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dant ma thèse. Mais j’espère vraiment de leur exprimer mes remerciements
les plus sincères du fond de mon cœur.

Il y a tant de personnes qui m’ont soutenue et encouragée que je ne
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Abstract

The ephemerides resulting from numerical integration, which are convenient
to download from online service of IMCCE or Horizons of the JPL, have
a very good precision on the fitting to recent observations. Meanwhile,
analytical ephemerides like TASS describe in detail the dynamical system
by a representation based on a combination of the proper frequencies.

We plan to use these two types of ephemerides in order to study the
rotation of the natural satellites. It requires to rebuild a long-lasting and
high precision ephemeris with proper frequencies based on the numerical
integration ephemeris. The main difficulty is to avoid the shortcoming of
the limited interval of the numerical ephemeris.

In our work, we use the representation of the orbital elements of Titan
from the TASS ephemeris analyzed over 10,000 years as a reference example.
We experiment to obtain the proper frequencies with the TASS ephemeris
over 1,000 years only, and then to get the analytical representation of the
mean longitude of Titan in this limited interval. Due to this 1000 years time
span, we use the least squares method instead of the frequency analysis,
especially for the long period terms.

The efficiency and exactness of the whole method are verified by com-
paring TASS representation of the mean longitude of Titan obtained by the
least squares method with the 10,000 years reference example.

Finally and most importantly, we get the representation of the mean
longitude of Titan from JPL ephemeris over 1,000 years. Between the solu-
tion of JPL and the representation of TASS, it exists a 60 km difference in
the amplitude of the major component. This difference is considered as a
system difference. The limited interval of the ephemeris modifies the proper
frequencies, which leads to the error in the long period terms such as the one
from the node of Titan. For almost all other components, their amplitudes
and phases are similar to the relative terms from TASS. The error in our
representation is less than 100 kilometers over 1,000 years and the standard
deviation is about 26 kilometers.
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Chapter 1

Introduction and aims

The discovery of the Saturn system by humans has never stopped. Ancient
Chinese selected 28 groups of stars near the equator, which were called the
Twenty-eight mansions, as relative markers for measuring the positions of
the Sun, the Moon, and the five major planets in the Solar System (Mercury,
Venus, Mars, Jupiter, and Saturn). The first record of the twenty-eight lunar
mansions in China was found in the tomb of Marquis Yi of ZENG. The tomb
is considered to be built around 443 BC. The Saturnian orbital period is
about 29.657 years, making Saturn enter a new constellation every year. In
ancient China, Saturn was a star that represented the regular pattern and
morality, further extended as a sign for the stability of kingdom.

In 1610, Galileo turned his telescope towards the planet Saturn to ob-
serve its beautiful “ears”, which were finally identified as planetary rings
about 50 years later, and he was confused about the disappearance and re-
appearance of the mysterious “ears”. Since then, the Saturn system has
interested us so much, not only for the planet itself but also for its rings
and its complex satellite system. Titan was found in 1655 by Huygens,
as the largest satellite. Subsequently, Cassini discovered Iapetus (1671),
Rhea (1672), Dione and Tethys (1684). Almost one century later, in 1789,
W.Herschel discovered Mimas and Enceladus. Untill 1848, when Bond and
Lassell found Hyperion, humans had found all the eight principal satellites.
In the increasing order of their distances to Saturn, they are:

(1) Mimas, (2) Enceladus, (3) Tethys, (4) Dione, (5) Rhea, (6) Titan,
(7) Hyperion, (8) Iapetus

The dynamics of these eight satellites is characterized by several mean
motion resonance relations:

- resonance 2 : 4 between Mimas and Tethys

- resonance 1 : 2 between Enceladus and Dione

- resonance 3 : 4 between Titan and Hyperion

For example, while Dione turns once around Saturn, Enceladus makes
two revolutions.

9
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These resonances behave as faint gravitational perturbations among the
satellites. The consequences are oscillations of the conjunction between each
pair of satellites around a reference direction. Furthermore, this direction
slowly precesses because of the oblateness of Saturn.

The Saturnian System also includes some other small satellites, associa-
ted with numerous mutual phenomena. However, they are not the focus of
this thesis. In our work, we paid all our attention to the dynamics of the 8
major satellites.

1.1 Context and aims

It is convenient to download ephemerides from the on line service of IMCCE
[1] or Horizons of JPL [2]. Such kind of ephemeris, based on the recent
observations, has very good precision. For example, the precision of NOE
(Numerical Orbits and Ephemerides) from IMCCE (Lainey.V et al. 2004a
[3] and Lainey.V et al. 2004b [4]) of the 5 major satellites in the Saturn
system is about 10km during 1990-2017. The situation of Titan, Hyperion
and Iapetus, is a bit different. Their precision is about 100km. Hyperion
and Iapetus are influenced by the lack of observations from Cassini and the
difficulty to determine the mass center of the object. For Titan, we can not
reach a precision as good as for the others, since there is no observation data
from Cassini, and the flyby data of Radio-Science [5] has not been used in
the calculations.

Meanwhile, there is another sort of ephemeris, the analytical theories of
motion, like TASS (Theorie Analytique des Satellites de Saturne) (Vienne.A
and Duriez.L 1995 [6]). We made use of TASS version 1.7 in our calculations,
for the positions and velocities of the satellites Rhea, Titan, and Iapetus
referred to the center of Saturn of the mean ecliptic and mean equinox
at J2000.0 epoch (with a precision of 100km over the recent 100 years).
Based on an analytical description of the system and a numerical integration
method, TASS shows the details of the system motion in a representation
using the proper frequencies. It has benefited us to study the influences
between the different satellites in the Saturn system. However, TASS also
has its shortcoming. It is not as good as NOE and JPL in precision.

In our work, we propose to find a method with both advantages: a good
precision and a representation with the proper frequencies. Such method
will be tremendous usefulness, for example, in the study of the rotation of
Titan and other satellites.

In these studies of the rotation, great attention is given in the represen-
tation of the true longitude. Table 1.1 comes from a study of the librational
response of a deformed 3-layer Titan perturbed by non-Keplerian orbit and
atmospheric couplings. (Richard.A et al., 2014 [7]). Since it is the result of
Andy Richard, we keep the original expressions even if it has different units,
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Table 1.1: Representation of the difference between the true longitude and
the true anomaly of Titan from Richard.A (Richard.A et al. 2014 [7]). We
keep the notation of the original publication even though the identification
does not use the proper arguments.

Freq. Periods Magnitude Phase Identification
rad/day days ′′ degree

0.394018 15.9464 11899.3237 163.3693 λ6 −$6

0.788036 7.9732 212.5868 -32.7941 2λ6 − 2$6

0.394081 15.9439 56.6941 -68.1211 λ6 − 2$8 + 2Ω6

0.001169 5376.6331 43.7313 -66.0428 2λs
0.00584 10750.3648 37.5508 138.4821 λs
0.392897 15.9919 31.5673 10.8789 λ6 + Ω6 − λs
0.001753 3583.9304 5.6147 250.1412 3λs
0.009810 640.4892 1.4983 -77.2905 -

marks and abbreviations of physical quantities. Furthermore the identifica-
tion does not use the proper argumentsI.

In this Table, the notations for the fundamental frequencies ω∗j are :

Ω longitude of the ascending node

$ longitude of the perihelion

λ mean longitude

The subscript 6 is for Titan and s means the Sun (motion around Sa-
turn). The Table has to be read as :

ν −M − φ0 =

n∑
i=1

Aisin(ωit+ φi) (1.1.1)

where ωi, Ai and φi are respectively the first, the third and the fourth
column.

The last column gives the identification of the frequency ωi as an integer
combination of the m fundamental frequencies ω∗j of the system.

ωi =
m∑
j=1

ki,jω
∗
j (1.1.2)

Table 1.1 describes the simple representation of the difference between
the true longitude ν6 and the mean anomaly M6 of Titan in JPL ephemeris,
in which φ0 is the initial value of the satellite rotation angle measured from
the line of the ascending node, Ai is the magnitude of every component,
ki is a constant parameter in the combination, ωi is the frequency of every
component, and φi is its phase.

ISee Chapter 3 for a correct definition of the fundamental frequencies
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In Table 1.1, the influence of the mean longitude of the Sun is obviously
found as LS , 2LS , 3LS , which come from the true longitude of Titan ν6,
instead of the components of the mean anomaly M . Therefore, it is not
the best method to study the rotation by the difference between the true
longitude and the mean anomaly. In contrast to the expression above, we
will see in Table 3.1 a representation of the difference between the true
longitude and the mean longitude. The advantage of our representation is
to reduce the major influences outside the Saturn system and to remove the
most obvious terms with large amplitudes.

Meanwhile, in Table 1.1, there are some incorrect identifications, such
as the one of the frequency value 0.394081 rad/day, which is identified as
L6−2$8 +2Ω6. It is unfitted to the D’Alembert ruleII. The reason for such
problem, may not be a real mistake, but is probably the omission of some
long-period proper frequencies. Besides, we can only find 5 other different
frequencies in their result. However, it is still too far away from what we
should obtain in our research. The problem of the above result comes from
the limited time span (400 years) of JPL ephemeris used. It is impossible to
get more details of the representation in such a short time span. Note also
that R.M. Baland and collaborators ( R.M.Baland et al. 2014 [8]) mentioned
the need for a formula for the mean longitude of Titan for their study of its
rotation.

1.2 Notations

In my thesis, a, e, i, Ω, $ and λ are marked as the classical elliptical oscu-
lating elements. They are referred to the center of Saturn. The horizontal
plane is the equatorial plane of Saturn. The origin on this plane corresponds
to the node with the mean ecliptic J2000.

We also note n the osculating mean motion :

a semi-major axis

e eccentricity

i inclination

Ω longitude of the ascending node

$ longitude of perihelion

λ mean longitude

n mean motion

It is also convenient to use p, q, z and ζ :

IITo fit the D’Alembert rule, we have to consider some elements of the Sun, which lead
to a high degree in eccentricity and inclination.



1.2. NOTATIONS 13

a = A(1 + p)−2/3 ⇐⇒ n = N(1 + p)

λ =

∫
ndt+ ε = Nt−

√
−1q

z = e exp
√
−1$

ζ = sin
i

2
exp
√
−1Ω (1.2.1)

where N is the mean mean motion in such way that q has no linear part
in time (and only a quasi-periodic part).

The variable p is real, q is purely imaginary, z and ζ are complex and
their conjugates are noted as z and ζ. A is deduced from N by the third
law of Kepler: N2A3 = n2a3 = GMs(1 + m), where G is the constant of
gravitation, MS is the mass of Saturn, and m is the mass of the considered
satellite.

Each satellite is distinguished by a subscript increasing with the distance
to Saturn (from 1 for Mimas to 8 for Iapetus). We take s for the Sun, and S
in capital letter for Saturn. For example, λ6 is the mean longitude of Titan
and Ω8 is the longitude of the ascending node of Iapetus. In addition we
have:

M mean anomaly

ν true anomaly

r = λ−N × t− λ0

s the Sun

S Saturn

J Jupiter

Here, we also give several parameters of the Saturn system which are
used in our calculations (both in JPL and TASS). We have:

a5 = 527068 km semi-major axis of Rhea

a6 = 1221870 km semi-major axis of Titan

a8 = 3560820 km semi-major axis of Iapetus

e6 = 0.0288 eccentricity of Titan

e8 = 0.0293 eccentricity of Iapetus

i6 = 0.306 degree inclination of Titan

i8 = 8.298 degree inclination of Iapetus

At last, very often in the manuscript, angles are referred in the ring
plane. They are defined as:

Ωa = 169.5291◦

ia = 28.0512◦
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1.3 The manuscript

The numerical integration ephemerides have very good precision fitting on
the recent observations. Meanwhile, the analytical ephemerides, like TASS,
describe the system motion in detail by a representation using the proper
frequencies. We envision to make a connection between these two different
kinds of ephemerides, then it will benefit us to study the rotation of the
natural satellites with a high precision ephemeris and to have system cha-
racteristics like the proper frequencies. For this aim, we have to avoid the
shortcoming of the limited interval of ephemeris of JPL.

First, we introduce the system characteristics of the theoretical epheme-
ris and the numerical ephemeris in Chapter 2. We have an understanding of
these two sorts of ephemerides. For JPL, which is a numerical integration
ephemeris fitted on the observations, the equations of motion can achieve
such accurate description of the motion with all the known perturbations so
that it has a very good precision in a limited period (1,000 years).

On the other hand, the analytic models make it possible to understand
the details of the dynamics of the system, by explicitly taking the pertur-
bations into account. In the case of the orbital motion, we can develop the
perturbing function according to the osculating elements, in order to make
use of the Lagrange equations or their equivalents in Hamiltonian form.
Depending on the expansion of the osculating elements (list of amplitu-
des, frequencies, phases, etc.), the theoretical ephemeris is compatible with
precision requirements. However, complex physical systems always seek to
simplify the problem for an explicit solution that is more difficult to handle.
Likewise, it can not have the same precision as the numerical integration
method. We give a detailed explanation of both ephemerides in Chapter 2.

In Chapter 3, we discuss the frequencies and the synthetic representation
of a motion. We need to explain the integrable Hamiltonian systems as the
background of our work. Most of the equations in celestial mechanics can
be written in Hamiltonian forms which only depend on the initial value
of their coordinates and momenta. Hence, we can describe a Hamiltonian
system based only on their initial conditions and its action-angle variables,
whose the first derivatives of time are the proper frequencies. Moreover,
from the research of J.Laskar, we can make an analysis of an approaching
motion to get the proper frequencies of a more complicated system, like
the Saturnian System. Our work is able to obtain the proper frequencies
from a numerical ephemeris. Additionally, we talk about the principle of
the method noted Frequency Analysis (or FA) which is used to discriminate
the proper frequencies in our work.

Based on this understanding of the ephemerides and the proper frequen-
cies, we can make a full comparison between JPL and TASS in Chapter 4.
We take the ephemeris of Titan as an example. We compare their osculating
elements, their velocities, and instantaneous positions to get a more intui-
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tive understanding of the resemblances and the differences between them.
In this part, we make also a calculation of the mean mean motion of Titan
with each ephemeris in different time span. For TASS, their mean mean
motion and phase can be obtained over 10,000 years and over 1,000 years.
For JPL, we only have the mean mean motion and phase over 1,000 years.
So we can give a preliminary conclusion that the short time span makes
no influence on the mean mean motion. However, it influences their phase.
Then, we have to make a choice, not only for TASS, but also for JPL. In
our following work, we take the phase from 10,000-year TASS ephemeris for
the following use (JPL and TASS over 1,000 years).

Chapter 5 specifically describes our method to get the proper frequen-
cies and to get the representation by a least squares method with a limited
interval. Moreover, we make an experiment on the ascending node of Iape-
tus, which has a period of more than 3,000 years so that it can not finish a
first cycle after 1,000 years (time span for JPL). We get a rough amplitude
and phase by using all the proper frequencies of TASS and the ephemeris of
JPL. In this way, we prove that it is possible to obtain the proper frequency
of the long-period motion, which is much longer than the time span of the
JPL ephemeris.

In Chapter 6, we take the representation of the mean longitude of Ti-
tan of TASS over 10,000 years as a template. We experiment to obtain the
proper frequencies involved in the mean longitude of Titan with 1,000 years
TASS ephemeris by a frequency analysis. With these two series of proper
frequencies, we are aware about the effects of a limited interval ephemeris
on the proper frequency. Moreover, according to the accuracy of such pro-
per frequency, we can make a choice of the values used in the least squares
method to seek the representation of the mean longitude of Titan, and then,
to verify the effectiveness and exactness of the least squares method in re-
building the representation. Finally and most importantly, we obtained the
representation of Titan with 1,000 years TASS ephemeris.

It is shown in Chapter 7, that we can repeat all our previous work
with JPL ephemeris. We obtain the proper frequencies of JPL along with
the representation of the mean longitude of Titan with 1,000 years JPL
ephemeris. It is then possible to give the final table of the mean longitude
of Titan with JPL ephemeris. We discuss the residuals and the precision
of our representation. Once this method is completed and proven effective
for Titan and other satellites of Saturn, it will be easy to apply it to other
planetary systems.

In Chapter 8, I present a collaborative work with my colleagues in China
during the preparation of my thesis. It concerns the digitalization of the old
plates and new observations reduction using the GAIA catalog.
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Chapter 2

Ephemeris

Often presented as a miniature planetary system, natural satellites systems
present an important difference, the close relationship by the scale times of
there evolution. Tidal perturbation is proved as the major mechanism in
their longtime evolution, which makes the study of natural satellites systems
privileged to better understand the exoplanetary systems. To characterize
the best orbit, it is necessary to consider the mass and form in the calcu-
lations. This kind of system usually involves resonances in mean motion.
Hence, the following researcher is required to develop analytic theory specific
to the various system, to take into account the diverse orbital resonances.

Today, the numerical methods allow us to study all these systems with
the same tool, thus enabling an exhaustive approach more efficient and ra-
pid. The integration of the equation of motion is the main difficulty in the
expansion of planetary satellites. Even if the recent gravitational fields of
the giant planets are given with a high precision, it still remains a lack of
understanding in temporal variation. Meanwhile, the presence of chaos, in
some satellites, which are near to their planets, needs technique adaptations
to predict their positions with a minimum of confidence.

In order to deal with these difficulties, on the borderline of our current
physical knowledges, the development of a precise ephemeris of the natural
satellites in the solar system needs a considerable upstream research works.
These works benefit from the adapted numerical integration methods and
the most diverse observations, from the ancient observations which were
made at the end of 19th century, to the space observations. They were
obtained by the most recent space probes such as Cassini and Mars Express.

In this chapter, we first present the numerical ephemerides (JPL and
NOE) and then in the next sections, the analytic model (TASS)in an arti-
culated way. We emphasize the form of the representation of TASS because
our aim is to write the numerical ephemeris in a similar form.
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18 CHAPTER 2. EPHEMERIS

2.1 The different kinds of ephemerides

2.1.1 Numerical integrations

We are very interested in a highly precise ephemeris; so its users can plan
their observations, or the spacecraft flyby. A numerical integration of the
equation of motion could achieve such an accurate description of the motion
with all the known perturbations. On the other hand, the prediction of ep-
hemeris could not keep its precision very long. For example, it can barely
last any longer than a few hundred years. The loss of precision is due to
the uncertainty in the initial conditions, the incompleteness of the model
and the accumulation error from the numerical integration, which does not
keep the system properties. The numerical integration also could be used in
describing the general motion over a huge time scale, from a few thousand
to billion years, only considering secular phenomena. In both situations,
we could obtain the evolution of the system over time, without any infor-
mation neither on the influence from different origins, nor on the dynamic
characteristics of the trajectories.

2.1.2 Analytical theories

An analytic model aims to understand the details of the dynamics of the
system, by explicitly taking into account the perturbations. In case of the
orbital motion, we can develop the perturbing function according to the
osculating elements, in order to use the Lagrange equations or their equi-
valent in Hamiltonian form. There are different methods to solve these
equations: successive approximations, Lie series, and so on. Concretely, we
obtain an expansion of the osculating elements in trigonometric series, that
means an analytic expression depending on time for the evolution of the
system (list of amplitudes, frequencies and phases). Such expansion leads
to a large quantity of terms (a priori infinite), which inevitably leads to
a truncation at a certain level of amplitude or frequency compatible with
the required precision. In addition, in order to obtain an explicit solution,
theoretical studies always want to simplify the complex physical systems.
Therefore, the analytic theories, which are considered to be more complica-
ted, are difficult to handle and need more work to achieve a same precision
as the numerical integration method. In other words, it informs directly
on the mechanisms of the dynamics, and then, it has a much wider scope:
overall evolution well described over a very long time scales, preservation of
the properties of the system, methods useful for other similar systems, etc
...
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2.1.3 Synthetic representations

A compromise exists for both methods above: it is possible to rewrite the
numerical integration solution into the form of an analytics one. In fact, if
the system is integrable, there are action-angle variables, in which the dyna-
mics should become very simple, and these coordinates can be obtained from
a frequency analysis (Laskar.J 1993 [9]). Thus, the frequency analysis of the
”true” solution gives the amplitudes and frequencies in a numerical series
equivalent to the analytical expansions. Therefore, the different perturba-
tions can be identified (integer combinations of proper frequencies), and
the obtained series are suitable for providing ephemeris. A more detailed
discussion will be given in Chapter 3.

