereby the heliocentric motion of
the comet is taken into account. For the scenario at hand this is found to
offer an efficient means to obtain accurate results for practically any domain
of the parameter space.
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A.4 Résultats complémentaires autour des comètes

du nuage de Oort

A.4.1 Complément sur la dynamique générée par les
marées seules

Article publié :

Stationary orbits of comets perturbed by Galactic
tides

S. Breiter, M. Fouchard and R. Ratajczak

MNRAS, 2008, 383, 200-208.

abstract

Using the first-order normalized equations describing the heliocentric
cometary motion perturbed by the Galactic tides, we identify ’stationary
solutions’ with constant values of the eccentricity, inclination, argument of
perihelion and longitude of the ascending node in the reference frame rotat-
ing with the Galaxy. The families found involve circular orbits, orbits in the
Galactic equatorial plane, rectilinear orbits normal to the equatorial plane,
elliptic orbits symmetric with respect to the direction to the Galactic Centre
or to its perpendicular, and asymmetrically oriented elliptic orbits. Linear
stability of the stationary solution is studied analytically and confirmed by
numerical experiments. Most, but not all, of the unstable solutions prove
chaotic with the Lyapunov times at least 100 Myr.

A.4.2 Complément sur la synergie à court terme
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Article publié :

Gaia and the new comets from the Oort cloud

H. Rickman, M. Fouchard, Ch. Froeschlé, G.B. Valsecchi

2012, Planetary and Space Science, 73, 124-129.

abstract

We use Oort cloud simulations covering a time span of 5 Gyr, including
the Galactic tides and stellar encounters and focussing on the last revolution
of comets as they get injected into observable orbits, in order to analyze
in detail the role of stars in those injections. We find this role to be very
important in all parts of the cloud, so that most injected comets require the
intervention of a star. Characterizing the stellar influence by the decrease
of the perihelion distance, projected to the time of the next perihelion by
means of tidal evolution, we identify the most efficient stars and study the
properties of the corresponding encounters. We also judge the detectability
of the culprit stars, responsible for the current arrival of new comets, by
the Hipparcos and Gaia missions based on the magnitudes of the stars. Our
main result is that the chances to detect and identify those culprits will be
revolutionized by the Gaia data independent of which region of the cloud the
comets come from.

A.5 Cours ou article de revue

Article publié :

Dynamical Features of the Oort Cloud Comets

M. Fouchard, C. Froeschl ?e, H. Rickman, and G. B. Valsecchi

Lect. Notes Phys., 2010, 790, 401-430.
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abstract

The Oort cloud which corresponds to the outer boundary of our Solar
system, is considered to be the main reservoir of long period comets. At such
distance from the Sun (several times 10 000 AU), the comet trajectories are
affected by the galactical environment of the Solar System. Two main effects
contribute to inject comets from the Oort cloud to the inner Solar system
where comets may become observable : the Galactic tide which is due to
the difference of the gravitational attraction of the entire Galaxy on the Sun
and on the comets, and the gravitational effects of stars passing close to the
Sun. In this lecture the characteristics and the long term effects of these two
mechanisms, taken independently and simultaneously, will be illustrated.

Article publié :

Galactic environment and cometary flux from the Oort
cloud

M. Fouchard

Icy Bodies of the Solar System, J.A. Fernandez, D. Lazzaro, D. Prialnik,
& R. Schulz, eds., 2010, Proceedings IAU Symposium No. 263,

57-66.