2.2 Numerical ephemerides

2.2.1 Generalities (Lainey et al. 2014)

Numerical methods are used to produce the ephemerides of natural satellites.
They are very similar to those used in space geodesy for the artificial satel-
lites and space probes. First, they are appropriate to make an exhaustive
assessment (within the bound of our knowledge) of the dynamic perturba-
tions, which disturb the motion of the satellites, for the given precision of
observations (Lainey.V et al. 2004a [3] and Lainey.V et al. 2004b [4]).

It is essential to have a safety margin, which is more than one order of
magnitude (ideally two), between the precision of the observations and the
post-adjustment influence of the perturbations. Indeed, most of the pertur-
bations only provide a secular deviation on the angular variables, which is
easy to absorb with a minimal modification of the initial conditions.

The model is different from one system to another, but in general, the
perturbations mentioned below should be considered

i) the N-body mutual perturbations; ii) the extended gravitational field
of the planet, and satellites (when it is known); iii) the precession and the
nutation of the central body; iv) the tidal effects between the planet and
satellites; v) the post-Newtonian relativistic corrections.

Once the modeling is defined, the first step is to consider the equations
for each body. If they are expressed in planetocentric coordinates, it is
necessary to add the indirect perturbations from all the planets.

So we have

d2ri
dt2

=
Fi(..., rj , ...,vj , ...,p)

mi
(2.2.1)

where, mi is the mass of the satellite i, rj , vj are the position and velocity
vectors of the same satellite, and p is a set of physical parameters associated
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with the selected model (masses, spherical harmonic coefficients Cnp, Snp,
tidal parameters, etc.). Usually, the integration of 3N ordinary second order
differential equations of this system is easy to do. The initial conditions of
the equation are usually taken from an earlier ephemeris. When unavailable,
a simplified model is used for the first approach, with some constraints on
inclinations and eccentricities.

If the observations are obtained, it is necessary to compare the predicted
positions with the ones on the celestial sphere. The Cartesian coordinates
resulting from the numerical integration must be transformed into the coor-
dinates of the observations. Sometimes it can be a function, in addition
to state vectors, which brings additional parameters p′, when the variables
change. Let us note g as a particular observation, p′ are close to the exact
physical values. The difference between observing and calculating a position
may be the first term of a Taylor expansion. In particular, when we limit
at the first order, it comes

g(roi ,v
o
i ,p
′o)−g(rci ,v

c
i ,p
′c) '

6N+p+p′∑
l=1

(
∂g

∂rci
· ∂rci
∂cl

+
∂g

∂vci
· ∂vci
∂cl

+
∂g

∂p′c
· ∂p′c

∂cl

)
∆cl

(2.2.2)
where o and c refer to the quantities of observations and calculation,

respectively, cl represents the adjusted physical quantities. It is clear that
we have to consider as many linear equations as there are observations. The
linear system obtained can be reversed by the least squares method, or one
of its variants. In particular, the weight of each observation, the choice of
adjusted physical parameters, and the way to adjust them (only once, or on
every step) depends on the author of these ephemerides.

In the previous equation, the partial derivatives of the state vectors in
function of the initial conditions and parameters are assumed to be known.
There are several methods for using them. However, the most popular one is
the integration of the variational equations (Peters.CF 1981 [10]). Starting
from the equation (2.2.1), assuming that cl is independent on time, we obtain
after partial derivation

d2

dt2

(
∂ri
∂cl

)
=

1

mi

N∑
j=1

[
∂Fi

∂rj
· ∂rj
∂cl

+
∂Fi

∂vj
· d
dt

(
∂rj
∂cl

)]
+
∂Fi

∂cl
(2.2.3)

where, the last term represents the explicit derivative of the force related
to cl. The numerical integration of variational equations reveals that it is
more complicated than the ones from the equations of motion, and usually
involving the integration of thousands ordinary differential equations toget-
her. In fact, the system (2.2.3) needs to be integrated simultaneously with
the equation system (2.2.1).
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Let us remind that the validity of the equation (2.2.2) implicitly assumes
that the model is perfect and that the observations follow the Gaussian law.

2.2.2 Ephemeris from JPL and NOE

Online Ephemeris System of JPL

The Jet Propulsion Laboratory Horizons Onine Ephemeris System (Gior-
gini.JD et al. 1996 [11]) provides access to key solar system data and flexible
production of highly accurate ephemeris for solar system objects [2]. This
includes 715,000+ asteroids, 3,420 comets, 178 natural satellites, all planets,
the Sun, 99 spacecraft, and several dynamical points such as Earth-Sun L1
to L5 equilibriums, and system barycenters. The users may also define their
own objects, then use the system to integrate the trajectory, or conduct pa-
rameter searches of the comet/asteroid database, searching on combinations
up to 42 different parameters. Body rise, transit, and set may be identified
to the nearest minute, along with eclipse circumstances for non-Earth natu-
ral satellites. Close-approaches by asteroids and comets to planetary bodies
(and sixteen of the largest asteroids) can be rapidly identified, along with
the encounter uncertainties and impact probabilities with the close-approach
table output. Orbit uncertainties can be computed for asteroids and comets.

More than 100 different observational and physical aspects of quantities
can be requested at intervals for both topocentric and geocentric situations
in one of 9 coordinate systems and 4 time scales (TDB, TT, UT, Civil). Since
1900, predefined Earth station locations are available, along with several si-
tes on other major bodies, in addition to being able to use spacecraft as
“observer sites”. The users may search for or define topocentric site coordi-
nates on any planet or natural satellite with a known rotational model if the
desired site is not predefined. The output is suitable for observers, mission
planners, and other researchers, although such determination is ultimately
the user’s responsibility.

The JPL DE-431/LE-431 solar system solution is the basis of planetary
barycentre motion data over the interval from 13201 B.C. to A.D. 17191;
The site currently makes available only the sub-interval from 9999 BC to
A.D. 9999. The Chebyshev polynomial representation of DE-431 permits
rapid recovery of the barycenter’s original integrator state to the sub-meter
level. All planet barycenter, Sun, Moon, Mercury, Venus and Earth are
available over a 9999 B.C. to A.D. 9999 interval. Natural satellites and
planet-centres are available over various shorter intervals, as warranted by
their observational data arc, but generally hundreds of years. For Saturn,
the satellites are known over a maximum interval of A.D. 1600 to A.D.
2500. JPL ephemeris in case of Saturn satellites has several informations in
following:

• Types of output: Osculating orbital elements table
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• Reference frame: J2000 (ICRF/J2000)

• Coordinate system: Ecliptic and mean equinox of frame Epoch (J2000.0)
.

• Output quantities:
- JDTDB Epoch Julian Date, Barycentric Dynamical Time

- EC Eccentricity

- QR Periapsis distance

- IN Inclination w.r.t. xy-plane (degrees)

- OM Longitude of Ascending Node (degrees)

- W Argument of Perifocus (degrees)

- Tp Periapsis time (user specifies absolute or relative date)

- N Mean motion (degrees/DU)

- MA Mean anomaly (degrees)

- TA True anomaly (degrees)

- A Semi-major axis

- AD Apoapsis distances

- PER Orbital Period

- Satellite Physical Properties of Titan:

- Mean Radius (km) = 2575.5 +−2.0

- Density (g/cm3) = 1.880 +−0.004

- Mass (1022 g) = 13455.3

- Geometric Albedo = 0.2

- GM (km3/s2) = 8978.13 +−0.06

- 1 AU= 149597870.700 km

- Satellite Orbital Data of Titan:

- Semi-major axis, a (km)= 1221.87 (103)

- Orbital period = 15.945421d

- Eccentricity, e = 0.0288

- Inclination, i (deg) = 0.28

- Center radii : 60268.0× 60268.0× 54364.0 km

Equator, meridian, pole

- System GM: 8.4596169226007571× 108au3/d2
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NOE program

NOE is a software built by Lainey et al. (Lainey.V et al. 2004a [3] and
Lainey.V et al. 2004b [4]) and stated for Numerical Orbit and Ephemeris.
At the beginning, it is an ephemeris for the Jupiter satellites, hereafter it
describes the ephemeris of natural satellites in solar system, enable to use
the sophisticated model. NOE not only has the post-newtonian terms, but
also has the energy dissipation influence caused by tidal effect.

The time unit is in century referred to J2000.0 epoch.
NOE in case of Saturn satellites has several characteristics in following:

• Non-sphericity perturbation of Saturn (coefficients J2, J6, and J6 ).

• The mutual perturbations among the 8 major satellites.

• Non-sphericity perturbation of satellites (J2, C22, without Hyperion).

• General relativity (by PPN terms).

• Perturbations directly coming from the Sun and Jupiter, supposed
punctual because of their large distance (ephemeris DE431)

• The mass of inner planets and the Moon, adding their mass to that of
the Sun.

• The precession of rotation axis of Saturn is designed as{
α = −0◦035384885118 t+ 40◦581720073562

δ = −0◦003738481472 t+ 83◦537621060881
(2.2.4)

2.3 The ephemeris TASS

2.3.1 The theory

TASS (Vienne.A et al. 1995 [6]) was published in 1991 as ”Theorie Ana-
lytique des Satellites de Saturne” (TASS), presenting positions, velocities
and elements of the satellites Mimas, Enceladus, Tethys, Dione, Rhea, Ti-
tan, Hyperion and Iapetus. It was designed in form of series expansions
of the potential perturbations, including 62 coefficients such as masses and
oblateness, initial conditions.

In TASS, all the motions are referred to the center of Saturn and to the
mean ecliptic and mean equinox for J2000.0 epoch, and the initial point is
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on the direction of ascending node of the orbital plan and mean ecliptic for
J2000.0. TASS uses the variables p, q, z, ζ introduced by Duriez.L ( Duriez.L
1979 [12]) and Laskar.J (Laskar.J 1985 [13]). Those variables represent the
discrepancies between the real motion and the uniform circular motion, for
which the mean motion N can be observed (called mean mean motion).

The theory takes into account the main characteristics of the Saturnian
satellites:

• Non-spherical perturbation of Saturn. Major influence of oblateness,
including J2, J4 and J6, mainly in the four inner-satellites.

• The mutual perturbations among the satellites amplified by several
resonances

- Resonance 2:4 between Mimas and Tethys

- Resonance 1:2 between Enceladus and Dione

- Resonance 3:4 between Titan and Hyperion

- Great inequality 1:5 between Titan and Jupiter.

• Perturbations coming directly from the Sun, mainly in the four outer-
satellites.

• The mutual perturbations among the satellites, with a special treat-
ment of the resonances and the great inequality 1:5 between Titan and
Iapetus.

• Without precession of rotation axis rotation of Saturn.

So the dynamic problem is a planetary type problem for the mutual
interactions of each satellite, and almost of lunar type, for the part from the
Sun and the shape of Saturn. Furthermore, there are 3 resonances among
6 Saturnian satellites. The model was constructed in a completely analy-
tic way with respect to the physical parameters (masses of the satellites,
oblateness parameters of Saturn, J2, J4 and J6), and all the constants in
integration, to maintain an internal precision in a few kilometers throughout
the calculations.

The result is called TASS (Théorie Analytique des Satellites de Saturne),
with accuracy of a few kilometers for the Mimas, Enceladus, Tethys, Dione,
Rhea and Titan, and about two hundred kilometers for Hyperion and Iape-
tus.

The realization of TASS has been made with the following operations:
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1. Analytic separation between critical or long term terms (such as se-
cular, resonant and solar terms) and short-term terms on the other
hand. Each variable x is shared in x0 + ∆x , where x0 is the general
solution of the critical system, and ∆x is the explicit solution of the
short-period system.

2. Analytic construction of critical system at order 2 of the masses and
order 3 of J2 (with truncation eliminated terms which, evaluated nu-
merically, no more than 1 km over 100 years).

3. Analytic integration of short period terms, constructed up to 2-order
of mass and 3-order of J2 (with truncation eliminated in all the terms
with an amplitude in 100 meters). The obtained solution of short-
period is an explicit function of the critical system solution.

4. Numerical integration of the critical system, with a step of 4 days in
1200 years for Mimas, Enceladus, Tethys and Dione, a step of 100
days in 9400 years for Rhea, Titan, and Iapetus. Integration times are
chosen much longer to easily identify the intrinsic frequencies of the
critical system (commonly called ’proper frequency’) by a frequency
analysis. The initial conditions at J1980 are gotten from Dourneau’s
theory. And the motion of the Sun follows the JASON solution of
Simon and Bretagnon ( Simon &Bretagnon 1984[14]).

5. Frequency analysis of the time series, from this numerical integration,
based on Laskar method( Laskar.J 1993 [9]), supplemented by the
adjustment (by the least squares method) of the terms obtained.

6. Identification of the frequencies in a form of an integer combination
of the fundamental frequencies. It allows to present the results of the
numerical integration in the form of finite series with periodic terms
of long period.

7. The variation of the initial conditions of the numerical integration,
around the nominal value. In the series (amplitude and argument), the
terms are linear with respect to these initial conditions, the masses of
Saturn and its satellites, and the oblateness coefficients of the planet.

8. Transfert of the long-term solution in the analytic expressions obtained
for short-period terms.

2.3.2 Representation of TASS

The solution presented here is referred as TASS1.6. It does not contain
Hyperion which has been developed separately (in TASS1.7). This satellite
is not used in this work.
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The Tables presented in [6] give the solution of the elliptic elements p, λ,
z and ζ of the satellites obtained after a fit over one century of observations.

Each solution is presented as a series of periodic terms (in sine for λ, in
cosine for p, and complex exponential for z and ζ). In [6] only terms greater
than 20 km are given (the complete series grows up to include terms greater
than 1 km). The series are given with the long period terms in first place,
followed by the short period terms (for example we have z1 = z01 +∆z1 with
z01 and ∆z1 for long period and short period terms respectively). The time t
is expressed in Julian years from J1980 (t = (Julian date−2444240)/365.25).
In most cases, the argument of each term has been identified as an integer
combination of fundamental arguments. The notations used for these fun-
damental arguments are:

• λoi i = 1, 8 the long period part of λi. We have λoi = Ni×t+λ(0)
oi +δλi,

the linear part is given in the title of the corresponding table.

• ρ1 = λo1 − 2λo3 (resonance Mimas-Tethys)

• ρ2 = λo2 − 2λo4 (resonance Enceladus-Dione)

• φ1, so that φ1 − ρ1 is close to the pericenter of Mimas.

• Φ1, so that Φ1 − ρ1 is close to the node of Mimas.

• ω2 is the libration argument of the resonance Enceladus-Dione. This
argument takes the place of φ2 corresponding to the proper pericenter
of Enceladus whose frequency is zero.

• Φ2, so that Φ2 − ρ2 is close to the node of Enceladus.

• φ3, so that φ3 − ρ1 is close to the pericenter of Tethys.

• ω1 is the libration argument of the resonance Mimas-Tethys. This
argument takes the place of Φ3 corresponding to the proper node of
Tethys which is linked to Φ1 by the resonance.

• φ4, so that φ4 − ρ2 is close to the pericenter of Dione.

• Φ4, so that Φ4 − ρ2 is close to the node of Dione.

• φi and Φi i = 5, 6 and 8 which are close to the pericenters and the
nodes respectively of Rhea, Titan and Iapetus.

• λ9, $9 and Ω9 are respectively the saturnicentric mean longitude, the
longitudes of the pericenter and of the node of the Sun.

• µ is fundamental argument of JASON84 (Simon & Bretagnon 1984
[14]).
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The argument µ is mainly present in the Iapetus’ solution. In the present
series µ indicates the indirect perturbations of the planets, mainly of Jupiter.
The only arguments surely detected are the great inequality −2λJ + 5λ9 (or
19µ), the synodic inequality λJ − λ9 (or 880µ) and the inequality λJ − 2λ9

(or 287µ).

The partial derivatives of the solution with respect to the initial condi-
tions and to physical parameters do not appear in the tables of [6] because
they are too voluminous. But they are present in the complete series of
TASS. If we note σ the amplitude, the phase or the frequency of any term
in the tables, we have in fact:

σ = σo +

61∑
k=1

(
∂σ

∂xk

)
o

δxk (2.3.1)

where σo is the nominal value and where xk is one of the following parame-
ters:

• {mi} i = 1, · · · , 6, 8 the masses of the satellites

• J2, J4 and J6 the oblateness coefficients of Saturn

• 6 initial conditions per satellite

• ia and Ωa the inclination and the node of the equatorial plane of Saturn
in the J2000 system

• MS is the mass of Saturn.

Then, note that the parameters are independent of each other: the dy-
namical consistency is the main characteristic of TASS.

2.4 Use of theses ephemerides

In research, it is convenient to download ephemerides from the on line service
of IMCCE, or Horizons of JPL. Such ephemerides, based on recent observa-
tions, have a very good precision. Meanwhile, the analytical theories, like
TASS, also well used in researching work. TASS shows the details of the sy-
stem motion in the combination of the proper frequencies. No doubt, TASS
is useful to study the influences between different satellites in the Saturn
system.

We take use of TASS version 1.6 in our calculation, for the positions and
velocities of the satellites Mimas, Enceladus, Tethys, Dione, Rhea, Titan and
Iapetus referred to the center of Saturn in mean ecliptic and mean equinox
for J2000.0 epoch (with the precision in 100km over the recent 100 years).
Based on the analytic development of equations, we have seen that TASS
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shows the details of the system motion in the combination of the proper
frequencies. However, TASS also has their shortcoming that in precision, it
is not as good as numerical ephemeris directly fitted to observations.

We suppose that it is possible to get a similar presentation as TASS with
a numerical integration ephemeris: with a series of proper frequencies, as
constant parameters to constitute the action-angle variables in the integrable
dynamics systems. Based on that, the combinations of proper frequencies,
should be considered to describe the perturbation relationship between the
different satellites in the Saturn system.

At last, in the manuscript, three ephemeris are continuously compared.
In order to reduce some sentences, we give them a short name. They are:

• TASS-t for the template of TASS. It corresponds to TASS concerning
the precision, but the representation uses the proper frequencies. Its
representation has been obtained with a frequency analysis of TASS
version 1.6 over 10, 000 years. See next chapter and the appendix.

• TASS-s for a shorter time span of TASS version 1.6, that is over 1, 000
years only. More precisely, when the value of a parameter is said co-
ming from TASS-s, it means that this value comes from computations
using TASS over 1, 000 years. TASS-s is mainly used in Chapter 6 in
order to test our method.

• JPL. It is available over 1, 000 years. To obtain its representation in
the same form as TASS-t is the aim of our work.



Chapter 3

Frequencies and synthetic
representation of motion

In the modern celestial mechanics, the dynamical systems should be defined
as a quasi-integrable Hamilton system. Hence, most of the equations in ce-
lestial mechanics should be written in a Hamiltonian form. In a conservative
system, the Hamiltonian is a constant, depending on the initial value of the
coordinates and momenta of motion. Moreover, changing the coordinates
and momenta of a Hamiltonian system will only change the form of the
Hamiltonian, but will not alter the motion equations.

The work of Laskar.J in 1992 mentions that a dynamical system can
be described by its frequencies (Laskar.J et al. 1992 [15]). The proper
frequencies are the first derivatives of the action-angle variables of the sy-
stem. In fact, we could not find exactly the real action-angle variables of the
Saturnian system. However, it is possible to approach of the action-angle
variables.

For these approaching variables, the motions are still on a torus, but
the projection on each variable is no longer a circular motion. It means
that in any set of action-angle variables, the angles are 2π-periodic and the
coordinates can be described in a multi Fourier series (similar as the one
of the 2-body problem). We can get the proper frequencies by analyzing
the approached variables. The frequency analysis is a method for studying
the stability of the orbits, based on a refined numerical search for a quasi-
periodic approximation of its solutions over a finite time interval (Laskar.J
1990 [16], 1993 [9]; Laskar.J et al. 1992 [15]).

The frequency analysis is implemented in C language (FA for short). It
obtains the frequency components of the orbital elements by starting with a
Fast Fourier Transform (FFT) and refining the search for the frequency by
a quadrature. Then the elements could be represented as the combinations
of the proper frequencies, in which all the combinations are following the
D’Alembert rule. This software is made by Saillenfest.M (Saillenfest.M 2014

29
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[17]). The description below comes mainly from this reference, with the main
idea coming from the papers of Laskar.J.