abstract

The Oort cloud, which corresponds to the furthest boundary of our Solar
System, is considered as the main reservoir of long period comets. This cloud
is likely a residual of the Solar System formation due to the gravitational
effects of the young planets on the remaining planetesimals. Given that the
cloud extends to large distances from the Sun (several times 10 000 AU), the
bodies in this region have their trajectories affected by the Galactic environ-
ment of the Solar System. This environment is responsible for the re-injection
of the Oort cloud comets into the planetary region of the Solar System. Such
comets, also called ’new comets’, are the best candidates to become Halley
type or ’old’ long period comets under the influence of the planetary gravita-
tional attractions. Consequently, the flux of new comets represents the first
stage of the long trip from the Oort cloud to the observable populations of
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comets. This is why so many studies are still devoted to this flux. The dif-
ferent perturbers related to the Galactic environment of the Solar System,
which have to be taken into account to explain the flux are reviewed. Special
attention will be paid to the gravitational effects of stars passing close to
the Sun and to the Galactic tides resulting from the difference of the grav-
itational attraction of the Galaxy on the Sun and on a comet. The synergy
which takes place between these two perturbers is also described.

A.6 Activité de recherche sur les indicateurs

de chaoticité

Ces travaux concernent essentiellement le travail de recherche effectué
pendant ma thèse de doctorat. Cependant l’utilisation de ces indicateurs, en
particulier du Fast Lyapunov Indicator, a été faite dans le cadre de la thèse
de doctorat de Julien Frouard ainsi que dans le cadre d’une collaboration en
développement avec Jérôme Daquin et Florent Deleflie.

Article publié :

On the Relationship Between Fast Lyapunov Indicator
and Periodic Orbits for Continuous Flows

Fouchard, Marc ; Lega, Elena ; Froeschlé, Christiane ; Froeschlé, Claude

Celestial Mechanics and Dynamical Astronomy, 2002, 83, 205-222.

abstract

It is already known (Froeschlé et al., 1997a) that the fast Lyapunov in-
dicator (hereafter FLI), i.e. the computation on a relatively short time of
a quantity related to the largest Lyapunov indicator, allows us to discrimi-
nate between ordered and weak chaotic motion. Using the FLI many results
have been obtained on the standard map taken as a model problem. On
this model we are not only able to discriminate between a short time weak
chaotic motion and an ordered one, but also among regular motion between
non resonant and resonant orbits. Moreover, periodic orbits are characterised



by constant FLI values which appear to be related to the order of periodic
orbits (Lega and Froeschlé, 2001). In the present paper we extend all these
results to the case of continuous dynamical systems (the Hénon and Heiles
system and the restricted three-body problem). Especially for the periodic
orbits we need to introduce a new value : the orthogonal FLI in order to fully
recover the results obtained for mappings.
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Annexe B

Curriculum vitae

Déroulement de carrière

1 Septembre 2006 : Mâıtre de conférences à l’Université de Lille I.
20 Mars 2005 : Obtention d’une bourse externe de l’ESA pour tra-

vailler à l’Istituto di Astrofisica Spaziale e Fisica Cosmica de Rome.
20 Février 2004 : Obtention d’une thèse de doctorat sous la direction

de Ch. Froeschlé et G.B. Valsecchi. Titre de la thèse : “Contribution à
l’étude de la dynamique des comètes”. Mention très honorable.

1998 : Agrégation de mathématiques (option mécanique).
1997 : Capes de mathématiques et admissible à l’agrégation de mathématiques.
1996 : DEA de Turbulences et Systèmes Dynamiques de l’Université de

Nice Sophia Antipolis.
1995 : Mâıtrise de mécanique à l’Université d’Aix-Marseille II.

Enseignement

depuis 2010 : responsable (depuis 2011) et animateur d’un service d’ob-
servation à la lunette de l’observatoire de Lille pour un public univer-
sitaire.

depuis 2009 : chargé de TD/colles en licence de Mathématiques, Sci-
ence Physique et Science pour l’Ingénieur (analyse et algèbre), à raison
de 40h par an en moyenne.

2007-2011 ; 2012-2013 : participation dans le cadre d’UNISCIEL au
développement d’un site consacré à l’astronomie dans l’apprentissage
des mathématiques au niveau licence.

depuis 2006 : Chargé de TD pour une option astronomie en 2ème année
de licence (mathématiques, physiques, ingénierie). L’option est con-

173
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sacrée principalement à la géométrie sphérique et aux différents systèmes
de coordonnées sphériques utilisés en astronomie.

depuis 2006 : responsable d’un cours d’introduction à l’astronomie en
première année de licence (mathématiques, physique, ingénierie).

depuis 2006 : participation à un groupe de travail de l’IREM sur l’u-
tilisation de l’astronomie pour l’enseignement des mathématiques dans
le secondaire.

depuis 2006 : formateur pour les enseignants du second degré dans le
cadre de stage sur l’enseignement de l’astronomie dans le secondaire.

2010-2011 : cours/TD en M1 (mathématiques, physiques). Il s’agit de
la partie d’un cours de mécanique hamiltonienne (20h).

2006-2007 : chargé de TD pour une option en astronomie en 3ème année
de licence de mathématiques. L’option consistait en une introduction
à la mécanique céleste.

2003-28 Février 2005 : titulaire d’un poste d’enseignant au collège Paul
Eluard (Nanterre, académie de Versailles).

1999-2002 : titulaire d’un poste d’enseignant au Lycée polyvalent Jacques
Vaucanson classé en ZEP (Les Mureaux, académie de Versailles).

Investissements divers

avril 2013 : Rapporteur pour une demande de financement à hauteur
de 70 000e pour un projet de recherche soumis à une agence gouverne-
mentale polonaise (National Science Centre).

2012 : Membre de l’UAI Division I Commission 7 “Celestial Mechanics
& Dynamical Astronomy” et Division III Commission 15 “Physical
Study of Comets & Minor Planets”.

2011 : organisation d’un atelier international sur la dynamique et la for-
mation du nuage de Oort du 27 au 30 Septembre 2011 à l’Observatoire
de Lille (financement : université de Lille, observatoire de Paris).

2011 : Membre du Jury en tant qu’examinateur de la thèse de doctorat
de Carlo Comito (cotutelle Université de Nice Sophia-Antipolis / Uni-
versità degli Studi di Torino).

2010 : porteur d’une demande de BQR pour un achat de matériel infor-
matique pour l’observatoire de Lille. La justification du matériel s’est
faite, entre autre, dans le cadre d’un projet de recherche commun avec
le laboratoire Painlevé de l’université de Lille 1 sur la dynamique des
comètes.

Mai 2010 : participation en tant que membre externe au comité de
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sélection pour un poste de Mâıtre de conférences en section 34 à l’uni-
versité Paris VII.

depuis 2009 : responsable de la sécurité incendie à l’observatoire de
Lille.

2009 : élu dans le vivier pour les comités de sélections pour les sections
25-26-34 à l’UFR de mathématiques de l’Université de Lille 1.

2008 et 2009 : porteur d’un projet scientifique international dans le
cadre du BQR sur la dynamique des comètes (deux ateliers organisés).

2007 : porteur d’une demande conjointe de l’UFR de mathématiques et
de l’UFR de physique pour l’achat d’un spectrographe par la cellule
formation de l’USTL.

2007-2011 : élu du conseil d’institut de l’IMCCE.
depuis 2006 : participation à la préparation de la mission GAIA de

l’Agence Spatiale Européenne. Contribution sur les apports potentiels
de GAIA à notre compréhension de la dynamique des comètes.

depuis 2005 : participation à des comités de lectures pour les revues
internationales suivantes : Monthly Notices of the Royal Astronomical
Society, Contributions of the Astronomical Observatory Skalnaté Pleso,
Planetary and Space Science, Celestial Mechanics and Dynamical As-
tronomy, Astronomy and Astrophysics, Icarus.