Reminder of notations

We remind the definition of variables p, q, z and ζ :

a = A(1 + p)−2/3 ⇐⇒ n = N(1 + p)

λ = Nt−
√
−1q

z = e exp
√
−1$

ζ = sin
i

2
exp
√
−1Ω (3.0.1)

where a, e, i,Ω, $ and λ are the classical elliptic elements, The reference
frame takes the Saturnicentric equatorial plane in which the origin corre-
sponds to the node with the mean ecliptic J2000.

n is the osculating mean motion and N is the mean mean motion, in such
a way that q has no linear component in time (q has only the quasi-periodic
parts).

3.1 Integrable system, quasi-periodics series and
proper frequencies

Considering an integrable Hamilton system with m degree of freedom based
on Hamiltonian H, if the system evolves within the hypothesis of the Arnold-
Liouville theorem, there exists some coordinates called action-angle (J, θ),
with which the description dynamics of the system is quite simple:

H(J, θ) = H0(J) =⇒

{
J(t) = J0

θ(t) = ω(J)t+ θ0

when (J, θ) ∈ Rm × Tm

(3.1.1)

The dynamics of the system can be described by the variable Jj exp iθj(t):
the motion takes place on a m dimension torus, around Jj , with the con-
stant angular velocities ωj . Unfortunately, we have no way to know the
possible coordinate modification of those variables : it is the difficulty of
analytical theories. However, the action-angle coordinates are intrinsic of
the system, in other words, it means that: Even if a system is written with
“bad” variables, it should still evolve with its proper frequencies ωj .

Let a function f(t) describing a mechanical system. For example, f(t)
may stand for one of the variables in equation (3.0.1). The previous proper-
ties allow us to write f(t) as a Fourier series of θ :
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f(t) =
∑
h∈Zm

ah exp ih·θ(t) with ah ∈ C (3.1.2)

By developing the scalar product h ·θ(t), we then obtain a series in form:

f(t) =
∑
k∈N

Ak exp iνkt with Ak ∈ C (3.1.3)

where the νj are integer combination of the proper frequencies ωj .

Suppose that we know the dynamics solution f(t) of the system, for
example, coming from the numerical integration of equations. The frequency
analysis, detailed in (3.1.3), allows us to determine the amplitude Ak and the
frequencies νk of the expansion of f(t). To finish, we only have to identify
the νk as the integer combinations in order to have the proper frequencies.
Note that if the system is degenerated, that is:

det
∂ω(J)

∂J
= det

∂2H0(J)

∂J2
6= 0 (3.1.4)

then, the application J → ω(J) is a diffeomorphism, and the system
is described equivalently by its proper frequencies or by its actions. The
dynamics of the system is therefore fully characterized.

The series (3.1.2), numerically determined, are also continuous analyti-
cal functions describing the evolution of the system: they can be used for
ephemeris or for other analytical studies, of the same system or some related
systems.

In the case of a disturbed integrable Hamiltonian H(J, θ) = H0(J) +
εH1(J, θ), the KAM theorem implies that, for a sufficiently small perturba-
tion, the system has an invariant torus traversed with a constant velocity
(Arnol’d.VI 2013 [18]). It stays integrable, and the decomposition in series
(3.1.3) is still valid. On the other hand, if the perturbation is too large,
the motion becomes chaotic and its Fourier series is only an approximation.
Actually, the frequencies obtained numerically are no longer constant (the
’proper’ frequencies does not exist anymore).

In the following, we assume that the system is integrable, or at least,
close to an integrable system.

3.2 The D’Alembert rule

If the analytical computations are well performed we should obtained a form
like (3.1.2).

We note R the perturbing potential from the Keplerian motion, the
Lagrange equations for our variables are:
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dp

dt
= −3

√
−1

(1 + p)4/3

NA2

∂R
∂q

dq

dt
=
√
−1 Np+

√
−1

(1 + p)1/3

NA2

[
3(1 + p)

∂R
∂p

+ φψ

(
z
∂R
∂z

+ z
∂R
∂z

)
+

1

2φ

(
ζ
∂R
∂ζ

+ ζ
∂R
∂ζ

)]
dz

dt
=
√
−1

(1 + p)1/3

NA2

[
2φ
∂R
∂z
− φψz∂R

∂q
+

z

2φ

(
ζ
∂R
∂ζ

+ ζ
∂R
∂ζ

)]
(3.2.1)

dζ

dt
=
√
−1

(1 + p)1/3

2φNA2

[
∂R
∂ζ
− ζ ∂R

∂q
+ ζ

(
−z ∂R

∂z
+ z

∂R
∂z

)]
where φ =

√
1− zz and ψ = 1/(1 + φ). Here we define i =

√
−1.

In order to develop and solve the equations (3.2.1), the functionR should
be expressed in osculating elements p, q, z, ζ. We expand them in trigono-
metric series. Duriez.L’s method (Duriez.L 1977 [19]) allows us to describe
such kind of series in form of simple polynomials with variables z and ζ for
all the bodies considered. In this formalism, R is simply expressed as a sum
of generic terms T, like:

T = c pgii p
gj
j z

ni
i z

nj

j ζ
νi
i ζ

νj
j z̄

n̄i
i z̄

n̄j

j ζ̄
ν̄i
i ζ̄

ν̄j
j e

√
−1(kiλi+kjλj) (3.2.2)

where c is the numerical coefficient depending on the relative integers
gi, gj , ni, nj , n̄i, n̄j , νi, νj , ν̄i, ν̄j , ki and kj , and computed for the values of
the semi-major axis Ai and Aj of the satellites i and j; in factor, it has the
mass mj .

The D’Alembert rule in analytical developments

The integers ki and kj from (3.2.2) define an inequality and verify the pro-
perty of D’Alembert; set:

CI = ki + kj

CM = n̄i − ni + ν̄i − νi + n̄j − nj + ν̄j − νj (3.2.3)

We have (Laskar.J 1985 [13]) :

CI = CM (3.2.4)

This property is carried to the Lagrange equation in almost the same
form. The generic term is also as (3.2.2), and we have:

CI = CM + δ(e) (3.2.5)
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with:

δ(e) = 0 if e means the equation relative to p or q (3.2.6)

δ(e) = 1 if e means the equation relative to z or ζ

For the J2, J4 or J6 terms, due to the oblateness of planet, the variables
with subscript j vanish in (3.2.2) and (3.2.3); c depends on the semi-major
axis of the satellite i and is proportional to J2, J4 or J6.

The D’Alembert property comes from the invariance by rotation of the
problem. Furthermore note that, because of the invariance by symmetry
with respect to the reference plane, ν̄i + νi + ν̄j + νj is even.

As an example, the D’Alembert rule mentions that the inequality λ2−2λ4

has in factor the eccentricity and the inclination in degree 1 or more. Si-
milarly as in the other planetary systems, in the Saturnian one, the eccen-
tricities and inclinations are small. The lower degree terms are the most
important. For the inequality λ2 − 2λ4 the terms of lowest degree only
concern the arguments.

λ2 − 2λ4 +$2 of z2 exp
√
−1 (λ2 − 2λ4)

and

λ2 − 2λ4 +$4 of z4 exp
√
−1 (λ2 − 2λ4)

For Enceladus and Dione, it is the argument λ2 − 2λ4 + $2 which is in
resonance.

For Mimas-Tethys, it is the argument 2λ1−4λ3+Ω1+Ω3, called resonance
2 : 4. For this inequality, the arguments (of the lower degree) are:

2λ1 − 4λ3 + 2$1 , z2
1

2λ1 − 4λ3 +$1 +$3 , z1z3

2λ1 − 4λ3 + 2$3 , z2
3

2λ1 − 4λ3 + 2Ω1 , ζ2
1

2λ1 − 4λ3 + Ω1 + Ω3 , ζ1ζ3

2λ1 − 4λ3 + 2Ω3 , ζ2
3

For this pair of satellites, only the fifth is really inside the resonance.
Thus, by the property of D’Alembert, the inequality provides immedia-

tely the minimum degree of eccentricity and inclination. The interest of the
D’Alembert rule is also to allow to neglect some inequalities: the terms for
which p + p′ are high are generally negligible. For example, the inequality
15λ− 40λ′ has terms with degree 25 in eccentricity and inclination.

Note that some frequencies come from the libration of the argument
concerned by the resonance. It is no need to take it into account in this
addition since the sum of those coefficients is zero (it is the case of the
angles ω1 and ω2 from the resonance Mimas-Tethys and Enceladus-Dione.)
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The D’Alembert rule in synthetical representations

In fact we observe a similar form of the D’Alembert rule in the synthetical
representation.

For the two body problem Saturn-satellite, the action-angle variables
are explicit. We can define a system with canonical coordinates (which
are looked like the modified Delaunay variables). The angles are simply
(λ,$,Ω), and the related actions are (a, e, i). The angles vary linearly with
time (λ with the frequency N , $ and Ω with a null frequency), while the
actions are constant.

Now, let us slightly disturb the two-body problem, the system remains
integrable: the action-angle variables still exist, but no longer defined in the
same way. However, they approach the previous variables (a, e and i, vary
“slowly”). We note the new proper angles as (λ∗, $∗,Ω∗).

If we suppose that the d’Alembert rule is transported to the solution
in the action-angle variables, then it can be written with the proper angles
(λ∗, $∗,Ω∗).

Some particularities in the arguments of TASS

In TASS, the analytic resolution of the equations (3.2.2) for each satellite is
performed to find the solution of this form :

f(t) = f0(t) + ε∆f(f0, t) (3.2.7)

where f(t) represents generically p, q, z or ζ. f0 describes the secular
evolution of the variables, ε∆f is the oscillatory motion with a small ampli-
tude (ε is a small parameter). Then, the Lagrange equations are expanded
in Taylor series around f0(t), and separated into the long-period terms and
the short-period terms. The integration of the short-period Lagrange equa-
tions is made analytically term by term (at the first order of the masses, i
and e are assumed constant): we get a solution ∆f(f0; t). Independently,
the secular part is obtained by frequency analyzing of numerical integration
and leads to the solution f0(t).

Concretely, TASS supplies the solutions f0(t) and ∆f(t) in form of tri-
gonometric series. However, the description is ambiguous: ∆f(t) depends
implicitly of f0(t). The complete solution f(t) should behave like a trigo-
nometric series of type (3.1.2), but the amplitudes and the frequencies are
not written explicitly. For example, here is the preliminary expansion of the
variable z of Enceladus which is given in TASS:

z2 = a1 exp i(−λo2+2λo4)+a2 exp i(−λo2)+a3 exp i(−λo2+2λo4+ω2)+· · ·
(3.2.8)

The amplitudes ak are explicitly given in TASS, but the components λo
have their own description:
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{
λo2 = λ∗2 + b1 exp i(ω2) + b2 exp i(−λ∗2 + 2λ∗4 − ω4) + · · ·
λo4 = λ∗2 + c1 exp i(ω2) + c2 exp i(−λ∗2 + 2λ∗4 − ω4) + · · ·

(3.2.9)

with ω2, λ∗2, λ∗4 and $∗4 the proper angles as explained and defined in
Chapter 1.

To solve this problem, we will perform a frequency analysis of the ephe-
meris TASS in order to make an explicit series as form (3.1.2). These can
then be compared with other ephemerides (JPL or NOE). The example of
such a series is given in the Appendix and named TASS-t. We mention that
the representation of TASS with a long time span has been already done by
Saillenfest.M [17] in 2014 for which we have extended the procedure.

3.3 FA: the frequency analysis

Our purpose is to reconstruct a numerically quasi-periodic function f(t),
from a series of points over the interval [0;T ]. Therefore it is necessary
to determine the different frequencies involved and the associated complex
amplitudes (Laskar.J 1992 [15]).

Consider a quasi-periodic function, in general form:

f(t) =

N∑
k=1

Ak ek(t) where Ak ∈ C and ek(t) ≡ exp (iνkt) (3.3.1)

The Fourier series of f(t) in [0, T ] define as:

f̂(t) =
+∞∑

n=−∞
〈f, vn〉vn(t) with vn(t) = exp (inν0t) , where ν0 =

2π

T

(3.3.2)
Every f̂(t) is the projection of f(t) on vector space generated by the

vectors vnn∈Z and provided with the scalar product :

〈f, g〉 =
1

T

∫ T

0
f(t)g(t)dx (3.3.3)

For this quadrature, we use Hardy’s method. We suppose that f(t) is
tabulated with a step small enough in order to neglect the numerical errors
and the aliasing. Note that if {νk}k=1,···N are not integer multiples of ν0,

then f̂(t) will be a very bad approximation of f(t), in which the frequencies
are obtained with the precision of ν0 only.

In fact, we can obtain a much better approximation of the frequencies
by studying the variations of the “amplitude function” defined by:
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Figure 3.1: Amplitude function in the case of a single sinusoidal term (Sail-
lenfest.M 2014 [17])
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Table 3.1: The difference between the true longitude ν∗6 and the mean lon-
gitude λ6 of Titan over 10,000 years

Frequency Period Identification
(rad/year) (rad/day) (day)

1 143.915114 0.394018 15.946 λ6 −$6

2 287.830228 0.788036 7.973 2λ6 − 2$6

3 143.932982 0.394067 15.944 λ6 +$6

4 143.506384 0.392899 15.992 λ6 +$6 − 2λS
5 143.917039 0.394023 15.946 λ6 −$6 − Ω8

6 143.913188 0.394012 15.947 λ6 −$6 + Ω8

7 143.922077 0.394037 15.946 λ6 +$8 + +2$6 + 2Ω6

8 431.745352 1.182054 5.315 3λ6 − 2$6 + Ω6

9 143.924045 0.394043 15.946 λ6 −$6 − Ω6

10 143.906183 0.393994 15.947 λ6 −$6 + Ω6

A(ν) = 〈f, exp (iνt)〉 (3.3.4)

If f(t) has only one term, we have :

|A(ν)| = |〈A1 exp (iνt), exp (iνt)〉| = |A1
sin[(ν1 − ν)T/2]

(ν1 − ν)T/2
| (3.3.5)

The maximum of this function is reached when ν is equal exactly to ν1,
and we have A(ν1) = A1 (Figure 3.1).

So to determine ν1, we have to find the maximum of the function |A(ν)|.
In practice, we first perform a FFT (Fast Fourier Transform) in order to situ-
ate approximatively this maximum. Then we use an interpolation algorithm
to find its precise value.

In a more realistic case where f(t) has several terms, a maximum is
associated to each frequency νk. But there is a distortion of the peaks
associated to the other terms which have not the same height, and not
exactly centered on the (νk). Fortunately, this effect is small for frequencies
well separated. We add a weight function to the scalar product to correct it
partially as shown in Figure (3.2).

The scalar product is then defined by

χ(t) = 1− cos (ν0t) (3.3.6)

〈f, g〉 =
1

T

∫ T

0
f(t)g(t)χ(t)dx (3.3.7)

For comparison with Table 1.1 of the introduction and as an example,
in Table 3.1 we give the difference between the true longitude ν6 and the
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Figure 3.2: Amplitude function in case of a single sinusoidal term, with
Hanning windows, (Saillenfest.M 2014 [17])
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mean longitude λ6 of Titan over 10,000 years. We remove the major mean
motion influence from the Sun, but keep the combination term, by using
the mean longitude in our calculation instead of the true anomaly. For
easier comparison between both results, we present the frequencies both in
rad/year and rad/day.

We have made the frequency analysis of the elements of Titan given by
TASS (over 10,000 years). They are given as a reference for the following
Appendix. This representation is named TASS-t (template of TASS). It
corresponds to TASS concerning the precision, but the representation uses
the proper frequencies.
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Chapter 4

Context and difficulties of
the realization

Before we start our calculations to obtain the representation of the mean
longitude of Titan in JPL ephemeris, it is necessary to make a complete
comparison with TASS ephemeris. It is the very beginning and important
base of our work. We have two main questions: what difference does exist
between both ephemerides, and where do these differences appear? We
should compare their orbital elements, positions, even though velocities. If
they have some differences, most of time, it is impossible to know what cause
them come from. However, we could get a preliminary understanding of our
future work.

On our purpose of making a comparison between TASS and JPL, it is
necessary to put both ephemerides into the same celestial frame reference.
In this chapter, without special mention, all orbital elements are in the sa-
turnicentric ring plane at J2000.0 epoch, fixed in J2000 ecliptic and equinox
system by (we recall the values given in Chapter 1):

Ωa = 169.5291◦

ia = 28.0512◦

Among the elements of the Saturnian satellites, we take the mean longi-
tude of Titan as an example. Not only it has a short period argument, like
the mean longitude of the Sun, its double, and its triple harmonics, but also
it includes some long-period arguments.

First, we make the comparison between two ephemerides in positions,
then in elements λ6, z6 and ζ6. We give more attention to the mean longitude
of Titan. We have to determine its mean mean motion N6 and the phase
λ0 (constant term in λ6.). It is easy to get the mean mean motion and λ0

together by a frequency analysis or to calculated them by the least squares
method as a reference. The 1,000 years time span used is long enough in
comparison with the period of Titan (16 days).

41
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For more details, we also can compare two r (by FA and LSM), which
are the residuals of r = λ6 − Nt − λ0. Each r has only periodic terms
Σn
i=1Aisin(ωit + φi). Our final aim is to determine them. In a numerical

ephemeris, the determination of λ0 is degraded by some long period terms
(up to 3000 years) in comparison to the 1,000 years time span. We will
describe the problem and give the solution.

4.1 Comparison in positions and elements between
TASS and JPL ephemerides

In this section, we make the comparison between two ephemerides of Titan
in their osculating Keplerian elements and their positions in 1,000 years
interval. Additionally, we focus on the time span over 200 years around
J2000.0 epoch, during which both ephemerides have their best precision.
For JPL, including the observations on Earth base and space, it shows its
best precision in several decades around J2000.0 epoch. In TASS, most of
the system parameters comes from the observations before 1980s. Then its
best precision is in several decades around the 1980.0 epoch.

4.1.1 Comparison in positions

First, we compare the positions of both ephemerides in the three axis x, y, z
in Cartesian coordinates. We take the Saturn ring plane as reference plane
with the J2000.0 epoch. We make the comparison of the instantaneous
distance l (from Saturn to the satellite) between both ephemerides, which is

equal to l =
√
x(t)2 + y(t)2 + z(t)2. Here, some necessary explanations are

given for the following figures:

1. The comparison is done over 1,000 years that is the time span from
1600-2600.

2. The horizontal axis is the time given in years. The origin signed as 0,
means J2000.0 epoch. For example, −20 on this axis means 1980.

3. The vertical axis is the difference in x, y, z and l between both ephe-
merides given in kilometers.

Figure 4.1 shows the difference in x-axis between JPL and TASS ephe-
merides in 1,000 years. Figure 4.2 is a partial enlargement of the Figure
4.1. The difference between both ephemerides in x-axis over 1,000 years is
about 3,000km, and about 500km in 200 years. In both figures, we can find
that between 1980-2000, JPL and TASS ephemerides have their minimal
differences.
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Figure 4.1: Difference of the positions in x-axis between JPL and TASS
ephemerides of Titan during 1,000 years, 1600-2600

Figure 4.2: Partial enlargement of the Figure 4.1 over 200 years, 1900-2100
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Figure 4.3: Difference of the positions in y-axis between JPL and TASS
ephemerides of Titan during 1,000 years, 1600-2600.

Figure 4.4: Partial enlargement of the Figure 4.3 over 200 years, 1900-2100
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Figures (4.3) and (4.4) express the difference between JPL and TASS for
the positions in y-axis of Cartesian coordinates in 1,000 years. Figure (4.4)
is a partial enlargement of the Figure (4.3). In these figures, we show the
same characters which have been found in both figures above, that is between
1980-2000, JPL and TASS ephemerides have their minimal differences.

Figure 4.5: Difference of the positions in z-axis between JPL and TASS
ephemerides of Titan over 1,000 years, 1600-2600.

Figure (4.5) shows the difference between JPL and TASS in 1,000 years,
for the positions in z-axis of Cartesian coordinates. By contrast with the
situations in x-axis and y-axis, the difference of z-axis increases slowly before
2000 (about 100-150 km), but varies quite rapidly after 2010.

We show in the Figure (4.6) the difference of the instantaneous distance
l (from Saturn to the satellite) in 1,000 years, from 1600 to 2600. When we
enlarge the Figure (4.6) partially in the Figure (4.7), it is shown that from
1950 to 2010, while we have various sets of observations, both ephemerides
keep the minimal differences into 100 km in distance.

It is clear that the positions of Titan in both ephemerides have some
differences. In recent 200 years (1900-2100), their differences keep stable
and increase rarely. We suppose that the same tendency should be found in
the comparison of the orbital elements.

4.1.2 Comparison in elements

In this section, we make the comparison of the orbital elements λ6, z6 and
ζ6 between JPL and TASS. The differences are given in kilometers by mul-
tiplying by the nominal value of the semi major axis of Titan. Additionally,
some necessary explanations are given for the following figures:

• The comparisons is made over 1,000 years that is the time span of
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Figure 4.6: Difference in instantaneous distance l between JPL and TASS
of Titan during 1,000 years, 1600-2600

Figure 4.7: Partial enlargement of Figure (4.6) over 200 years, 1900-2100
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JPL, from 1600-2600.

• The horizontal-axis is the time, with unit in years. The coordinate
origin signed as 0, means J2000.0 epoch. for example, −20 in this axis
means 1980.

• The vertical-axis is the difference between both ephemerides, with unit
in kilometers.

Figure (4.8) shows the difference between JPL and TASS for λ6 over
1,000 years. Figure (4.9) is a partial enlargement of Figure (4.8) around
J2000.0 epoch.

The mean longitude λ6 in both ephemerides depends on the observations
from both ground base and space. The scientists record the observations,
giving the positions in the Saturn system, for only 200 years.

In the figures, there is a big difference larger than 3000 km over 1,000
years. If we consider only a circular uniform motion, it is not a real difference
between the ephemerides. Our results of the corresponding mean mean
motion are expressed in Table 4.1. When we remove in the mean longitude
of the ephemerides the mean mean motions and the phases, they do not
show a large difference. A small difference in the mean mean motions,
accumulating again and again after every period, causes a huge disparity
between both mean longitudes over 1,000 years.

In fact, the difference of the mean longitude between both ephemerides,
is the discrepancy of both remaining parts, where we have removed N × t
and the phase λ0 from the mean longitude. It is the difference of the non-
linear part of the mean longitude, which is smaller than in Figure (4.8). In
the following section, we will focus on the mean mean motion N and the
phase λ0. It is important to make a choice of N and λ0 for TASS and JPL
with difference time spans.

Figure (4.10) shows the difference between JPL and TASS of z in 1,000
years. z is equal to e exp

√
−1$. The red curve is its real part e cos$, and

the blue curve is its imaginary part e sin$. The difference between both
ephemerides is about 200 km during 1,000 years.

Figure (4.11) shows the difference between JPL and TASS in 1,000 years,
for ζ, which is identified as ζ = sin i

2 exp
√
−1Ω. The red curve is its real

part sin i
2 cos Ω and the blue curve is its imaginary part, sin i

2 sin Ω. Figure
(4.12) is a partial enlargement of Figure (4.11) from 1900 to 2100.

It is clear in the partial enlargement of the figure that the difference in
ζ is about 60 kilometers over the recent 200 years. It is not a big difference
and it confirms the fact that both ephemerides are close during the period
where we have observations.
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Figure 4.8: Difference between JPL and TASS of the osculating element λ
of Titan over 1,000 years.

Figure 4.9: Partial enlargement of Figure (4.8) over 160 years, 1940-2100
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Figure 4.10: Difference between JPL and TASS ephemerides of Titan over
1,000 years, for the osculating element z ,1600-2600

Figure 4.11: Difference between JPL and TASS ephemerides of Titan over
1,000 years,1600-2600, in osculating element ζ



50 CHAPTER 4. CONTEXT AND DIFFICULTIES

Figure 4.12: Same as Figure (4.11) with enlargement over 200 years, 1900-
2100

4.2 The main slope in mean longitude : N and λ0

The mean longitude of Titan λ6 is a quasi periodic variable with a cycle of
about 16 days into [−π, π) (and [0, 2π) in JPL). The time interval in Figure
(4.13) is about 200 days. Here, we take 0.6 day for the time step.

Figure 4.13: Mean longitude λ of Titan in 200 days with TASS.

We need to add 2π to λ6 at the end of every loop to make λ6 linear
with time. Then we can get the mean mean motion of λ6 as a slope (Figure
4.14).

We calculate the mean mean motion with 1,000 years λ6 in TASS, which
is called NT1 for short. Similarly, NT10 is the mean mean motion of 10,000
years λ6 in TASS, and NJ1 signifies the mean mean motion with 1,000 years
λ6 in JPL.



4.2. THE MAIN SLOPE IN MEAN LONGITUDE : N AND λ0 51

In our calculations, we deal with the same data by two different met-
hods. The first one is the least squares method for which we suppose that
λ6 is linear in time: the mean mean motion N is the slope of the equa-
tion λ6 ≈ N × t+ λ0, and λ0 is a constant term that called the phase in
the frequency analysis. The other way is to consider (cosλ6, sinλ6) in the
frequency space. N and λ0 are the frequency and the phase of the biggest
component in the spectrum.

We show the results in Table 4.1. Here, we have the results from both
methods, in 1,000 and 10,000 years for TASS and in 1,000 years for JPL.
We take the following subscripts to separate values, J for JPL, T for TASS,
1 for 1,000 years and 10 for 10,000 years. Then NT10 means the mean
mean motion of TASS over 10,000 years. In the same way, we take FA for
Frequency Analysis, and LSM for Least Squares Method. Note that the line
from FA over 1,000 years is noted “TASS-s” but we will see in Sect.4.4 that
we have to adopt λT10 for TASS-s (and then for JPL).

Table 4.1: The frequency of the mean mean motion N and phase λ0 of TASS
and JPL for different intervals.

Span ID Frequency ID λ0 Method
(year) (rad/year) (rad)

TASS-t 10,000 NT10 143.924047849167 λT10 5.71887846 FA
TASS 143.924047828061 5.71891639 LSM
TASS-s 1,000 NT1 143.924047835237 λT1 5.71754788 FA
TASS 143.924047832049 5.71748146 LSM
JPL 1,000 NJ1 143.924045534754 λJ1 5.71749214 FA

143.924045017377 5.71742743 LSM

The difference 2.110542× 10−8 rad/year between NT10 (FA) and NT10

(LSM) is not very obvious to evaluate. Hence, it is better to take the
difference in kilometers. Then, over 1,000 years, the difference in position is
about 25 km (and 250 km for 10,000 years). It is not a big difference. We can

Figure 4.14: The mean longitude of Titan λ over 1,000 year with TASS.
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consider that for the mean mean motion of 10,000 years TASS ephemeris,
both methods FA and LSM give the same results. We also consider that the
two NT1 obtained by both FA and LSM are the same (and idem for NJ1).
From now on we take NT10 = 143.924047849167 rad/year as the mean mean
motion N of TASS ephemeris for Titan.

We have to note that, from the principle of FA and LSM, even though
the difference in their results are very small (now, in N and λ0), LSM can
perturb the constant λ0, if there exist some long period components in λ6.
So on all the situations we prefer to take the results of FA.

Now we discuss the difference between NT10 and NT1(LSM), that is
more meaningful for us. The difference is about 1.7118 × 10−5 rad over
1,000 years, which means 21km in position, which is even smaller than the
difference caused by the different methods and even far beyond the accuracy
that we need. Hence, we account that both methods find the same value
of the mean mean motion in our calculations, no matter the interval or
ephemeris.

In the following work, when we talk about the mean mean motion of
Titan in TASS, we will use the value of NT10 = 143.924047849167 rad/year
from the frequency analysis. We will use NJ1 = 143.924045534754 rad/year
from the frequency analysis as the parameter of mean mean motion of Titan
in JPL.

4.3 Comparison in r between TASS and JPL

4.3.1 The periodic part r = λ−Nt− λ0

Now, the mean longitude λ of Titan can be described as a sum of three
parts. The linear part N t, the constant λ0, and the smaller part which can
be described as a sum of periodic terms. The argument of each one is a
combination of the proper frequencies :

λ = Nt+ λ0 +

m∑
i=1

Aisin(ωit+ φi) (4.3.1)

i is the number of the term.
λ0 is the constant in λ.
N × t+ λ0 is the affine part of λ.
Aisin(ωit+ φi) is one of the components of mean longitude.
Ai is the amplitude of the term.
φi is the phase of the term.
ωi is the frequency of the term
Removing the major linear part of the mean longitude (N × t and λ0),

we can get a combination only depending on the proper frequencies, which
is cyclical in time, with invariable slight amplitudes. We define r as:
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r = λ−Nt− λ0 =
n∑
i=1

Aisin(ωit+ φi) (4.3.2)

where

ωi =
m∑
j=1

ki,jω
∗
j (4.3.3)

The frequencies ω∗j are the proper frequencies as described in Chapter 3.

An analytical ephemeris like TASS has a complete representation of pro-
per frequencies and other parameters with the Saturn system. It is conve-
nient to get the combination of r in TASS with a frequency analysis. In
Figure (4.15), we multiply by the semi-major axis of Titan, so the unit of r
here is the kilometer.

Figure 4.15: The periodic part r of the mean longitude of Titan over 10,000
years with TASS, with NT10 λT10

In TASS, to describe the combination of r with Equation (4.3.2) is very
simple by a frequency analysis. Using the mean longitude of Titan in 10,000
years, the step of calculation is taken as 0.6 day. Based on the report of
Saillentest (Saillentest 2014 [17]), the choice of the step is very important.
It influences the sampling point number, and improves the frequency reso-
lution, but reduces the precision of the amplitude determination. In total,
there are 610,000 points of r during 10,000 years. The frequency analysis
transfers all these data into the frequency space. Next, comparing the com-
ponents to the proper frequencies of TASS, it is possible to find the good
combinations based on the d’Alembert rule. Finally, we get the analytical
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representation of mean longitude of Titan with TASS ephemeris like Table
10.2 in Appendix.

Table 10.2, TASS-t, is a template of the amplitude and phase of the 9
major components in r of Titan with a frequency analysis of TASS. Those
components include not only the long-periodic terms, like Ω8, which has a
period larger than 3,000 years, but also short periodic terms, like λ5 − λ6

with a very small period of 6.03 days. Moreover, we can distinguish the
perturbations from the Saturn system like Ω8,−Ω6, 2$6, and λ5 − λ6, or
from the outer Saturn system, like the three harmonic terms of the mean
longitude of the Sun λs, 2λs and 3λs.

There is a component with the frequency 0.0068679973 rad/year, named
Λ∗6 . It is difficult to identify it in the range$∗6−$∗8, −Ω∗6+Ω∗8, and 2λ∗J−5λ∗S .
Their periods are similar, and we have no way to make the identification of
this frequency. In TASS, this term is considered as the perturbation from
the 2:5 resonance between Jupiter and Saturn.

For the JPL ephemeris we do not know anything about the proper
frequencies, even if they exist or not. With a time span of 1,000 years,
it is uncertain that we could distinguish these proper frequencies in most
components.

As Laskar (Laskar.J et al. 1992 [15]) said, “If the system is integrable,
without managing to find exactly the action-angle variables W ∗, but variable
W near W ∗, the motion are still on torus but the projection on each Wj is
not a circular motion.” In another words, the proper frequencies of JPL can
be found by a frequency analysis of the osculating orbital elements.

That means, for JPL, we can use FA to get the proper frequencies. Ho-
wever, the combination of the mean longitude of Titan is more complicated.
FA program can not distinguish the long period terms, instead, it mixes all
the long time span components together. We need another way, for example,
the least squares method, to identify the combinations of JPL.

Before we discuss about the proper frequency of JPL, we will represent
our results with TASS over 1,000 years, during 1600-2600, which is the
same interval as JPL. We take TASS ephemeris over 1,000 years as a test
to improve our method, which is also useful for JPL. That will be done in
Chapter 6 and will lead to TASS-s.

4.3.2 The comparison

Figure (4.16) shows the difference between r in JPL and in TASS with their
own λ0 (λT1 for TASS, λJ1 for JPL) over 1,000 years. In this figure, the
difference is reduced and evolves from 70 km to −70 km over 1,000 years,
and tends toward 0 near J2000.0. When we change their own λ0 of 1,000
years by λT10, the Figure (4.17) shows the same tendency as in Figure (4.16).

When we take those two differences above together in Figure (4.18),
they present similar changes, and the discrepancy between maximum and
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minimum values is about ±70 km over 1,000 years, which is close to the
difference of the mean longitude between TASS and JPL at J2000.0 epoch.
The perturbation parts of the mean longitude in TASS and JPL are similar,
but their difference seem quasi-periodic. It means that, in TASS and JPL,
the value of r depends on the λ0 used. The problem is now to choose the
suitable λ0 both for TASS-s and JPL.

Figure 4.16: The difference between r of TASS and JPL ephemerides with
their own λ0 (with λT1 and λJ1 respectively

Figure 4.17: The difference between r of TASS and JPL ephemerides (with
λT10 and λJ1 respectively
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Figure 4.18: The difference between r of TASS and JPL ephemerides with
λT10, λT1 and λJ1

4.4 Correlation of λ0 with the time span

4.4.1 λ0 of TASS

The situation of λ0 is more complicated. The results obtained not only
for different durations, but also for the same interval by two methods, are
different. Let us take λT10 in two methods as an example. Figure (4.19)
is the graphics of two r , of the mean longitude of Titan in TASS with the
same mean mean motion NT10, but different λ0, in 10,000 years. The x axis
is the time in years. The y axis is the amplitude of r in kilometers. In the
figure, the two curves basically coincide. Comparing with the amplitude of
r, the differences are hard to find, but we can get their difference in Table
4.1.

∆λ0 can not be ignored, so we have to decide which value of λ0 to
take. Here, we need to think about the principle of both methods. The
frequency analysis distinguishes all the components of the frequencies, that
eliminates the influences coming from the long-period terms, also in the least
squares method they are usually considered as constants into λ0. Then, we
choose the value of λT10 from FA and not from LSM over 10,000 years mean
longitude in TASS in our following calculations.

Subsequently, it is necessary to make a choice between λT10 and λT1.
Figure (4.19) is an image of two different situations with TASS ephemeris.

-The r in red, is the result coming from λT10, which we get from TASS-t.

-The r in blue, is the result coming with λT1, which we get from 1,000
years ephemeris. To be clearer, we show only r blue over 1,000 years. The
offset is −39 km.

The conclusion is very clear: λT10 is the best choice which we shall use
in all other calculations for TASS-s. λT1 makes the range of r symmetrical
about r = 0. However comparing with 10,000 years result, λT1 bring the
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Figure 4.19: r of Titan in TASS with λT1 and λT10

deviation to r.

There is no doubt that, λT10, which we get from TASS-t is the most
reasonable value, that we should use in all the calculation with TASS, no
matter the span of ephemeris.

4.4.2 λ0 of JPL

The λ0 of JPL behaves as we have discussed in the case of TASS. Both
results approximate the value of the mean longitude of Titan in J2000.0
epoch, which corresponds to the characteristics of the ephemeris. However,
these values of λJ1 are not the ones expected.

In this section, we have a problem in the JPL ephemeris, that it has
only 1,000 years data. That means, it is no way to get a suitable λ0 of JPL
over 10,000 years. We have showed in Figure (4.8) the difference between
mean longitude of Titan of TASS and JPL in 1,000 years.

In Table 4.1 , we know the values of the mean longitude of Titan of TASS
and JPL. We can find that the difference between λ0 in 1,000 years TASS
and JPL is ∆λ = λT1 − λJ1 = 5.574 × 10−5 rad, which mean a difference
about 68.11 km in position. It is smaller than the difference between λT10

and λJ1, which is 1.386319 × 10−3 rad, and 1693.90 km in position. TASS
and JPL correspond to the same physical system especially for the position
and velocity of satellites.

Then we have a strong presumption that λT10 should be a better choice
than others. Moreover the values of λT1 and λJ1 are so close that the value
of λJ10 if it does exist, should be closer to λT10 than to λJ1.

Figure (4.20) shows r of TASS and JPL in 1,000 years. The different
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Figure 4.20: The comparison between two r in TASS and JPL ephemerides
with different λ0
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curves correspond to the different λ0 to obtain r. We distinguish different
situations in different colors:

• The red curve is r of TASS with λT10;

• The green curve is r of JPL with λT10;

• The blue curve is r of JPL with λJ1;

• The grey curve is r of TASS with λT1.

The colors in Figure (4.20a) are difficult to distinguish, so we make an
enlargement in the Figure (4.20b) over 200 years around J2000.0.

With λJ1, r fluctuates around 0, however λT10 brings a big deviation
away from 0. It is the same as TASS, when we take λT10, and λT1.

It exists a very interesting situation which should support our assump-
tion. The two r for JPL with λT10 and λJ1, demonstrate a similar distri-
bution in values like the two r for TASS with λT10 and λT1, especially in
Figure (4.20b) (200 years). On the top of the figure, two r (grey for TASS
and blue JPL), almost coincided. On the bottom of the figure, two r (red for
TASS and green from JPL) with λT10, even from the beginning of them, are
a little bit larger than the one above, but also keep their global resemblance.

In summary, we prefer the λT10 from TASS-t as the value of constant λ0

than the one λJ1 from JPL itself, λT10 is the most approached value, that
we can get, from the real λ0 from 10,000 years JPL.

4.5 Conclusion

In this section, we compare the two kinds of ephemerides of Titan in their
osculating Keplerian elements and their positions in 1,000 years interval.
Additional, we focus on the time span over 200 years around J2000.0 epoch,
during which the ephemeris has the best precision. It is clear that in recently
200 years (1900-2100) those differences keep stable.

For the difference in their osculating Keplerian elements, the situations
are different. In ζ, the difference is smaller than 1,000km over 1,000 years,
which during 1,900-2,100, it is about 60km. The difference in z is more stable
that it seems quasi-period changed with amplitude no more than 400km over
1,000 years. However, the difference between two λ over 1,000 years is more
than 3,000km. In fact, it is not a real difference in λ, but a superposition
error coming from the difference of the mean mean motion over many cycles.
When we remove the influence from the mean mean motion and the constant
term λ0, the difference is about ±70km over 1,000 years.

The different intervals of ephemerides make nothing wrong with mean
mean motion in recent precision. However, it influences the values of λ0.
Then, we can not use λT1 or λJ1 directly. For TASS, the best choice is
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λT10. Although it seems to bring some deviation to r, it is in accordance
with 10,000 years mean longitude. Based on a discussion of the similarities
between two ephemerides, it is better to use λT10 in the calculations of r in
1,000 years JPL ephemeris also. λT10 is closer to the real λ0 of JPL with
longer span.

Therefore, in our following work of getting the combination of r in JPL
ephemeris, we will use λT10 as λ0 in J2000.0 epoch of Titan, which is obtai-
ned from TASS-t.

Last but important in this chapter, in the calculation of the mean mean
motion N and the constant term λ0, the results show us that the least
squares method and the frequency analysis are almost equivalent.



Chapter 5

Extension of the frequency
analysis by the least squares
method

Based on the descriptions in chapters aforesaid, we have a basic understan-
ding of the structure of the numerical integration ephemeris and the theory
analysis ephemeris. Moreover, we compare the difference between JPL and
TASS in ephemerides of Titan. We suppose that it is possible to find in JPL
a similar representation of the mean longitude of Titan.

In the representation of the mean longitude in TASS-t, Table 10.2 in
Appendix, the biggest component Ω∗8 attracts our attention because it is a
particular term with a long period, over 3263.24 years and a large amplitude,
about 1903.38 kilometers. Ω∗8 is the major part of the longitude of the
ascending node of Iapetus. The interval of JPL ephemeris, which is only
1000 years, is far away from a complete cycle of Ω∗8. In other words, if we
can find a similar term in JPL ephemeris like Ω∗8 in TASS, it should be a good
evidence to our purpose to find the proper frequency and the representation
of the osculating elements with this ephemeris.

Unfortunately we can not use the frequency analysis to obtain directly
the amplitude and phase of the term associated to Ω∗8. Further worse we
know nothing about the proper frequency of JPL ephemeris. However we
have two different descriptions of the same Saturn system, and from our
comparison between two ephemeris made in Chapter 4, we consider that
it may exist a relation between two ephemeris. So we can use the proper
frequency of TASS-t for the JPL ephemeris as an experiment. By that,
it should expose not only some resemblance from JPL to TASS, but also
the possible existence of proper frequencies and combinations of osculating
elements in JPL.