Encadrement de stagiaires hors thèse de doc-

torat

23 Mai 2011 - 22 Juillet 2011 : S3, Ecole Normale de Lyon, Ilyas Djafer-
Cherif : “relever d’étoiles avec le spectrographe de l’observatoire de
Lille”

15 Septembre 2009 - 15 Novembre 2009 : M1, Université de Lille
1, Vivien Scottez (co. Denis Duflot, Stefan Renner) : “relever du spectre
du Soleil avec le spectrographe de l’observatoire de Lille”

15 Juin 2008 - 15 Juillet 2008 : M1, Université de Lille 1, Zheng Liu
(co. Denis Duflot) : “Premières mesures avec le spectrographe de l’ob-
servatoire de Lille”

15 Juin 2008 - 15 Juillet 2008 : M1, Université de Lille 1, Gerald Ndong
(co. Denis Duflot) : “Premières mesures avec le spectrographe de l’ob-
servatoire de Lille”

3 Mars 2008 - 2 Mai 2008 : M1, Université de Lille 1, Kamal Machto
(co. Alain Vienne) : “Détermination d’orbites d’étoiles doubles”

1er Avril 2007 - 1er Juillet 2007 : M2 recherche, Observatoire de Paris,
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Julien Frouard (co. Alain Vienne) : “Etude des processus de capture
de satellites des planètes”

7 Mai 2007 - 7 Aout 2007 : M1, Université Paris 11, Thomas Lemée
(co. Alain Vienne) : “Outils de détection du chaos dans les systèmes
planétaires”

1er Juillet 2007 - 15 Juillet 2007, 1er Sept. 2007 - 15 Sept. 2007 :
L2, Université de Lille 1, Narei Lorenzo Martinez (co. Alain Vienne) :
“Etude des trajectoires d’étoiles doubles”

Collaborations internationales et projets sci-

entifiques

20 Avril-20 Mai 2009 : invitation de Hans Rickman (Centrum Badan
Kosmicznych Polska Akademia Nauk, Varsovie, Pologne) par l’Univer-
sité de Lille I pour collaboration scientifique.

Janvier 2008-Mars 2011 : participation à un projet financé par une
bourse polonaise sur la dynamique du nuage de Oort et le disque étendu.
Le projet concerne les personnes suivantes : Slawomir Breiter (Obser-
vatoire de Poznan, Pologne), Piotr A. Dybczynski (Observatoire de
Poznan, Pologne), Christiane Froeschlé (Laboratoire Cassiopée, OCA,
Nice), Ryszard Gabryszewski, (Centrum Badan Kosmicznych Polskiej
Akademii Nauk, Pologne) Malgorzata Krolikowska-Soltan (Centrum
Badan Kosmicznych Polska Akademia Nauk, Varsovie, Pologne) Hans
Rickman, (Centrum Badan Kosmicznych Polska Akademia Nauk, Varso-
vie, Pologne), Slawomira Szutowicz(Centrum Badan Kosmicznych Pol-
ska Akademia Nauk, Varsovie, Pologne), Giovanni Valsecchi, (IASF-
INAF, Rome, Italie).

2006-2010 : collaboration avec Slawomir Breiter de l’observatoire de
Poznan, Pologne. Thème de recherche : étude de la dynamique en-
gendrée par la marée galactique (trajectoires périodiques, stabilité, etc).

Depuis Janvier 2004 : collaboration avec Hans Rickman (Université
de Uppsala, Suède), Giovanni Valsecchi (IASF-INAF, Rome, Italie)
et Christiane Froeschlé sur l’étude à long terme de la dynamique des
comètes du nuage de Oort.

Participations à des colloques / écoles / congrès

Octobre 2010 (Pasadena, USA) : DPS, présentation orale sur la dernière
période des comètes “nouvelles”.
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Août 2009 (Rio de Janeiro, Brésil) : review talk invité sur ”Galac-
tic environment and cometary flux from the Oort cloud”, Assemblée
Générale de l’Union Astronomique Internationale (IAU).