61
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5.1 The least squares method, term by term

First of all, we remove the major part of the mean longitude, i.e. the mean
mean motion changing over timeN×t and the constant part λ0. The residual
part is identified as r in the previous chapter. If we want to find the first
term in r, we remove all the other 8 terms with the proper frequencies,
amplitudes, and phases, listed in the representation TASS-t in Table 10.2 :

A1 sin(ω1t+ φ1) = r −
n∑
i=2

Ai sin(ωit+ φi) (5.1.1)

with

A1 sin(ω1t+ φ1) = A1[sin(ω1t) cosφ1 + cos(ω1t) sinφ1] (5.1.2)

Let us write :

r −
n∑
i=2

Ai sin(ωit+ φi) = Y1,t (5.1.3)

Then we separate the biggest component of r (with Ω∗8) and subscript
as Y1,t in equation (5.1.3). It is a series with a step of 0.6 days over 1000
years. Then we take the value of Ω∗8 from TASS-t as the proper frequency,
which is noted ω1 in Equation (5.1.2).

Then we take the unknown variables of the equations as :{
a1 = A1 cos(φ1)

a2 = A1 sin(φ1)
(5.1.4)

The known variables X1,1, X1,2 also change with time with a step of 0.6
days : {

sin(ω1t) = Xt,1

cos(ω1t) = Xt,2
(5.1.5)

During the 1, 000 years, with the step of 0.6 days, we have a huge
equations group, which includes m = 608, 750 equations, with only two
unknown variables. Then, it is easy to make some simple transfers and to
use a least squares method to calculate the amplitude A1 and phase φ1.

a1X1,1 + a2X1,2 = Y1,t1

a1X2,1 + a2X2,2 = Y1,t2

· · ·
a1Xm,1 + a2Xm,2 = Y1,tm

(5.1.6)
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X1,1 X1,2
...

...
Xm,1 Xm,2

 (
a1

a2

)
=

Y1,t1
...

Y1,tm

 (5.1.7)

Let us left multiply the transpose of matrix (Xi,1, Xi,2)T on both side
of equation (5.1.7), we can get the equations of (a1, a2) :

(
X1,1 · · · Xm,1

X1,2 · · · Xm,2

) X1,1 X1,2
...

...
Xm,1 Xm,2

 (
a1

a2

)
=

(
X1,1 · · · Xm,1

X1,2 · · · Xm,2

) Y1,t1
...

Y1,tm


( ∑m

i=1X
2
i,1

∑m
i=1Xi,1Xi,2∑m

i=1Xi,1Xi,2
∑m

i=1X
2
i,2

) (
a1

a2

)
=

(∑m
i=1Xi,1Y1,ti∑m
i=1Xi,2Y1,ti

)
(5.1.8)

Based on the solution of Equation (5.1.8), (A1 cos(φ1), A1 cos(φ1)), it is
easy to get the amplitude A1 and phase φ1 of the biggest component of r in
the mean longitude of Titan.

It is the well-known procedure of the least squares method. But we
prefer to use (5.1.8) instead of the two matrix in (5.1.7) to avoid including too
many equations in the same time. Table 5.1 shows our results of amplitude
and phase as an experience. We plot the curve of the residuals (5.1.3) Y1,t,
in Figure (5.2), and the curve of the similar residuals involved with TASS
in Figure (5.1).

Table 5.1: Amplitude and phase of the component involved of Ω8 in the
mean longitude of Titan for TASS and for JPL

Frequency(rad/year) Period(year)
0.001925441172 3264.24

TASS JPL
Amplitude (rad) 0.0007787385 0.00018501463
Phase(rad) -1.3751233 -1.4551164

Figure (5.1) and Figure (5.2), exhibit complex frequency characteristics
which can be approximated as a long-period change involving small short-
period changes. To compare them, the envelope curve of TASS, Figure (5.1),
is smoother and more regular than the one of JPL. Both curves show pulses,
which are caused by the other faint short period terms that we did not list
in Table 10.2. For Figure (5.2) even if the envelope of the curve is not as
good as the one of TASS, it expresses the possibility of a similar existence of
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Figure 5.1: Y1,t of r removed other major components in TASS, involved Ω∗8

Figure 5.2: Y1,t of r in JPL ephemeris removed other major components
with amplitude, phase and proper frequency of TASS, Ω∗8

Ω∗8, like in TASS. That means that the irregularity in Figure (5.2) is due to
an unsuitable proper frequency with a false amplitude and phase. Moreover
but not so important, we also see the truncation error caused by the unlisted
faint amplitude terms of the combination.

We can proof the existence of Ω∗8 by a term by term least squares
method, but it is impossible to distinguish the value of every component in
our calculations. Hence, the method used in this section, is not useful in
practice. We prefer a least squares method including several terms.

5.2 Reference plane and transformation error

It is possible to find the major frequency component by analyzing the
other osculating elements of JPL ephemeris, but we are not sure that it
is the correct value. For example, we can get the proper frequency Ω∗8 by
making an analysis of the osculating element ζ = sin i

2e
iΩ of Iapetus. We

will show the results in Chapter 6, TASS-s and the results for JPL ephemeris
in Chapter 7.

Here we face a small problem coming from the reference plane. The JPL
ephemeris takes the ecliptic plane as the reference plane. In our research
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we prefer to take the ring plane of Saturn as the reference plane because
the orbit of most Saturnian satellites are close to this plan. It is necessary
to change the reference plane of JPL ephemeris from the ecliptic plane to
the ring plane of Saturn. In this step, we need to think about the error of
transformation.

As TASS gives the orbital elements in the ring plane as well as the posi-
tions and velocities in the ecliptic plane, we can inspect the transformation
error of our software. The software takes the positions and the velocities of
TASS ephemeris in the ecliptic plan, then it transforms them into the ring
plane of Saturn in form of osculating elements (a, λ, z, ζ). By comparing the
difference between the elements obtained by the transformation program,
and the original output of TASS ephemeris, we show the magnitude of the
error in our software.

Figures (5.3), (5.4) and (5.5) give the residuals of the reference plane
transformation in the three orbital elements (λ, z, ζ). We only show the
situation of the real part of z and ζ in Figures (5.4) and (5.5). The errors
from the transformation software are smaller than 120 meters over 1000
years. We do not know exactly the source of the error. The comparison
should be exact as it is only a geometrical transformation, but the difference
of 120 meters over 1000 years is small enough to be accepted. It does not
bring other additional error to our results in the following calculations.

Figure 5.3: Residuals from the reference plane transformation for the mean
longitude λ of Titan with TASS over 1000 years (unit of x-axis is year, unit
of y-axis is kilometer)
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Figure 5.4: Residuals from the reference plane transformation for the ele-
ment z of Titan with TASS over 1000 years (unit of x-axis is year, unit of
y-axis is kilometer)

Figure 5.5: Residuals from the reference plane transformation for the ele-
ment ζ of Titan with TASS over 1000 years (unit of x-axis is year, unit of
y-axis is kilometer)
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5.3 The least squares method for several terms

During our calculations in Chapter 4 about the mean mean motion of
Titan with both JPL and TASS, we have found that it is impossible to get
the specific combinations by the frequency analysis of the mean longitude
in 1000 years. We adopt the least squares method in our research of the
representation of r.

In r, there are some short period terms, for example, the three terms
involved in the mean longitude of the Sun, identified as λs, 2λs, and 3λs.
In fact, the mean longitude of the Sun which we used in TASS is the mean
longitude of Saturn. These three terms have a period of several decades,
that should be detected easily by the frequency analysis in the region close
to the given value, and be removed with their amplitude and phase.

For the least squares method to get the combination of the other terms,
we use:

Y (t) = λ−Nt−
3∑
i=1

Ai sin(kiωst+ φi) (5.3.1)

In Y (t), we have removed the three components involved in the mean
longitude of the Sun.

Unlike Sect. 5.1, we prefer to use the least squares method for several
terms. So:

Y (t) =

nt∑
i=1

Aisin(ωit+ φi) (5.3.2)

With a step of 0.6 day during 1000 years, we have 608700 equations
for the mean longitude of Titan. We define [X] as the [m × n] matrix
of equations, and [A] = (a1, a2, · · · , an) as the one dimensional unknown
matrix. m = 607800, is the number of equations. n is equal to the number of
parameters, which is two times nt the number of terms. For every step ti, the
frequency of phase and amplitude of the components does not change, the
difference between every equation depends on the time and Y (t). In other
words, the amplitude and the phase of every component are the parameters
of equations, from the least squares method, the equation is transformed to
the first order multiple equations.


sin(ω1ti) = Xi,1

cos(ω1ti) = Xi,2

sin(ω2ti) = Xi,3

· · ·

(5.3.3)
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
a1 = A1 sinφ1

a2 = A1 cosφ1

a3 = A2 sinφ2

· · ·

(5.3.4)

So the equation is written as :


a1X1,1 + a2X1,2 + · · ·+ an−1X1,n−1 + anX1,n = Yt1

a1X2,1 + a2X2,2 + · · ·+ an−1X2,n−1 + anX2,n = Yt2

· · ·
a1Xm,1 + a2Xm,2 + · · ·+ an−1Xm,n−1 + anXm,n = Ytm

(5.3.5)

X1,1 X1,2 · · · X1,n−1 X1,n
...

...
...

...
Xm,1 Xm,2 · · · Xm,n−1 Xm,n


a1

...
an

 =

Yt1...
Ytm


In both sides of the equation, let us left multiply the transpose matrix

[X]T to simplify the equations. After this operation, the number of equations
is simplified from 607800 to n, most of time n is equal to 10 or 12.

X1,1 · · · Xm,1
...

...
X1,n · · · Xm,n


X1,1 · · · X1,n

...
...

Xm,1 · · · Xm,n


a1

...
an

 =

X1,1 · · · Xm,1
...

...
X1,n · · · Xm,n


Yt1...
Ytm


Finaly, the equations are simplified like Equation (5.3.6):

(X )× (A) = (Y) (5.3.6)

Here,

X =


∑m

i=1X
2
i,1

∑m
i=1Xi,1Xi,2 · · ·

∑m
i=1Xi,1Xi,n−1

∑m
i=1Xi,1Xi,n

...
...

...
...∑m

i=1Xi,nXi,1
∑m

i=1Xi,nXi,2 · · ·
∑m

i=1Xi,nXi,n−1
∑m

i=1X
2
i,n



(A =

a1
...
an


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Y =


∑m

i=1Xi,1Yti
...∑m

i=1Xi,mYti


(5.3.6) allows to find the representation of the mean longitude of Titan

for the JPL ephemeris. In the next chapter, we will take TASS ephemeris
as an example to calculate TASS-s, the solution in 1000 years interval, and
compare with TASS-t, the representation of TASS in 10,000 years. With
this way, we can discuss the precision of the least squares method solutions.
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Chapter 6

Test of the method with
TASS over 1,000 years

Table 10.2 in the Appendix gives the presentation named TASS-t of the
mean longitude of Titan with TASS over 10,000 years, which is easy to get
by a frequency analysis. With a limited interval of the numerical integration
ephemeris, for example with JPL in 1,000 years, the frequency analysis is
difficult. Hence, we discuss the least squares method in the previous chapter
to get a similar presentation with the numerical integration ephemeris.

After having designed a suitable method, we want to valid it by using
TASS ephemeris itself limited in 1,000 years, as the period of JPL ephemeris.
By constructing TASS-s in such way, we almost face the same difficulties that
we will find with the numerical integration ephemeris. Furthermore, we will
be able to estimate the accuracy of the method by comparing the parameters
of TASS-s with the known values from TASS-t.

6.1 Proper frequencies

From our discussions in Chapter 4 we know that even if the proper frequen-
cies have their consistency in the whole system, it does not mean that we
could get the correct values of them during a limited interval. Therefore,
in this chapter, we will use only the 1,000 years ephemeris with TASS to
see if our method can find out the right value of the proper frequencies by
the least squares method and the frequency analysis: it is very important
to appraise our results of JPL of the next chapter.

As we focus on the mean longitude of Titan, we only discuss the proper
frequencies involved in its representation, such as the mean mean motion of
Rhea, the major part of the ascending node of Iapetus and Titan itself, the
biggest frequency component of the pericenter of Iapetus and Titan, and an
influence coming from the 2:5 resonance between Jupiter and Saturn.

In total, all the proper frequencies used in our representation are:

71
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λ∗5 (N5) proper frequency of the mean longitude of Rhea.
λ∗6 (N6) proper frequency of the mean longitude of Titan.
$∗6 proper frequency of the pericenter of Titan.
$∗8 proper frequency of the pericenter of Iapetus.
Ω∗6 proper frequency of the ascending node of Titan.
Ω∗8 proper frequency of the ascending node of Iapetus.

The other values Λ∗6 and λ∗s (Ns) used are directly taken from the system
value of TASS-t.

We use the frequency analysis of the corresponding element of the sa-
tellite. The major component in this analysis is the value of their proper
frequency. For example, we make an analysis of z6 in order to get the fre-
quency of $∗6. Here, we only focus on the frequency instead of the phase
and amplitude. These quantities depend on the initial time, unit of distance,
and other system parameters.

Mean mean motion of Rhea: λ∗5

Tables 6.1 and 6.2 give the representations of the mean longitude of Rhea,
with different intervals of ephemerides. More exactly it is exp

√
−1λ5 to

avoid the discontinuity and to obtain λ∗5. Table 6.1 is obtained with 10,000
years ephemeris of Rhea in TASS, and Table 6.2 the frequency analysis
result within 1,000 years ephemeris, from 1,600-2,600. We take the series
(cosλ5, sinλ5) as the input form, with a step of 0.6 day.

We begin our calculations with the proper frequency of the mean lon-
gitude of Rhea in TASS that we have experimented to get the mean mean
motion of Titan by a frequency analysis. With the results both over 1,000
years and over 10,000 years intervals. The situation is similar as in the mean
longitude of Titan : the difference between the value of frequency is tiny and
that of the phase in J2000.0 epoch is much bigger.

The difference in frequency is ∆f = −9.2949 × 10−08 rad/y. It means
a −49 km difference in position after 1,000 years. It is tiny enough to use
the value of the mean longitude of Rhea which we get from 1,000 years
ephemeris as the proper frequency of the whole system.
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Table 6.1: Representation for ephemeris in TASS during 10,000 years : The
mean longitude of Rhea e

√
−1λ5

Frequency Amplitude Phase Period
(rad/year) (rad) (rad) (year)

1 508.009319749448 0.9999999053 0.21389514 0.0124
2 1016.018639498876 0.4999998105 -2.71380237 0.0062
3 1524.027959248450 0.3333330492 0.64168542 0.0041
4 1792.851776747876 0.2499996211 -0.85558056 0.0035
5 1284.842456997944 0.1999995264 2.07211695 0.0049
6 776.833137249084 0.1666660983 -1.28337085 0.0081

· · · · · · · · · · · ·

Table 6.2: Representation for ephemeris in TASS during 1,000 years : The
mean longitude of Rhea e

√
−1λ5

Frequency Amplitude Phase Period
(rad/year) (rad) (rad) (year)

1 508.009319842398 0.9999999694 0.21335581 0.0124
2 1016.018639684877 0.4999999388 -2.71488104 0.0062
3 1524.027959527070 0.3333332416 0.64006744 0.0041
4 1792.851776372940 0.2499998777 2.28806055 0.0035
5 1284.842456534343 0.1999998471 -1.06688829 0.0049
6 776.833136690737 0.1666664832 1.86134867 0.0081

· · · · · · · · · · · ·

Longitude of the pericenter of Titan: $∗6

In TASS, the pericenter of Titan is connected with 2 of the elements, which
are the real and imaginary parts of z = e exp

√
−1$. Here, e is the eccen-

tricity, and $ is the pericenter of Titan. The period of $∗6 is about 703
years. In 1,000 years interval, it only ends its cycle once. We doubt that
the limited ephemeris will bring error in the frequency.

TASS-t in Table 10.3 gives the representation of e exp
√
−1$ of Titan.

The major part is the proper frequency of the longitude of pericenter of
Titan. Table 6.3 shows our results for the frequency analysis with 1,000
years ephemeris, also in TASS. We have only detected 4 components. The
most important things are:

• We can not get a correct value of the proper frequency of the longi-
tude of the pericenter. Our result with 1,000 years ephemeris shows a
difference as 2.245698253 × 10−6 rad/year, which is about 0, 17 years
in period, about 79.03 km in position after 1,000 years (it is obtai-
ned by multiplying the difference of proper frequency over 1,000 years
by the eccentricity and the semi-major axis). Actually, it is not the
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real measure of the influence of our result in the representation of the
mean longitude of Titan. From the representation in Table 10.2, the
amplitude of the component with $∗6 is about 34 km.

• To compare the four components in Table 6.3 with the first four com-
ponents in Table 10.3, we can find that the frequency analysis works
better for the short period terms than for the long period terms. The
second term, which is identified as −$∗6 in Table 10.3 is polluted by
the other terms which are difficult to distinguish with 1,000 year in-
terval. That means that even we have a completed result from the
frequency analysis, without the example of TASS, we can not confirm
the correctness of that. That is why TASS is so basic and meaningful
for our research.

Table 6.3: Representation for TASS during 1,000 years : e · e
√
−1$ of Titan

Frequency Amplitude Phase Period
(rad/year) (rad) (rad) (year)

1 0.008931618591 0.0289345001 2.86813920 703.48
2 -0.009039756171 0.0001890730 0.44764913 -695.06
3 0.417745454028 0.0000744538 -0.73030039 15.04
4 143.924047788794 0.0000668787 -0.56564858 0.04

We will take the proper frequency of $∗6 of TASS, 0.008931618591 rad/y
from Table 6.3, in our following calculations.

Longitude of the ascending node of Titan: Ω∗6

The situation of the ascending node of Titan is more complicated because
it exists a constant term. Thus we also have to face to the determination of
the constant : one from the 10,000 years representation, the other from the
least squares method with 1,000 years ephemeris. In TASS, this variable is
presented in the argument of ζ = sin i

2 exp
√
−1Ω.

We take the representation TASS-t from Table 10.4. In this representa-
tion, it exists a constant term with an amplitude of about 0.005602 radian,
and a major period term with a long period equal to 703.5 years. From the
previous study on the longitude of pericenter which has a similar period,
the limited interval of ephemeris should bring error to the proper frequency.
As in the problem of the phase caused by different intervals in ephemeris
of the mean longitude of Titan and Rhea, we need to pay attention to the
constant term existing in the longitude of the ascending node.

With a constant term, it is impossible to get the proper frequency
directly by the frequency analysis over 1,000 years. It is convenient to use
the least squares method to obtain the constant with different ephemeris
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Table 6.4: Constant in the longitude of the ascending node of Titan obtai-
ned by the frequency analysis and the least squares method, with different
ephemeris intervals in the ring plane of Saturn.

Constant term Interval of ephemeris method
(rad) (year)

1 -0.005583725984 10,000 FA
2 -0.005448610014 10,000 LSM
3 -0.005793205614 1,000 LSM

intervals. In Table 6.4 the first line is the value obtained from TASS-t
(Table 10.4). Here we have to mention that in Table 10.4 the constant term
is in form of an amplitude and a phase. Whereas in Table 6.4, it presents as
the value of the constant itself (the result of the amplitude multiply by the
cosine phase). The second line shows the one obtained within 10,000 years
by the least squares method. It is close to the value of the frequency analysis,
but there is still a difference of about 165.1 km. The third line is the value
obtained within 1,000 years ephemeris by the least squares method. We
know nothing about the influence caused by the different constant terms. It
is clear that for the constant term within 10,000 years, the result obtained
by the frequency analysis is better than the one from the LSM. Hence, the
two obtained constant values, the one of TASS-t by FA and the other with
1,000 years TASS by LSM are both tested in our calculations.

Table 6.5: The first term in the representation of ζ6 by FA over 1,000 years,
with the value of the constant term obtained by FA over 10,000 years and
by the least squares method over 1,000 years.

Frequency Amplitude Phase Period Interval
(rad/year) (rad) (rad) (year)

-0.008208620055 0.0029613939 -0.34167406 -765.44 1,000
-0.008773851378 0.0028360646 -0.28523224 -716.13 10,000

In Table 6.5, there is not doubt that the result using the constant term
of TASS-t is different from the one using the constant term obtained by
the least squares method with 1,000 years. There is a 11 years difference
in the period with the proper frequency of TASS. It is more than 3127.31
km difference in position over 1,000 years (it is obtained by multiplying the
difference of proper frequency over 1,000 years to sin i

2 and semi-major axis).