Juin 2009 (Aussois, France) : cours invité pour une Ecole Thématique
du CNRS “ La dynamique des systèmes gravitationnels : défis et per-
spectives.”, intitulé du cours : “Oort cloud comets dynamics and plan-
etary perturbations”.

Juillet 2008 (Baltimore, USA) : ACM. Présentation sur l’importance
de la masse de l’étoile sur la synergie marée-étoile.

Juin 2008 (Litohoro, Grèce) : Colloque en l’honneur de Prof. John
D. Hadjidemetriou. Présentation sur l’influence de passage stellaire sur
la dynamique des comètes du nuage de Oort

Juin 2007 (Spoleto, Italie) : Colloque en l’honneur de Claude Froeschlé.
Présentation invitée sur la synergie entre les effets des perturbations
stellaires et ceux de la marée galactique sur la dynamique des comètes
du nuage de Oort.

Mars 2007 (Bad Hofgastein, Autriche) : cours invité pour une Ecole
Thématique du CNRS ”Récentes Investigations en Dynamique des Corps
Célestes dans les Systèmes Solaire et Extra-solaires”. Cours sur les
différents aspects de la dynamique des comètes du nuage de Oort.

Mars 2006 (Aussois, France) : cours invité pour un Atelier de mécanique
céleste : les derniers développements en mécanique céleste. Cours sur
la modélisation de la dynamique des comètes du nuage de Oort.

Sept. 2005 (Viterbo, Italie) : CELMEC IV. Présentation sur les nou-
veaux modèles de marée galactique.

Activité grand-public

2013 Ecriture d’un paragraphe pour l’agenda 2014 de l’IMCCE sur le
nuage de Oort.

2011 Interview pour un article de Science et Avenir sur le nuage de Oort.
2011 Témoignages pour le blog vidéo de Lille 1 dans le cadre du projet

“Demain, l’Université”.
2009 Intervenant dans le cadre de Lillosciences et présentation d’un ate-

lier “Carte du Ciel”.
2007 intervenant à la journée Jeunes Chercheurs organisée par le forum

des sciences de Villeneuve d’Ascq.
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Publications dans des revues internationales

avec comité de lecture

• Fouchard, M. and Rickman, H. and Froeschlé, Ch. and Valsecchi, G.B.,
“ Planetary perturbations for Oort cloud comets. I. Distributions and
dynamics ”, Icarus, 222, p. 20-31, 2013.
• Rickman, H. and Fouchard, M. and Froeschlé, Ch. and Valsecchi, G.B.,

“ Gaia and the new comets from the Oort cloud”, PSS, 73, p. 124-129,
2012.
• Fouchard, M. and Rickman, H. and Froeschlé, Ch. and Valsecchi, G.B.,

“The last revolution of new comets : the role of stars and their de-
tectability”, A&A, 535, 1-13, 2011.
• Fouchard, M. and Froeschlé, Ch. and Rickman, H. and Valsecchi, G.B.,

“ The key role of massive stars in Oort cloud comet dynamics”, Icarus,
214, 334-347, 2011.
• Frouard, J. and Vienne, A., and Fouchard, M., ”The long-term dy-

namics of the Jovian irregular satellites”, A&A, 532, id.A44, 15 pp.,
2011.
• Frouard, J. and Fouchard, M. and Vienne, A., ”About the dynamics of

the evection resonance”, A&A, 2010,515, 54.
• Stoica, R.S. and Liu, S. and Davydov, Y. and Fouchard, M. and Vienne,

A. and Valsecchi, G.B., “Order statistics and heavy-tail distributions
for planetary perturbations on Oort cloud comets”, A&A, 2010, 513,
14.
• Fouchard, M. and Froeschlé, Ch. and Rickman, H. and Valsecchi, G.,

”Dynamical features of the Oort cloud comets”, Lecture Notes in Physics,
Berlin Springer Verlag, 2010, 790, 401-430.
• Rickman, H. and Fouchard, M. and Froeschlé, Ch. and Valsecchi, G. B.,