In this case, in the second component in the representation of the mean
longitude of Titan, the accuracy of Ω∗6 is very important. It is difficult to
determine which frequency is good for our following calculations. We prefer
to keep the value from the limited interval as an alternative that we can
make an experiment with it.



76 CHAPTER 6. TEST OF THE METHOD

We will take the proper frequency of Ω∗6 of TASS as −0.008773851378
rad/y in our following calculations, that is obtained by FA over 1,000 years
but with the constant term from TASS-t.

Longitude of the pericenter of Iapetus: $∗8

The process to deal with the frequency of the pericenter of Iapetus is similar
as what we had done to obtain the pericenter of Titan. We make an analysis
of the element z8 = e8 exp

√
−1$8. Here, e8 is the eccentricity of Iapetus,

and $8 is the longitude of pericenter. The period of $∗8 is about 3182
years. In 1,000 years interval, it can not finish its cycle even once. When we
compare the frequency of the pericenter of Iapetus in TASS-t (Table 10.5)
to the result with FA over 1,000 years (Table 6.6), the difference is big.

We can not get a correct frequency of the pericenter. Our result within
1,000 years gives a difference of about 305.3 years in period, that means a
disparity about 0.173 rad in longitude of pericenter over 1,000 years, which
means 17, 614 km in position. The limited interval brings a huge mistake in
proper frequency which is too far away from acceptable.

Table 6.6: The first term in the representation of z6 by FA over 1,000 years
for z = e exp

√
−1$ of Iapetus.
Frequency Amplitude Phase Period
(rad/year) (rad) (rad) (year)

0.001801807851 0.0290471199 -2.79754165 3487.16

The frequency obtained from the limited interval should not be used
in rewriting the representation of Titan. The same problem will happen in
JPL.

We will take the proper frequency of $∗8 of TASS-t as −0.001974690826
rad/y in our following calculations obtained by FA over 10,000 years.

Longitude of the ascending node of Iapetus: Ω∗8

For the proper frequency of the ascending node of Iapetus, the experiment
with Titan shows a solution. We use TASS-t (Table 10.6). In Table 6.7 we
analyze sin i8

2 exp
√
−1Ω8 over 1,000 years. In TASS-t, it exists a constant

term with an amplitude equal to 0.132016534139 radian, and a major period
term with a frequency of −0.001925543543 rad/y, which means that the long
period is equal to 3, 263.06 years. Based on the case of Titan, the limited
interval of ephemeris brings an error in the amplitude of the constant term
and has an influence on the frequency of the node.

Consequently we choose the same method as the one used for Titan: we
directly remove the constant value from the template of the representation
to get the frequency of the node within 1,000 years. The result is showed
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in Table 6.8. Comparing with the ones in Table 6.7, there is no doubt that
an accurate constant leads to a good result for the frequency. The same
situation appears in JPL ephemeris. In a limited time span, we can not
get a correct value of the constant in the longitude of the ascending node
of Iapetus which influences the determination of the proper frequency (with
long-period). The difference between the values of Table 6.8 and the ones of
TASS-t leads to a difference in position of about 5, 230 km after 1,000 years.

Table 6.7: First term in the representation for TASS during 1,000 years
: sin i

2e
√
−1Ω of Iapetus, with constant obtained within 1,000 years by the

least squares method.
Frequency Amplitude Phase Period
(rad/year) (rad) (rad) (year)

-0.001639133278 0.0775794294 -1.53930364 -3833.24

Table 6.8: Representation for TASS during 1,000 years : for the first term
of sin i

2e
√
−1Ω of Iapetus, with constants obtained TASS-t.

Frequency Amplitude Phase Period
(rad/year) (rad) (rad) (year)

-0.001946457996 0.0672825419 -1.27245240 -3228.01

Ω∗8 being the biggest component in the representation of the mean lon-
gitude of Titan, its accuracy of is very important. It is difficult to determine
which frequency is good for our following calculations. We prefer to keep
the value of the limited interval as an alternative that we will experiment
with it.

We will take the proper frequency of Ω∗8 of TASS-t as −0.001946457996
rad/y in our following calculations.

The other proper frequencies involved

Now, we have obtained the major proper frequencies needed to rewrite the
mean longitude of Titan, over 1,000 years with TASS. But it is not enough,
we have to mention two special frequencies, which are considered constant :
the mean longitude of the Sun, and the 2:5 resonance between Jupiter and
Saturn.

The mean longitude of the Sun, is used to describe the motion of the
Sun around the center of mass of the Saturnian System. Actually, it equals
the motion of Saturn around the Sun. In TASS, the mean longitude of
the Sun is a parameter. Its proper frequency is 0.213382895534 rad/y (For
JPL ephemeris, it is not difficult to get this proper frequency). In our
calculations, we take that value directly.
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The frequency named Λ is more complicated. In fact, there exist several
possible combinations for this term. In TASS, thes authors use −2λJ + 5λS
, an indirect perturbation of Jupiter. In this chapter we follow the definition
of TASS.

Proper frequencies involved: system values and obtained values

Now, we have all the involved values of the proper frequencies for rewriting
the representation of the mean longitude of Titan. Table 6.9 shows the pro-
per frequencies in TASS-t and the homologous values got from limited 1,000
years TASS ephemeris. Some of them are not the ones obtained from the
limited interval ephemeris, but are the selected values after our comparison
of the results. We mark them with * in Table 6.9. They are used to compute
TASS-s. In the following section, we will use these two groups of frequencies
to examine the precision of the least squares method, and the error coming
from the inaccurate proper frequency of the selected group.

Table 6.9: The proper frequencies from TASS and those adapted for the
computation of TASS-s, TASS within 1,000 years (the selected values were
marked with *).

TASS-t 1,000 years TASS ID
system value system value &

obtained value
(rad/year) (rad/year)

1 143.924047849167 143.924047832049 λ∗6
2 508.009320172829 508.009319842398 λ∗5
3 0.008933864296 0.008931618591 $∗6
4 0.001974690826 0.001974690826 * $∗8
5 -0.008931239595 -0.008773851378 Ω∗6
6 -0.001925543593 -0.001946457996 Ω∗8
7 0.213382895534 * λ∗s
8 0.006867993783 * Λ∗6

6.2 Determination of the short period and semi-
long period terms

In TASS-t, we find some short period and semi-long period terms. Especially
for the mean longitude of Titan, it exists three terms involving of the mean
longitude of the Sun which are extracted from Table (10.2) and presented in
Table 6.10. It is more convenient to remove these short period and semi-long
period terms before we consider all the terms in the least squares method.
Because such terms turn hundreds or thousands of times in 1,000 years, there
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amplitudes and phases are easier to find. We make a small modification in
the software in order to find the amplitude and phase of a peak which is
close to a given frequency.

They are given in Table 6.11. Comparing with Table 6.10, there are
some differences in frequency, amplitude and phase, but the disparities are
not big. Figure (6.1) shows the original curve of r (blue), and the one
removing the three short period and semi-long period terms (red), which
eliminates all high frequencies. It is the good method to obtain the short
period and semi-long period terms by a frequency analysis.

Table 6.10: The three terms involved in the mean longitude of the Sun in
the mean longitude of Titan in 10,000 years TASS, determined by FA

Id Frequency Amplitude Phase
(rad/year) (rad) (rad)

λs 0.213299120062 0.0001839936 2.41533633
2λs 0.426598240156 0.0002064532 -1.15851073
3λs 0.639897360242 0.0000291064 -1.91809699

Table 6.11: The three terms involved of the mean longitude of the Sun in
the mean longitude of Titan over 1000 years TASS, determined by FA.

Id Frequency Amplitude Phase Period
(rad/year) (rad) (rad) (year)

λs 0.213382895534 0.0001829765 2.41992955 29.45
2λs 0.426696677075 0.0002067852 -1.15803311 14.73
3λs 0.639898005931 0.0000291063 -1.91815485 9.82
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6.3 Determination of the long period terms

Now, we focus on the long period terms in the mean longitude of Titan,
and rewrite them by the least squares method. In this step, we make the
calculations in the two groups of the proper frequencies. The first column of
Table 6.9 includes all the system frequencies, for which the result is compared
with TASS-t, and only illustrates the precision of the least squares method.
The second column of Table 6.9, includes all the proper frequencies from
limited interval ephemeris. The results will show the precision of the further
representation with the limited interval ephemeris (Chapter 7 for JPL).

The long period term 2Ω8 with a tiny amplitude (12 km) and slow chan-
ging is too correlated with Ω∗8 because of the limit of the interval. Therefore,
we will take 5 terms in total into the calculations. They are λ∗5 − λ∗6, $∗6,
Ω∗6, Ω∗8, and Λ.

Table 6.12 shows our results of TASS with system proper frequencies
of TASS-t with two methods: the frequency analysis and the least squares
method. For each component in the table:

• The first column of the table shows the ID which is the combination
of the frequency component.

• For each ID, we give 2 lines of values.
- The first line comes from TASS-t. These values are considered as
theoretical values, including the frequency, the amplitude in rad, in
kilometer, and the phase of each component. These values are the

Figure 6.1: Influence of the 3 short-period terms involving the mean longi-
tude of the Sun.



6.3. DETERMINATION OF THE LONG PERIOD TERMS 81

Table 6.12: Representation TASS-t compared with the representation with
the same system proper frequency by the least squares method.

ID Frequency Amplitude Phase
rad/year rad km rad

−Ω∗8 0.001925544359 0.0014891848 1819.590232 -1.76176914
0.001925543543 0.0014868264 1816.708569 -1.74449801

−Ω∗6 0.008931239596 0.0006277976 767.087054 0.34279510
0.008931239596 0.0006286233 768.095939 0.34292180

Λ∗6 0.006867993783 0.0000320522 39.163622 2.55841019
0.006867993783 0.0000309323 37.795294 2.60240660

2$∗6 0.017867728608 0.0000278284 34.002687 2.44323143
0.017867728598 0.0000279911 34.201540 2.44186907

λ∗5 − λ∗6 364.085272881417 0.0000120882 15.740789 0.77823556
364.085272883577 0.0000120881 14.770126 0.77944087

λ∗s 0.213299200062 0.0001839936 224.816260 2.41533633

2λ∗s 0.4265982410156 0.0002064532 252.258971 -1.15851073

3λ∗s 0.639897360242 0.0000291064 35.564237 -1.91809699

same as that in Appendix.
- The second line shows the results of the least squares method with
proper frequencies of TASS system. The frequency of each component
is very close to the first one but is not exactly the same. In fact, it is
the theoretical value which is obtained by the system proper frequency,
based on the representation of the system. The following values are
the amplitude in radians, the amplitude in kilometers, and the phase
of each component.

• The three short-period terms come from the representation of the
10,000 years ephemeris.

From the results in Table 6.12, there is no doubt that the least squares
method can get a good solution of the representation with the system proper
frequencies. The biggest difference between the amplitudes is smaller than
5 km. It means that the solution of the least squares method is credible.

Table 6.13 shows our solution by the least squares method with the
obtained proper frequencies. This table corresponds to TASS-s. For each
component, we show their ID at very beginning. In the first column, there
are their frequencies obtained with the limited interval, and the solution of
amplitude and phase of each component by the least squares method. The
three short-period terms including the mean longitude of the Sun, are obtai-
ned by the frequency analysis of the 1,000 years ephemeris.
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Table 6.13: TASS-s : representation of λ6 for TASS over 1,000 years with
the obtained proper frequencies by the least squares method.

ID Frequency Amplitude Phase
rad/year rad km rad

−Ω∗8 0.001946457996 0.0014851266 1814.631612 -1.73740199

−Ω∗6 0.008773851378 0.0006884030 841.138985 0.34890892

Λ∗6 0.006867993783 0.0000885665 108.216796 -3.05325855

λ∗5 − λ∗6 364.085272883577 0.0000120881 14.770084 0.77944420

2$∗6 0.017867728598 0.0000265389 32.427052 2.41822124

λ∗s 0.213382895534 0.0001829765 223.573472 2.41992955

2λ∗s 0.426696677075 0.0002067852 252.664598 -1.15803311

3λ∗s 0.639898005931 0.0000291063 35.564093 -1.91815485

We give in Table (6.14) the statistics of the residuals of the two solutions
in the limited interval.

Table 6.14: Statistics of the residuals of the two solutions obtained in the
limited interval.

System values Obtained values (TASS-s)
MEAN (m) 0.77937 -58.60758

Standard Deviation (km) 16.15811 16.17248

From the table 6.12, we see that, with the same frequency components,
the difference in amplitude between the frequency analysis and the least
squares method are very small. Most of the disparities are about several
kilometers. Figure (6.2) shows the residuals of the mean longitude of Titan
removing all the components obtained by the least squares method, the mean
mean motion with its phase, and the three short-period terms. The solution
of the least squares method has a good precision. The mean of the residuals
is no more that 1 meter, and the deviation of the residuals is about 16 km.
It means that the major error of the least squares method is the truncation
error. With the frequency analysis we can ignore the slight difference in the
amplitude terms which can not be ignored in the least squares method.

Figure (6.3) shows the residuals of the mean longitude of Titan removing
the representation TASS-s. With inaccurate proper frequency, the result
from −Ω∗6 has a deviation of about 70 km. It influences the near component
Λ∗6 to absorb it (68 km difference in amplitude). The mean of the residuals
is about −58 meters, and the deviation of the residuals is about 16 km. The
curve in Figure (6.3) keeps almost smooth and symmetrical.

We do not focus on the difference of the phase. The disparities from
phase are so small that they can be ignored.



6.3. DETERMINATION OF THE LONG PERIOD TERMS 83

Figure 6.2: The residuals of the least squares method with the system proper
frequencies of TASS.

Figure 6.3: The residuals of the least squares method with the obtained
proper frequencies in the limited interval TASS, TASS-s.
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6.4 Conclusion

We make a conclusion of our experiment with TASS, which is meaningful
for our following work.

The limited interval ephemeris has an influence on the proper frequency,
which depend on the periods. The long-period terms such −Ω∗6, −Ω∗8, −$∗8
and −$∗6, are more affected, while the short-period terms like λs, λ6, and
λ5 are almost unaffected. The magnitude of the influence ranges from tens
of kilometers to hundreds of kilometers.

After that, we have also obtained the amplitudes and the phases of
the short-period terms before the calculations by the least squares method,
which proves the accuracy of our experiment.

Finally, we find the representation of the mean longitude of Titan named
TASS-s with the least squares method with a limited truncation error of
10 kilometers. That means that we can use the same method to get the
representation of the mean longitude of Titan with JPL.

Last, the inaccurate proper frequency −Ω∗6 causes a deviation of about
70 km. It has the same influence of about 68 km on the amplitude of Λ
which is near by −Ω∗6.



Chapter 7

Results for the mean
longitude of Titan

Table 10.2 gives TASS-t i.e. TASS analyzed over 10,000 years. In this
chapter we present a similar table for the numerical integration ephemeris
JPL for which the time span is 1,000 years only. We will used the method
described in Chapter 5, with the help of the test done in Chapter 6 (TASS-s).

7.1 Proper frequencies in the JPL ephemeris

After changing the reference plane with these angles

Ωa = 169.5291◦

ia = 28.0512◦

and analyzing the major part of the osculating elements of JPL ephemeris,
we get a list of proper frequencies. Here, we only list those in use in the
representation of the mean longitude of Titan in the JPL ephemeris. They
are :
λ∗5 (N5) the proper frequency of mean longitude of Rhea.
λ∗6 (N6) the proper frequency of mean longitude of Titan.
$∗6 the proper frequency of pericenter of Titan.
$∗8 the proper frequency of pericenter of Iapetus.
Ω∗6 the proper frequency of ascending node of Titan.
Ω∗8 the proper frequency of ascending node of Iapetus.
λ∗s (Ns) the proper frequency of mean longitude of the Sun.
Λ∗6 $∗6 −$∗8, −Ω∗6 + Ω∗8, or 2λ∗J − 5λ∗S

Then we need to get the mean longitude of Jupiter and Saturn before-
hand and also the mean mean motion of the Sun.

All the ephemeris and parameters in our calculations are published by
the JPL website.
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Mean mean motion of Rhea : λ∗5

Table 7.1 presents the mean mean motion of Rhea calculated with 1,000
years ephemeris of its mean longitude, first from JPL from 1,600-2,600, and
second from TASS. Here we take the series of (cosλ5, sinλ5) as the input
form.

The difference in frequency is ∆f = fT − fJ = −0.000010643385
rad/year, which corresponds to 5609.78 km after 1,000 years. It is a big
difference. Taking into account the period of Rhea, which is 0.012368 years,
a small difference into the mean mean motion causes after multiple cycles a
huge quantity. It can also disturb the recognition of the long periods. Howe-
ver, in the previous chapter we got from TASS-t (10,000 years) and TASS-s
(1,000 years) the mean mean motions of Rhea and Titan. The correspon-
ding differences have been found much smaller. So we can be confident in
the present value of JPL (1,000 years) and we suppose that the difference
comes from the system value of JPL. In that case, we take the value of JPL
in the use of our calculations.

We take the proper frequency for the mean mean motion of Rhea λ∗5 of
JPL equal to 508.009309199013 rad/y in our following calculations.

Table 7.1: Mean mean motion of Rhea and phase in both TASS and JPL
during 1,000 years.

Id Frequency Phase Period
(rad/year) (rad) (year)

JPL 508.009309199013 0.213208266476 0.012368
TASS 508.009319842398 0.213355809712 0.012368

Longitude of the pericenter of Titan: $∗6

We discuss the situation of the longitude of the pericenter of Titan, or more
exactly the corresponding proper frequency $∗6. In JPL, this variable is
presented separately from the eccentricity. We use the same form as in
TASS, which is z = e exp

√
−1$. Here, e is the eccentricity for which we

can get its instantaneous value from the JPL ephemeris. So when we make
an analysis of (e cos$, e sin$) of JPL we can compare directly to TASS-t.

Table 7.2 is the representation of e exp
√
−1$ for the JPL ephemeris in

1,000 years by a frequency analysis. Table 7.3 gives the proper frequency of
the pericenter $∗6 of Titan in TASS and in JPL in 1,000 years. The period
of $6 is about 703 years for TASS, but about 704 years for JPL. We only
find 4 components in 1,000 years Titan ephemeris. Let us mention:

• We can not get a correct value of the proper frequency of the longitude
of the pericenter. Our result with 1,000 years ephemeris shows a dif-
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ference as 0.000008770709 rad/y in frequency, which is about 308.64
kilometers in position after 1,000 years, and 0, 69 years for the periods.

• The four components presented in Table 7.2 and Table 6.3 are similar,
not only in frequency but also in amplitude and phase. The second
term, identified as −$∗6 in Table 10.3, is found polluted by the other
terms which are difficult to distinguish with 1,000 years interval.

Table 7.2: Representation for the JPL ephemeris during 1,000 years :
e exp

√
−1$ of Titan.

Frequency Amplitude Phase Period
(rad/year) (rad) (rad) (year)

1 0.008922847882 0.0288561951 2.86729807 704.17
2 -0.009074407804 0.0001888799 0.45870297 -692.41
3 0.417762498182 0.0000747162 -0.73753434 15.04
4 143.924045533325 0.0000670170 -0.56569307 0.044

Table 7.3: $∗6 of Titan for TASS and for JPL during 1,000 years in the ring
plane of Saturn.

Id Frequency Phase Period
(rad/year) (rad) (year)

JPL 0.008922847882 2.86729807 704.17
TASS 0.008931618591 2.86813920 703.48

In fact, this disparity in distance is not a real difference of $∗6. The
interesting quantity is the difference between the amplitudes and between
the phases in the representation of z6. The comparison in z between the two
ephemerides made in Chapter 4 shows that the value obtained from 1,000
years ephemeris is satisfactory and can be used in our following calculations.

Hence, we adopt the proper frequency of$∗6 of JPL equal to 8.922847882×
10−3 rad/y from Table 7.2.

Longitude of the ascending node of Titan : Ω∗6

The situation of the ascending node of Titan is more complicated because of
its constant term. In TASS, this variable is presented as the orbital element
ζ = sin i

2 exp
√
−1Ω. In JPL, this variable is given separately : the longitude

of the ascending node and the inclination i. We transfer each value into the
same form as ζ to get a better reference with TASS.

Because of the constant term in Table 7.4, it is impossible to get the
frequency by a frequency analysis : the main term has a period larger than
700 years which can not be separated from the constant term. As we have
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done for TASS-s in the previous chapter, it is reasonable to use the value from
TASS-t directly. Table 7.4 shows the value of the constant term obtained
from JPL, and also for TASS in different time spans. The value of JPL is
close to the one of TASS-s (1,000 years) which reminds the situation in the
previous chapter : in the recent 1,000 years, the ephemerides TASS and JPL
are approximatively close.

The frequency in Table 7.5 uses the constant term obtained by the least
squares method with 1,000 years with TASS and JPL. As what we find with
TASS-s, it is not an appropriate value. However, the frequency calculated
with the 10,000 years TASS constant also shows a great difference with
TASS-t and with TASS-s.

It exists a difference of 327.28 km over 1,000 years between the use of
the two major frequencies of Ω∗6 with their own constant term over 1,000
years (Table 7.5). In Table 7.6 we see the value of Ω∗6 over 1,000 years with
the constant from TASS-t. It leads to a difference a little bit larger than
522.05 km. We conclude that Ω∗6 of JPL is not convenient here. It is closer
to −0.008773851378 rad/y but is not equal. Also, in this quantity the value
of TASS can not be a reference. We can not use the value of Ω∗6 from TASS.

Table 7.4: Constant in the longitude of the ascending node of Titan obtai-
ned by the frequency analysis and the least squares method, with different
ephemerides intervals, in TASS and in JPL.

Constant term Interval of ephemerides method
(rad) (year)

JPL -0.005721473948 1,000 LSM
TASS -0.005583725984 10,000 FA
TASS -0.005793205614 1,000 LSM

Table 7.5: The main term in ζ6, Ω∗6, during 1,000 years with the constant
obtained over 1,000 years ephemeris by the least squares method.

Frequency Amplitude Phase Period
(rad/year) (rad) (rad) (year)

TASS -0.008208620055 0.0029613939 -0.34167406 -765.44
JPL -0.008104781730 0.0029293235 -0.33893737 -775.24

Therefore, the value of the proper frequency of the longitude of the
ascending node in JPL, in the limited time span of ephemeris, can not be
better. The value of TASS can only support the magnitude of the error of
our work on JPL. We have to use −0.008773851378 rad/y in our following
calculations (line TASS of Table 7.6).
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Longitude of the pericenter of Iapetus : $∗8

The result obtained from JPL ephemeris in Table 7.7 is meaningful, as we
use two different methods to describe the same Saturnian System. We know
that the proper frequency of JPL system should be close to the value of the
TASS system. Between them, the difference in position over 1,000 years is
1557.54 kilometers, and the difference in period is 28.78959 years. So, even
thought the proper frequency of the pericenter of Iapetus in TASS is not so
close to the real one in the JPL system (hundreds of kilometers difference
over 1,000 years), it is still more accurate than the one obtained directly
from the 1,000 years JPL ephemeris.

So, we take the value 0.001974690829 rad/y of TASS-t (Table 10.6) as
the proper frequency of the pericenter of Iapetus for JPL.

Longitude of ascending node of Iapetus : Ω∗8

The main part of the longitude of the ascending node of Iapetus in the JPL
ephemeris is pleasantly surprising. So we use the same processus as for the
constant term for Titan.

In Table 7.8 we give the two frequencies over 1,000 years for TASS and
JPL obtained by the least squares method with the constant over 1,000 years
also. The difference is small. It leads to a difference of 30.83 km over 1,000

Table 7.6: Representation of ζ = sin i
2 exp

√
−1Ω of Titan, with the constant

from TASS-t, over 1,000 years.
Frequency Amplitude Phase Period
(rad/year) (rad) (rad) (year)

JPL -0.008693210603 0.0028108581 2.68207640 -722.77
TASS -0.008773851378 0.0028360646 -0.28523224 -716.13

Table 7.7: Representation of z = e exp
√
−1$ of Iapetus over 1,000 years.

Frequency Amplitude Phase Period
(rad/year) (rad) (rad) (year)

TASS 0.001801807851 0.0290471199 -2.79754165 3487.156139
JPL 0.001816807217 0.0289910263 -2.79535991 3458.366549

Table 7.8: Main term in the representation of ζ = sin i
2 exp

√
−1Ω of Iapetus,

obtained by the least squares method with the constant over 1,000 years.
Frequency Amplitude Phase Period
(rad/year) (rad) (rad) (year)

JPL -0.001639193498 0.0776049608 -1.53971151 -3833.10
TASS -0.001639133278 0.0775794294 -1.53930364 -3833.24
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Table 7.9: Main term in the representation of ζ = sin i
2 exp

√
−1Ω of Iapetus,

obtained by the least squares method with the constant from TASS-t.
Frequency Amplitude Phase Period
(rad/year) (rad) (rad) (year)

JPL -0.001957029522 0.0672082216 1.67368482 -3210.572572
TASS -0.001946457996 0.0672825419 -1.27245240 -3228.009708

years and no more than 0.14 year for the period. The proper frequency of the
longitude of ascending node of Iapetus is almost the same. We also see the
values obtained with TASS and JPL over 1,000 years but with the constant
term from TASS-t (Table 7.9). The error caused by an inaccurate value of
the constant term makes a difference as 2682.69 kilometers over 1,000 years.
We prefer the value of −0.001925543543 rad/y of TASS-t (Table 10.4) as
the proper frequency of ascending node of Iapetus of JPL.

Mean mean motion of the Sun : λ∗s

The mean longitude of the Sun is one of the arguments which we do not
need to calculate. As it corresponds to the circular motion of Saturn around
the Sun, it equals the mean longitude of Saturn that we download from
JPL web site for the Saturn ephemeris over 1,000 years. Then we make a
frequency analysis of the mean longitude of Saturn. The major component
of the representation is the mean mean motion of the Sun. Table 7.10 shows
the mean mean motion, the phase and the period of the mean longitude of
the Sun for JPL.

Table 7.10: Mean mean motion of the Sun.
Frequency Phase Period
(rad/year) (rad) (year)

JPL 0.213342329926 0.87292588 29.45

Resonance 2:5 between Jupiter and Saturn:Λ6

Λ∗6 is not clearly identified. In TASS, it is considered as the influence coming
from the 2:5 resonance between Jupiter and Saturn. Moreover in some
previous researches, this term should be explained as several combinations
with similar values : $∗6−$∗8, −Ω∗6+Ω∗8, or 2λ∗J−5λ∗S . In Table 7.11, we give
these possible combinations of Λ∗6 and the corresponding values in frequency.
We do not know which combination is the real one in the ephemeris of JPL.
In our work, we can only test all these values in our calculations and make the
comparisons between the mean and standard deviations of the corresponding
residuals. The results are in Table 7.12. From the mean and the standard
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deviations, we conclude that the distributions of the residuals are almost
the same, except the last line. This last is mentioned as (TASS,PHASE)
in Table 7.12. A detailed explanation is given in section “Determination of
long period terms” Sect. 7.3.

The choice of Λ∗6 makes no difference in our results. Hence we prefer to
use the same value as TASS.

Table 7.11: The possible combinations of Λ∗6.

ID Frequency
(rad/year)

JPL 2λ∗J − 5λ∗S 0.007294999177
−Ω∗6 + Ω∗8 0.006736181081
$∗6 −$∗8 0.006572353561

TASS 2λ∗J − 5λ∗S 0.006874219340

Table 7.12: The mean and the standard deviation of the residuals for diffe-
rent uses of the value of Λ6.

Λ6 Frequency Mean Standard
Deviation

(rad/year) (m) (km)
−2λJ + 5λS 0.007294999177 377.36 30.21872
−Ω6 + Ω8 0.006736181081 339.33 29.71464
$6 −$8 0.006572353661 331.03 29.61418

−2λJ + 5λS (TASS) 0.006874219340 257.42 28.70089
−2λJ + 5λS (TASS,PHASE) 0.006874219340 -312.62 25.56549

The proper frequencies in use

Now, we have all the involved values of the proper frequencies in order to
obtain the representation of the mean longitude of Titan. Table 7.13 shows
the proper frequencies that we adopt to determine the representation of the
JPL ephemeris. Some of them are not the ones from the limited interval
ephemeris, but the selected values after our comparison with TASS. In the
following section, we will use this group of frequencies to get the amplitudes
and the phases in the representation of the mean longitude of Titan with
JPL ephemeris, what is our ultimate purpose.
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Table 7.13: The adopted value of the proper frequencies for the JPL ephe-
meris(see text for more details).

ID Frequency
(rad/year)

λ∗6 143.924045534754
λ∗5 508.009309199013
λ∗s 0.213342329926
$∗6 0.008922847882
$∗8 0.001974690829
Ω∗6 -0.008693210604
Ω∗8 -0.001925543593
Λ∗6 0.006867993783

7.2 Determination of the short period and semi-
long period terms

As what we did with TASS in the previous chapter it is possible to find the
short-period terms involving the mean longitude of the Sun by a frequency
analysis. We take the mean longitude, its double and its triple frequencies
as a target to find the neighborhoods of the peak in the frequency area. The
frequencies are then modified by the FA software.

Table 7.14 shows all the target frequencies of the possible short-period
terms in the mean longitude of Titan for JPL. Table 7.15 shows the short-
period terms obtained by a frequency analysis of the mean longitude of
Titan, including the amplitude and phase of every terms. When we compare
the frequencies in both tables, we note some small differences. Considering
the influence of the tiny amplitude of the long-period terms which remain in
the mean longitude, we consider that the components in Table 7.15 are the
same as the ones listed in Table 7.14. Hence, we remove these three terms
to simplify our calculations with the least squares method.

Figure 7.1 shows two curves. The red one which is called r, is the
mean longitude of Titan for the JPL ephemeris in which we have removed
the mean mean motion part and the phase. The blue curve is the follow-
up results when taking out the short-period components which involve the
mean longitude of the Sun. The units of r in Figure 7.1 are radians.
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Table 7.14: Mean longitude of the Sun for JPL and the values of its double
and triple times frequencies.

ID Frequency Phase
(rad/year) (rad)

λs 0.21334233 0.8729258824
2λs 0.42668466 **
3λs 0.64002699 **

Table 7.15: The three terms involving the mean longitude of the Sun in the
mean longitude of Titan determined by FA for the JPL ephemeris over 1000
years.

Frequency Amplitude Phase Id
(rad/year)

0.213381048936 0.0001830009 2.42011717 λs
0.426697846565 0.0002067870 -1.15815737 2λs
0.639897726868 0.0000291066 -1.91813725 3λs

Figure 7.1: Periodic part of the mean longitude r and its residuals after
removing the short-period terms in the JPL ephemeris.
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7.3 Determination of the long period terms

Now, we have prepared everything to focus on the long period terms of
the mean longitude of Titan in 1,000 years JPL ephemeris (frequencies are
fixed in Table 7.13), and we calculate its representation by the least squares
method.

In the same way as in the previous chapter for TASS, among the 6 long
period terms, the last one, 2Ω∗8 with a tiny amplitude and slow changing, is
too correlated with Ω∗8 because of the size of the interval. Hence we consider
only these 5 terms : λ∗5 − λ∗6, $∗6, Ω∗6, Ω∗8, and Λ.

In this step, we will make the calculations twice. The difference between
both computations is only the adopted value of λ0 which has puzzled us very
much in Chapter 4. The first time, we use the value from TASS-t (Table
7.16). The second time we use the value from the 1,000 years JPL ephemeris
itself (Table 7.17). Then, we get a proof that the choice of λ0 from TASS-t
(10,000 years) is necessary and important.

The representation of the 1,000 years JPL ephemeris is given in Table
7.16, mentioned JPL in the first line. For an easy comparison, the line TASS-
t is extract from Table 10.2. For every component, we show its identification
in the first column along with its frequency. After that, we see the amplitude,
both in radian and kilometer, then their phase in radians. At last, it is the
name of the ephemeris.

From the comparison between TASS-t and from the experiment of the
least squares method in TASS-s ephemeris, we can get the conclusion :

• The difference of the amplitude of the term Ω∗8 is about 60 kilometer,
which corresponds to the system disparity of both ephemerides.

• Because of the error in the proper frequency of Ω∗6, and our experience
of the comparison between TASS from different intervals, the error in
the obtained amplitude by the least squares method is more than 100
kilometers. As in TASS-s, it makes an influence in the amplitude of
the frequency close to the component Λ6.

• The other results from JPL are very similar to TASS-t.

Figure 7.2 gives the image of the residuals. They correspond to the
mean longitude of Titan in JPL when all the components of the line “JPL”
are removed. So, they are the residuals between the real ephemeris and our
representation. We can find that the curve scatter much more in the period
away from J2000.0. We can not explain what causes such kind behavior. The
mean of these residuals is about -312.62 meters, and the standard deviation
is about 25.56549 kilometers. The biggest difference is no more than 100
kilometers over 1,000 years.
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Table 7.16: Comparisons of the representation of the mean longitude of
Titan between TASS-t and JPL.

ID
Frequency Amplitude Phase
(rad/year) (rad) (km) (rad)

Ω∗8
0.001925544359 0.0014891848 1819.59023 -1.761791 TASS-t
0.001925543543 0.0015385090 1879.85800 -1.733645 JPL

Ω∗6
0.008931239596 0.0006277976 767.08705 0.342795 TASS-t
0.008693210603 0.0007328212 895.41222 0.359277 JPL

Λ6

0.006867993783 0.0000320522 39.16362 2.558410 TASS-t
0.006874219340 0.0001339679 163.69132 -2.904047 JPL

λ∗5 − λ∗6
364.085272881417 0.0000128825 15.740789 0.778237 TASS-t
364.085261349846 0.0000111378 13.608919 0.779450 JPL

2$∗6
0.017867728608 0.0000278284 34.00269 2.455682 TASS-t
0.017845695764 0.0000249581 30.49560 2.386224 JPL

λ∗s
0.213299200620 0.0001839936 224.81626 2.415336 TASS-t
0.213381048936 0.0001830009 223.60326 2.420117 JPL

2λ∗s
0.426598240156 0.0002064532 252.25897 -1.183717 TASS-t
0.426697846565 0.0002067870 252.66679 -1.158157 JPL

3λ∗s
0.639897360242 0.0000291064 35.56424 -1.195372 TASS-t
0.639897726868 0.0000291066 35.56449 -1.918137 JPL
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Figure 7.2: Residuals of our representation of the mean longitude of Titan
of JPL.

Figure 7.3: Residuals of our representation of the mean longitude of Titan
of JPL using 5 terms and only 4 terms (see the text for more details).
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Moreover, we also give in Figure (7.3) an image of the consistency of
our solutions. We have made several experiments of the influence of the
terms of the solutions. We take different numbers of terms : 1 term for the
first time, 2 terms for the second time, and so on, into our least squares
method equations. We compare the solutions of every test to make sure
that we get the best solution. In Figure (7.3), the red curve corresponds to
the residuals when we take 4 terms only and the blue one corresponds to the
residuals with 5 terms. From the distribution of the residuals, we find that
the solution with 5 terms is better than with 4 terms, and both solutions
are consistent and stable. Here, note that the residuals in Figure (7.3) are
not calculated with the final choice of the proper frequencies in our solution,
but with the obtained proper frequencies in our initial experiment. That is
why the blue curve in Figure (7.3) is not the same and not as good as Figure
(7.3).

The choice of phase λ0

In Chapter 4 the choice of the phase in the mean longitude of Titan, λ0

has puzzled us very much. Here, we give the solution when using the phase
from the 1,000 years JPL ephemeris itself to proof our choice. It is given
in Table 7.17 in the line JP . For comparison, in the same table, we give
also the solution of the least squares method with the phase from TASS
(our adopted JPL solution). It is clear that a bad choice for the phase
gives a large error in the 3 major components Ω∗8, Ω∗6, and Λ6. Moreover
it also affects the amplitude of 2$∗6. The conclusion of our discussion on
the phase in Chapter 4 is that the mean of the residuals is 257,42 meters
and the standard deviation is 28.7 kilometers. If we did not have TASS-t as
a reference in order to think about the difference in λ0 from different time
spans, it would have being impossible to detect those mistakes only by the
statistical indicators of residuals.
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Table 7.17: Comparison of the solutions of the mean longitude of Titan from
JPL with different values of λ0.

ID Frequency Amplitude Phase
rad/year rad km rad

Ω∗8
0.001925543543 0.0015385090 1879.85800 -1.733645
0.001925543543 0.0030131523 3681.68050 -1.748134 JP

Ω∗6
0.008693210603 0.0007328212 895.41222 0.359277
0.008693210603 0.0005049251 616.95292 0.192544 JP

Λ6

0.006874219340 0.0001339679 163.69132 -2.904047
0.006874219340 0.0003742662 457.30461 1.100993 JP

λ∗5 − λ∗6
364.085261349846 0.0000111378 13.60892 0.779450
364.085261349846 0.0000111377 13.60881 0.779436 JP

2$∗6
0.017845695764 0.0000249581 30.49560 2.386224
0.017845695764 0.0000159298 19.46410 1.986390 JP
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7.4 Conclusion

We get the representation of the JPL ephemeris. Our final solution is gat-
hered in Table 7.18. It means that we can obtain the value of the mean
longitude of Titan for the JPL ephemeris at any time by our formula:

λ6 = N × t+ λ0 +
n∑
i=1

Ai sin(ωit+ φi) (7.4.1)

In the representation of JPL, it exists a 60 km difference between the
amplitude of the major components Ω∗8. We consider that it corresponds
to the system difference. The limited interval of the ephemeris makes some
influence on the proper frequencies, which brings the error into the long pe-
riod terms like Ω∗6. Moreover, that influences the near component Λ∗6. The
error is absorbed in the amplitude of this components. The total difference
between the original ephemeris of Titan in JPL and our corresponding re-
presentation is no more than 100 kilometers over 1,000 years. The standard
deviation is about 26 kilometers.

Table 7.18: The mean longitude of Titan from JPL ephemeris, in the ring
plane with ia,Ωa from Chapter 1 : λ6 = N × t+ λ0 +

∑n
i=1Ai sin(ωit+ φi)

Frequency Amplitude Phase ID
(rad/year) (rad) (rad)

143.924045534754 N
5.718878 λ0

1 0.001925543543 0.0015385090 -1.733645 Ω∗8
2 0.008693210603 0.0007328212 0.359277 Ω∗6
3 0.426697846565 0.0002067870 -1.158157 2λ∗s
4 0.213381048936 0.0001830009 2.420117 λ∗s
5 0.006874219340 0.0001339679 -2.904047 Λ6

6 0.639897726868 0.0000291066 -1.918137 3λ∗s
7 0.017845695764 0.0000249581 2.386224 2$∗6
8 364.085261349846 0.0000111378 0.779450 λ∗5 − λ∗6
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Chapter 8

Digitization and reduction of
old astronomical plates of
natural satellites

In this chapter, I will introduce the works about digitization and reduction
of old observations with my Chinese colleagues during my thesis. All this
work has been published on Monthly Notices of the Royal Astronomical
Society Volume 457, Issue 3, 11 April 2016, Pages 2900–2907 as:
Digitization and Reduction of Old Astronomical Plates of Natural Satellites

The major work of me in this article is to solve the non-linear error in
the scan direction, that I will explain detailed in the section Scanner.

8.1 Background

The astrophotographic plates are widely using in astronomy observation in
the last century. In that moment, most of the astromechanics measurements
are by hand. Scientists mark the target on the plates and make a record
of their positions. In recently, benefited by the developing of technique,
we could digitize such kind of old plate and remeasure them with a high
accuracy modern catalogue. This work is our primary experiment of old
astronomical plates digitization with an advanced commercial scanner EP-
SON 10,000XL that we selected a set of 27 plates of Jupiter, Saturn and
Uranus, which were taken during 1987 to 1990. 125 satellite positions were
obtained from the remeasurement and reduction of these plates with the
UCAC4 catalogue (Zacharias et al. 2013 [20]).

101
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Table 8.1: Detailed informations of plates, with number of plates (N)
Planet Obs-Time N Exposure time s Site code
Saturn 1987.03.10 2 600-1200 334

1987.05.20-22 8 60-600 286
1988.05.12 6 240 286

Jupiter 1987.10.12-14 3 120-240 286
Uranus 1990.05.01-04 8 1200-1800 286

Table 8.2: Specifications of the telescopes at YAO and TTO
Telescope A Telescope B

Site code YAO 286 TTO 334
Diameter of primary mirror (cm) 100 32
Focal length (mm) 13300 3580
Size of plates (cm× cm) 16× 16 16× 16
Field of view (degree× degree) 0.75× 0.75 2.5× 2.5
Scale (arcsec mm−1) 15.5 57.6

8.2 Plates

All 27 plates of the satellites of Jupiter(3), Saturn(16) and Uranus(8) se-
lected here were taken on five successive missions during the period 1987 to
1990, in which those observations had been published in our previous work
(Wu.J & Zhang.Y 1988 [21], Qiao.RC et al. 1995 [22]). The astrophoto-
graphic plates are Kodak 103ao with a size 16cm× 16cm.