”Injection of Oort Cloud Comets : The Fundamental Role of Stellar
Perturbations”, Celestial Mechanics and Dynamical Astronomy, 2008,
102,111-132.
• Breiter, S. and Fouchard, M. and Ratajczak, R., ”Stationary orbits of

comets perturbed by Galactic tides”,MNRAS, 2008,383,200-208.
• Fouchard, M. and Froeschlé, Ch. and Rickman, H. and Valsecchi, G.,

”Methods to Study the Dynamics of the Oort Cloud Comets I : Mod-
elling the Stellar Perturbations”, Topics in Gravitational dynamics,
2007, Lectures Notes in Physics, Berlin Springer Verlag, 729, Benest,
D. Froeschlé, Cl. and Lega, E. eds., 255-270.
• Fouchard, M. and Froeschlé, Ch. and Breiter, S. and Ratajczak, R. and

and Valsecchi, G. Rickman, H. , ”Methods to Study the Dynamics of the
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Oort Cloud Comets II : Modelling the Galactic Tide”, Topics in Grav-
itational dynamics, 2007, Lectures Notes in Physics, Berlin Springer
Verlag, 729, Benest, D. Froeschlé, Cl. and Lega, E. eds., 271-293.
• Breiter, S. and Fouchard, M. and Ratajczak, R. and Borczyk, W. , ”Two

fast integrators for the Galactic tide effects in the Oort Cloud”,MNRAS,
2007,377, 1151-1162.
• Fouchard, M. and Froeschlé, Ch. and Valsecchi, G. and Rickman, H.,

”Long-term effects of the Galactic tide on cometary dynamics”, Celes-
tial Mechanics and Dynamical Astronomy, 2006, 95, 299-326.
• Rickman, H. and Fouchard, M. and Valsecchi, G. B. and Froeschlé,

Ch., ”Algorithms for Stellar Perturbation Computations on Oort Cloud
Comets”, Earth Moon and Planets, 2005, 97, 411-434.
• Fouchard, M. and Froeschlé, Ch. and Matese, J. J. and Valsecchi,

G., ”Comparison between Different Models of Galactic Tidal Effects
on Cometary Orbits”, Celestial Mechanics and Dynamical Astronomy,
2005, 93, 229-262.
• Fouchard, M., ”New fast models of the Galactic tide”, MNRAS, 2004,

349, 347-356.
• Fouchard, M. and Froeschlé, Ch. and Valsecchi, G. B., ”Is the dynam-

ics of Jupiter family comets amenable to Monte Carlo modelling ?”,
MNRAS, 2003, 344, 1283-1295.
• Fouchard, M. and Lega, E. and Froeschlé, Ch. and Froeschlé, Cl., ”On

the Relationship Between Fast Lyapunov Indicator and Periodic Orbits
for Continuous Flows”, Celestial Mechanics and Dynamical Astronomy,
2002, 83, 205-222.

Autres publications

• Fouchard, M., ”Galactic environment and cometary flux from the Oort
cloud”, IAU Symposium, 2010, 263, edts. Fernandez, J. A. and Lazzaro,
D. and Prialnik, D. and Schulz, R., pp 57-66
• Frouard, J. and Fouchard, M. and Vienne, A., ”The evection resonance :

solar and oblateness perturbations”, SF2A-2010 : Proceedings of the
Annual meeting of the French Society of Astronomy and Astrophysics,
2010, edts. Boissier, S. and Heydari-Malayeri, M. and Samadi, R. and
Valls-Gabaud, D., p 127
• Fouchard, M. and Rickman, H. and Valsecchi, G. B. and Froeschlé, Ch.,