Table 8.1 shows the information of the plate, including their observed
time, number, exposure time and site code. Table 8.2 shows the parameters
and other details about the two telescopes used. They are called as Telescope
A, situated in Yunnan Astronomical Observatory and Telescope B, equipped
in Tsingtao Observatory.

8.3 Digitization

In the work of Vicente (Vicente et al, 2007 [23]) in 2007,the commercial
scanner has been used in astronomical forthputting. There are two advan-
tages for plates digitization that it not only protect those precious plates
away from damage in the transform, but also improve the possibility to
remeasure the old observations.

8.3.1 Scanner

We take the advanced commercial scanner EPSON 10000 XL in our work,
which is equipped with a linear CCD camera with an optical resolution of up
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to 2400 dpi, and the maximum scanning dimensions are 31.0cm × 43.7cm.
In order to evaluate the accuracy and stability of the scanner for astrono-
mical purposes, we take a plate of Uranian satellites as an example to scan
repeatedly 10 times. Each time, we make a record of measurement results
and obtain the standard deviation of the residuals of measured coordinates
X and Y for all stars on the plate.

Figure (8.1) shows the standard deviations of residuals in X and Y,
expressed in µm. Here, X- and Y-axis correspond to the scanning and
linear CCD directions. The values of the mean standard deviations are 0.58
µm in the linear CCD direction (X) and 3.71 µm in the scanning direction
(Y ).

Figure 8.1: The standard deviations of residuals in X and Y, expressed in
µm, for each star on the plate, versus the corresponding star coordinates,
expressed in mm. The measured coordinates X and Y correspond to the
linear CCD and the scanning direction, respectively

An accuracy as 0.58 µm in the CCD direction is equivalent to the pre-
cision most photometric data system (PDS) measuring machines. For Te-
lescope A, it corresponds like 8 mas system error, and same for Telescope
B corresponding a value as 30 mas. While 3.17 µm takes about 60 mas for
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Telescope A and 200 mas for Telescope B.

Think of the accuracy of the catalogue UCAC4 used, which is 15− 100
mas in position and about 1 to 10 mas/yr in proper motion depended on
the magnitude of target (Zacharias et al. 2013 [20]), it means that the
old observations which were taken 10 years earlier than the mean epoch of
UCAC4, the derived accuracy of reference stars on plate is 30− 100 mas in
generally. Thus the scan precision in linear CCD direction (X) is equivalent
to the catalogue accuracy, in other words, the scan precision in the scanning
direction (Y) has an additional error as 60 mas for Telescope A and 200 mas
for Telescope B.

Figure 8.2: Measured coordinate differences (∆X, DeltaY ), expressed in
µm, versus star measured coordinates, expressed in millimetres, for four
different plates. Differences are derived from the comparison of measured
coordinates obtained at 0◦ and at 180◦ orientation of plates.

Moreover, in order to confirm this systematic errors, we take other 4 pla-
tes into experiments (2 of Saturnian satellites and 2 of Uranian satellites),
both obtained with 1.0 meters telescope(A). The scanning result at 0◦ and
at 180◦ orientation of plates, shows that the derived position of objects in
X-axis, so-called ∆X seems has an average arrangement and without any
characteristic difference from one plate to another, in contrast, the ∆Y ap-
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pears a periodic changing in value without any consistency in all the plates.
Figure (8.2) shows Measured coordinate differences (∆X, DeltaY ), expres-
sed in µm, versus star measured coordinates, expressed in millimetres, for
four different plates. And we also give the Standard deviations of resi-
duals for the reference stars derived from measured coordinates obtained
in the initial plate position A(XAi, Y Ai) and in the 90◦ rotated position
B(XBi, Y Bi).

Consequently, the system error comes from the non-linear movement of
the camera that a significant error could influence our results very much.
In order to avoid that, we prefer to measure both of each coordinate in the
linear CCD direction, which means we will scan two times for every plate.
In the first time we take a normal scan, and the second time the plates
should be turning 90◦ in the horizontal direction to scan again. We could
see the Table 8.3 of the standard deviations of residuals for the reference
stars derived from measured coordinates obtained in the initial plate position
A(XAi, Y Ai) and in the 90◦ position B(XBi, Y Bi). Actually, it is in the
next section. It proves that our method to deal with system non-linear
movement error works well.

8.4 Reduction

As previously noted, each plate is scanned and measured in two orientations:
first in an initial position A, and then,after being rotated by 90◦, in position
B. Hence for every object in same plate (XAi, Y Ai) and (XBi, Y Bi) are the
raw measured coordinates obtained in positions A and B. And (Xmi, Y mi)
is the final position used which takes XAi as Xmi and XBi as Y mi. We
give the standard deviations of the residuals ( σα, σδ) in Table 8.3 of the
four plates which we mentioned in the section Scanner as an example.

Here, we take UCAC4 catalogue as the source of our reference stars that
the number of the theoretical reference star on our astronomical plates is
about 100. Normally we have more than 20 reference stars. We test different
polynomial models, from 1-order to 4-order in our primary experiments, and
chose the third-order polynomial model with 20 parameters for the astro-
metric reduction of our plates cause of its better in the standard deviations
of residuals than lower order model and equivalent with 4-order model.

Our third-order polynomial model are:

{
ξ = ax+ by + c+ dx2 + exy + fy2 + gx3 + hx2y + ixy2 + jy3

η = a′x+ b′y + c′ + d′x2 + e′xy + f ′y2 + g′x3 + h′x2y + i′xy2 + j′y3

(8.4.1)
where, (x, y) is the coordinate measured in plate, (ξ, η) is the tangential
coordinate. The parameters in Equation (8.4.1) are determined by a least
squares method involved with each plate.
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Table 8.3: Standard deviations of residuals for the reference stars de-
rived from measured coordinates obtained in the initial plate position
A(XAi, Y Ai) and in the 90◦ position B(XBi, Y Bi). The final measured
coordinates, both obtained in the linear CCD direction X, are Xmi = XAi
and Y mi = XBi.

Planet Plate No. XAi YAi XBi YBi Xmi Y mi

σα σδ σα σδ σα σδ
Saturn 1988051206 0.097 0.235 0.207 0.125 0.078 0.099

1988051207 0.099 0.230 0.212 0.111 0.089 0.096
Uranus 199005041 0.150 0.265 0.229 0.179 0.149 0.165

199005042 0.129 0.261 0.214 0.207 0.114 0.195

Table 8.4: An extract from the list of the observed equatorial coordinates
of satellites obtained here. They are topocentric and referred to the J2000
ICRF reference frame. Satellite positions published for the first time are
marked with an asterisk (*).

Satellite Date(UTC) α(hour) δ(◦) Site code
J∗1 1987 10 12.6524 1.6210670 8.4211902 286
J∗3 1987 10 12.6524 1.6192411 8.4050179 286
J∗4 1987 10 12.6524 1.6136393 8.3697619 286
J∗1 1987 10 12.6667 1.6209710 8.4209216 286
J∗3 1987 10 12.6667 1.6190649 8.4040104 286
S∗4 1987 03 10.8574 17.3554323 -21.5912262 334
S∗5 1987 03 10.8574 17.3534350 -21.5813007 334
S∗6 1987 03 10.8574 17.3573388 -21.5826703 334
S∗7 1987 03 10.8574 17.3545894 -21.6164870 334
S∗8 1987 03 10.8574 17.3482055 -21.5444788 334
S3 1988 05 11.7473 18.1412027 -22.2593249 286
S4 1988 05 11.7473 18.1411854 -22.2690415 286
S5 1988 05 11.7473 18.1411809 -22.2722384 286
S6 1988 05 11.7473 18.1412198 -22.2418412 286
S3 1990 05 1.7785 18.6963371 -23.3993310 286
U4 1990 05 1.7785 18.6973951 -23.4114706 286
U2 1990 05 1.8236 18.6971497 -23.4014725 286
U3 1990 05 1.8236 18.6962945 -23.3991543 286
U4 1990 05 1.8236 18.6973358 -23.4116925 286
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8.5 New observed satellite astrometric positions

We present and renew 125 astrometric satellite positions from 27 plates,
which were taken from 1987 to 1990, including 39 satellite positions that
have never been published before, seems with some technique reason they
did not be recognized at previously. I

We present part of the new observed positions in Table 8.4. The first
column is the name of the satellites, in which for short we show them as
the capital initial of the planet plus satellite number. Hence J1 means Io,
S6 means Titan, and so on. The positions which are published for the first
time have been marked with asterisk These data are topocentric and refer
to the J2000.0 ICRF reference frame.

8.6 Comparison with theory

In following, we’d better compare all the position obtained from the old pla-
tes with their theory positions. We used planetary and satellite ephemerides
available on the online server of the IMCCE, with DE431 planets epheme-
ris, for the Galilean satellites and Saturnian satellites with NOE (Lainey.V
et al. 2004a, 2004b [3], and [4]), and Uranian satellites with ephemeris of
Emelyanov (Emelyanov.NV and Nikonchuk.DV 2013 [24]).

We obtain the mean µ and standard deviations σ of both coordinate
for each mission with every satellite, that exhibit in Table 8.5. When the
number of position is less than 2, it dose not exist Standard deviations. The
mean residuals of major satellites of Saturn, Jupiter and Uranus in Table 7
appear to lower than 100 mas, except Mimas and Hyperion, which have a
less accurate ephemerides than the other. And also we find that the mission
obtained on Tsingtao Observatory (1987 March) show a less accuracy, up
to 400 mas, cause of the smaller diameter and focal length (32 cm, 3.58 m)
of Telescope B.

IThe data are available as Supplementary Material to the online version of the pa-
per on Blackwell Synergy, at the CDS via Anonymous FTP to cdsarc.u-stasbg.fr, or via
http://cdsweb.u-strasbg.fr/Abstract.html.
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Table 8.5: Mean residuals µ and standard deviations σ of the residuals of
“O-C”. N is the number of observed satellite positions.

Mission Site code Satellite N µα(”) µδ(”) σα(”) σδ(”)
1987 Mar 334 S4 2 0.393 -0.009

S5 2 0.107 0.026
S6 2 -0.370 0.224
S7 2 0.430 -0.182
S8 2 -0.199 0.112

Total 1 10 0.072 0.034
1987 May 286 S2 4 0.128 0.132 0.235 0.091

S3 8 -0.027 0.088 0.138 0.080
S4 8 -0.031 0.010 0.118 0.140
S5 8 -0.098 0.105 0.149 0.091
S6 8 -0.060 0.125 0.125 0.114
S7 5 0.080 -0.091 0.144 0.214
S8 8 -0.109 0.135 0.122 0.126

Total 2 49 -0.035 0.077 0.133 0.116
1988 May 286 S1 1 0.475 0.066

S2 5 -0.069 -0.092 0.196 0.193
S3 6 0.033 -0.001 0.076 0.109
S4 6 0.055 -0.104 0.044 0.101
S5 6 0.073 -0.037 0.053 0.125
S6 6 0.039 -0.085 0.033 0.101
S7 1 0.047 -0.152
S8 2 0.024 0.128

Total 3 33 0.043 -0.050 0.113 0.121
1987 Oct 286 J1 2 -0.060 -0.175

J2 1 0.158 0.092
J3 3 0.084 0.100 0.330 0.199
J4 3 -0.133 -0.026 0.182 0.195

Total 4 9 -0.012 -0.013 0.211 0.193
1990 May 286 U1 4 0.058 -0.094 0.244 0.180

U2 4 -0.048 0.020 0.330 0.516
U3 8 -0.081 -0.008 0.226 0.155
U4 8 0.019 -0.016 0.280 0.237

Total 5 24 -0.019 -0.020 0.248 0.251
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8.7 Conclution

In total, the new observed satellite positions present a good accuracy much
better than previous, even though it is same as the accuracy of recent CCD
observations of natural satellites. In the other word, the old observations
digitization and remeasurement could improve the precision of satellites po-
sition that with the modern catalogue, there exist more reference stars in
same plate field. It should explain why it is so important to reduce old
plates of natural satellites again, either from original measurements when
available, which is very rare or from new measurements, as those presented
here.

We are glad to propose a reliable method for the measurement and re-
duction of astrophotographic plates. Moreover, we will go on our digital
work with a special science scanner equipped in Shangai, Sheshan station.
We would like to contribute to the ambitious project of the new measure-
ment and reduction of all old Chinese plates.
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Chapter 9

Conclusion

In my thesis, I attempted to establish a connection between theoretical
ephemerides and ephemerides resulting from numerical integration. If we
manage to avoid the shortcoming of the limited interval, we obtain the
characteristics of the system like the proper frequencies. This task is very
useful for theoretical studies, e.g. the study of the rotation of the natural
satellites.

In the case of orbital motion, we can expand the perturbing function as
a function of the osculating elements, in order to use the Lagrange equations
or their equivalent in Hamiltonian form. Moreover, from Laskar’s work, the
proper frequencies for a complex system can be obtained with an approxi-
mate motion. Therefore it is possible to obtain the proper frequencies and
the representation of a numerical ephemeris. We use both the frequency
analysis and the least squares methods in our calculations.

We can compare the JPL and TASS ephemerides from the understanding
of the analytical theory and the proper frequencies. We take the ephemeris of
Titan as a reference example. We compare two types of Titan ephemerides,
in osculating Keplerian elements and positions, over 1,000 years. Moreover,
we focus on the 200 years interval around the J2000.0 epoch, during which
the ephemerides have the highest precision. It is clear that in the 1900-2100
interval these differences remain stable.

Varying the ephemeris timespan has no effect on the determination of the
mean mean motion. However, it influences the values of the constant term
λ0 in the mean longitude such as λT10 = 5.71887846 rad and λJ1 equals
to 5.71749214 rad. After a careful analysis, in the goal of obtaining the
remaining periodic part r in the JPL ephemeris, we use λT10 from TASS as
the mean longitude at the J2000,0 epoch λ0, which is obtained from TASS-t.

To get a test representation of the mean longitude of Titan, we use TASS
ephemeris on a limited interval of 1,000 years.

The limited interval influences the proper frequency values. In summary,
long period terms such as −Ω∗6, −Ω∗8, −$∗8 and −$∗6, are more affected, while

111
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short period terms like λs,λ6 and λ5 are almost unaffected. So, we choose the
corresponding values obtained for the least squares procedure to get TASS-s
the representation of the mean longitude of Titan of TASS over 1,000 years
only.

Finally, we repeat our work with the JPL ephemeris which is limited
to 1,000 years. We obtain the proper frequencies and the representation
of the corresponding mean longitude of Titan. The difference between our
representation and the JPL ephemeris is less than 100 kilometers over 1,000
years. Therefore, in practice, our formula can be used to get an accurate
estimate of the value of the mean longitude of Titan, for example, for the
study of the rotation of Titan.

Our work will be completed by a similar analysis of the other orbital ele-
ments from JPL ephemerides (semi-major axis, longitude of the pericenter,
longitude of the ascending node..) in order to have a complete ephemeris of
Titan. Our method could also be applied to other Saturnian satellites, and
moreover, using other numerical ephemerides like NOE.



Chapter 10

Appendix

The solution of TASS is taken as reference all along the manuscript. So we
give here the solution for Titan. As the short period terms in TASS have
not the form of series with the exact proper frequencies, we do not give the
original form. We give the result of the frequency analysis of TASS version
1.6 over 10, 000 years. The elements used are in the ring plane. It is named
TASS-t (template of TASS). So TASS-t corresponds to TASS concerning
the precision, but the representation uses the proper frequencies.

We give also the series for the elements of Iapetus z8 and ζ8.

10.1 Appendix 1

Table 10.1: Mean motion of Titan p6. The series is in cosine, and N in use
in TASS.
n◦ Frequency Amplitude Phase Period Id

(rad/year) (rad) (km) (rad) (year)

1 -0.000000000000 0.0001348090 164.719073 3.14159265 ** **
2 364.085272884288 0.0000251406 30.718545 -2.36335826 0.02 λ∗5 − λ∗6
3 694.586823068935 0.0000123408 15.078853 -0.18685101 0.01 λ∗4 − λ∗6
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MOTS CLÉS 

 

Éphémérides, Titan, Mécanique Céleste, Analyse en fréquence 

RÉSUMÉ 

 

Les éphémérides issues d'intégrations numériques qui peuvent être facilement 

téléchargées des sites de l'IMCCE ou du JPL, ont une très bonne précision pour les 

observations récentes. En même temps, un autre type d'éphémérides, celles analytiques 

comme TASS, décrivent en détail le système dynamique par une représentation en 

combinaison de fréquences propres. 

 

Notre but est d'associer ces deux types d'éphémérides pour l'utiliser dans les études de 

la rotation des satellites naturelles. Cela signifie qu'il faut reconstruire des éphémérides à 

long terme et de haute précision montrant les caractéristiques du système comme les 

fréquences propres à partir des intégrations numériques. La principale difficulté est 

d'éviter l'intervalle de temps limité des éphémérides numériques. 

 

Dans notre travail, nous partons de la représentation des éléments d'orbite de Titan sur 

10 000 ans issues de TASS comme exemple et comme standard. Nous expérimentons 

comment obtenir les fréquences propres sur 1000 ans d'éphémérides de TASS, et 

comment obtenir la représentation analytique de la longitude moyenne de Titan sur cet 

intervalle limité. A cause de cette durée de 1000 ans, au lieu de l'analyse en fréquence, 

nous utilisons la méthode des moindres carrées, en particulier pour les termes à longue 

période. 

 

L'efficacité et l’exactitude de l'ensemble de la méthode sont vérifiées en comparant les 

représentations de la longitude moyenne de Titan issue de TASS par la méthode des 

moindres carrées et par la représentation standard de TASS sur 10 000 ans. 

 

Finalement et c'est ce qui importe, nous obtenons une représentation du mouvement de 

Titan pour les 1000 ans d'éphémérides du JPL. Il existe une différence de 60 km dans 

l'amplitude du terme principal entre les représentations du JPL et de TASS. Cette 

différence est considérée comme issue du système. L'intervalle de temps limité des 

éphémérides influence les fréquences propres et induit des erreurs dans les termes à 

longues périodes comme contenant la longitude du noeud de Titan. Pour toutes les 

autres composantes ou presque, leurs amplitudes et phases sont similaires à celles de 

TASS. L'erreur de représentation est inférieure à 100 km sur 1000 ans et la déviation 

standard est de 26 km environ. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABSTRACT 

 

The ephemerides resulting from numerical integration, which are convenient to download 

from online service of IMCCE or Horizons of the JPL, have a very good precision on the 

fitting to recent observations. Meanwhile, analytical ephemerides like TASS describe in 

detail the dynamical system by a representation based on a combination of the proper 

frequencies. 

 

We plan to use these two types of ephemerides in order to study the rotation of the 

natural satellites. It requires to rebuild a long-lasting and high precision ephemeris with 

proper frequencies based on the numerical integration ephemeris. The main difficulty is to 

avoid the shortcoming of the limited interval of the numerical ephemeris. 

 

In our work, we use the representation of the orbital elements of Titan from the TASS 

ephemeris analyzed over 10,000 years as a reference example. We experiment to obtain 

the proper frequencies with the TASS ephemeris over 1,000 years only, and then to get 

the analytical representation of the mean longitude of Titan in this limited interval. Due to 

this 1000 years time span, we use the least squares method instead of the frequency 

analysis, especially for the long period terms. 

 

The efficiency and exactness of the whole method are verified by comparing TASS 

representation of the mean longitude of Titan obtained by the least squares method with 

the 10,000 years reference example. 

  

Finally and most importantly, we get the representation of the mean longitude of Titan 

from JPL ephemeris over 1,000 years. Between the solution of JPL and the 

representation of TASS, it exists a 60 km difference in the amplitude of the major 

component. This difference is considered as a system difference. The limited interval of 

the ephemeris modifies the proper frequencies, which leads to the error in the long period 

terms such as the one from the node of Titan. For almost all other components, their 

amplitudes and phases are similar to the relative terms from TASS. The error in our 

representation is less than 100 kilometers over 1,000 years and the standard deviation is 

about 26 kilometers. 
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