”The Last Orbital Period of ”new Comets””, AAS/Division for Plane-
tary Sciences Meeting Abstracts #42, 2010, Bulletin of the American
Astronomical Society, 42, 950
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• Weiler, M. and Babusiaux, S. M. C. and Fouchard, M. and Mignot, S.,
”Comet observations with Gaia”, European Planetary Science Congress
2010, 2010, 339
• Frouard, J. and Fouchard, M. and Vienne, A., ”The Long-term Evo-

lution of the Jovian Irregular Satellites”, AAS/Division of Dynamical
Astronomy Meeting #41, 2010, series = Bulletin of the American As-
tronomical Society, 42, 936
• Frouard, J. and Fouchard, M. and Vienne, A., ”Chaoticity of the Jo-

vian Irregular Satellites”, AAS/Division for Planetary Sciences Meet-
ing Abstracts #41, 2009, AAS/Division for Planetary Sciences Meeting
Abstracts, 41, #38.08
• Frouard, J. and Fouchard, M. and Vienne, A., ”Comparison of fast

Lyapunov chaos indicators for Celestial Mechanics”, SF2A-2008, 2008,
edts. Charbonnel, C. and Combes, F. and Samadi, R., 121
• Gauchez, D. and Fouchard, M. and Souchay, J., “Inter-Comparisons

Between Numerical Integrations and Analytical Theory for the Solar
System”, 2002, Modern Celestial Mechanics : from theory to applica-
tions (A. Celletti, S.Ferraz-Mello, J. Henrard eds), Kluwer A.P., 393-
396.
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Dybczyński P. A. and Królikowska M. 2011. Where do long-period comets
come from ? Moving through the Jupiter-Saturn barrier. MNRAS, 416,
51–69.

Emel’yanenko V. V., Asher D. J., and Bailey M. E. October 2007. The fun-
damental role of the Oort cloud in determining the flux of comets through
the planetary system. MNRAS, 381, 779–789.



BIBLIOGRAPHIE 183

Emel’yanenko V. V., Asher D. J., and Bailey M. E. 2013. A Model for the
Common Origin of Jupiter Family and Halley Type Comets. Earth Moon
and Planets, 110, 105–130.

Everhart E. 1967. Intrinsic distributions of cometary perihelia and magni-
tudes. AJ, 72, 1002.

Everhart E. 1972. The origin of short-period comets. Astrophys. Lett., 10,
131–135.

Everhart E. 1985. An efficient integrator that uses Gauss-Radau spacings.
In Carusi A. and Valsecchi G. B., editors, ASSL Vol. 115 : IAU Colloq.
83 : Dynamics of Comets : Their Origin and Evolution, page 185.

Fernández J. A. 1980. Evolution of comet orbits under the perturbing influ-
ence of the giant planets and nearby stars. Icarus, 42, 406–421.

Fernandez J. A. 1981. New and evolved comets in the solar system. AAP,
96, 26–35.

Fernandez J. A. 1997. The Formation of the Oort Cloud and the Primitive
Galactic Environment. Icarus, 129, 106–119.

Fernández J. A. and Brunini A. 2000. The buildup of a tightly bound comet
cloud around an early Sun immersed in a dense Galactic environment :
Numerical experiments. Icarus, 145, 580–590.

Fernández J. A. and Sosa A. 2012. Magnitude and size distribution of long-
period comets in Earth-crossing or approaching orbits. MNRAS, 423,
1674–1690.

Fernández J. A., Tancredi G., Rickman H., and Licandro J. 1999. The popu-
lation,magnitudes, and sizes of Jupiter family comets. Astron. Astrophys.,
352, 327–340.

Fouchard M. 2004. New fast models of the Galactic tide. MNRAS, 349,
347–356.
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Fouchard M., Froeschlé Ch., Rickman H., and Valsecchi G. 2007b. Methods
to Study the Dynamics of the Oort Cloud Comets I : Modelling the Stellar
Perturbations. In Benest D., Froeschlé Cl., and Lega E., editors, Topics
in Gravitational dynamics, volume 729 of Lecture Notes in Physics, Berlin
Springer Verlag, in press, pages 255–270.
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