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Marcher jusqu’au lieu où tarit la source,
Et attendre, assis, que se lèvent les

nuages.
Parfois, errant, je rencontre un ermite:
On parle, on rit, sans souci du retour.

Mon refuge au pied du mont Chung-nan,
WANG Wei.

Traduction en français par François
Cheng.
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Résumé

Résumé
Cette thèse généralise au problème spatial dans le cas lunaire les études sur diverses familles
de mouvements quasi-périodiques dans le problème plan des trois corps.

En tronquant au premier ordre non trivial le développement en puissances du rapport
des demi grands axes de la fonction perturbatrice moyennée sur les angles rapides, on
obtient un système complètement intégrable qui peut servir de première approximation
pour le système initial. C’est le système quadripolaire, découvert par Harrington. Dans un
article classique, Lidov et Ziglin ont étudié la dynamique de ce système. Nous commençons
par établir l’existence de solutions quasi-périodiques du problème spatial des trois corps
en appliquant les théorèmes de KAM à ce système.

Nous montrons ensuite l’existence de familles de solutions que nous appelons solutions
quasi-périodiques de quasi-collision : ce sont des solutions le long desquelles deux des
corps deviennent arbitrairement proches l’un de l’autre sans toutefois avoir de collision :
la limite inférieure de leur distance est nulle alors que la limite supérieure est strictement
positive. Ces solutions sont quasi-périodiques dans un système régularisé à un changement
de temps près. Des solutions de ce type ont été mises en évidence tout d’abord dans le
problème restreint plan circulaire par Chenciner et Llibre puis, dans le problème plan des
trois corps par Féjoz. Nous prouvons l’existence d’une mesure positive de ces solutions
dans le problème spatial des trois corps. L’existence de ce type de solutions avait été prédit
par Marchal dont nous confirmons rigoureusement le résultat. La démonstration consiste
en l’application d’un théorème KAM équivariant dans une régularisation du problème, ici
celle de Kustaanheimo-Stiefel, et par la compréhension, suivant Féjoz, de la relation entre
régularisation et moyennisation.

Mots-clefs

problème des trois corps, système seculaire, système quadripolaire, régularisation de Kustaanheimo-
Stiefel, orbite de quasi-collision

7



8

Quasi-periodic and Almost-collision Solutions of the Spatial
Three-body Problem

Abstract
This thesis generalizes to the spatial three-body problem in the lunar case some studies
about several families of quasiperiodic motions in the planar circular restricted three-body
problem and in the planar three-body problem.

As discovered by Harrington, if we develop the perturbing function of the system
averaged over the fast angles in the powers of the ratio of the semi major axes, then the
truncation at the first non-trivial order is integrable. This is the quadrupolar system. In
a classical article, Lidov and Ziglin studied the dynamics of this system. We start by
proving the existence of some quasi-periodic solutions of the spatial three-body problem
by applying KAM theorems to this system.

We then prove the existence of a family of quasi-periodic almost-collision solutions:
These are solutions along which two bodies become arbitrarily close to one another but
never collide: the lower limit of their distance is zero but the upper limit is strictly
positive. After a change of time, these solutions are quasi-periodic in a regularized system.
Such solutions were first discovered in the planar circular restricted three-body problem
by Chenciner and Llibre, and afterwards, in the planar three-body problem by Féjoz.
We show the existence of a positive measure of such solutions in the spatial three-body
problem, which confirms rigorously a prediction of Marchal. The proof goes through the
application of an equivariant KAM theorem to a regularization of the problem, here the
Kustaanheimo-Stiefel regularization, and, as in Féjoz’s work, it requires understanding the
relation between the regularization and averaging.

Keywords

three-body problem, secular systems, quadrupolar system, Kustaanheimo-Stiefel regular-
ization, almost-collision orbits
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Introduction

0.1 Introduction (Français)
L’étude du problème des N-corps newtonien, comme modèle central de lamécanique céleste,
commence sa longue et passionnante histoire avec l’œuvre fondamentale de Sir Isaac New-
ton sur la “loi d’attraction universelle en inverse du carré de la distance”, énoncée dans
les Principia (publiés en 1687).

Après son succès dans la résolution du problème des deux corps, Newton a essayé de
comprendre le cas de N corps de façon perturbative. Dans sa Proposition 65 [CW99], il
écrivait:

More than two bodies whose forces decrease as the squares of the distances from their
centers are able to move with respect to one another in ellipses and, by radii drawn to the
foci, are able to describe areas proportional to the times very nearly.

Dans le formalisme hamiltonien, nous interprétons cette phrase de la manière suivante:
Dans une certaine région (dépendant des masses) de l’espace des phases, il est possible de
décomposer l’hamiltonien F du problème des trois corps en deux parties

F = FKep + Fpert,

où FKep est la somme de deux hamiltoniens keplériens découplés, et Fpert est une petite
perturbation. La dynamique de F peut alors être considérée approximativement comme
celle de mouvements keplériens dont le faible couplage induit une évolution lente des
éléments des ellipses keplériennes (les mouvements séculaires). Une telle décomposition
n’est pas unique, et doit être choisie, en fonction de la situation étudiée, de façon à
minimiser la norme de la fonction perturbatrice.

Après Newton, Euler, Clairaut, d’Alembert, Lagrange et Laplace donnèrent beaucoup
de résultats importants sur ce sujet. Notamment, Laplace a donné le premier résultat de
“stabilité” du système Soleil-Jupiter-Saturne. Les techniques developpées à ce propos com-
posent une partie essentielle de la théorie des perturbations et des systèmes dynamiques;
plus généralement, elles ont eu une grande influence sur le développement des mathéma-
tiques.

Pour étudier la dynamique séculaire, on développe habituellement la partie perturbative
Fpert en série de puissances de petites quantités (par exemple, les rapports de masse, les
excentricités ou les rapports de demi grand axes), puis on tronque la série et on moyenne
sur les angles rapides keplériens, i.e. les longitudes moyennes, (ou bien on fait ces opéra-
tions dans l’ordre inverse, comme dans l’étude du problème planétaire) pour obtenir une
système approché qui est un système fermé en les éléments séculaires, c’est-à-dire en les
éléments qui décrivent les formes et les positions instantanées des ellipses keplériennes. La
dégénérescence propre de la partie képlerienne FKep empêche d’appliquer directement les
techniques de la théorie des perturbations: l’hamiltonien d’un mouvement képlérien ellip-
tique ne dépend en effet que de son demi grand axe et non des autres variables d’action qui
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12 Introduction

sont données par l’excentricité et l’inclinaison. Ce n’est donc qu’à partir de la dynamique
du système approché évoqué ci-dessus que l’on peut appliquer les techniques de la théorie
des perturbations pour obtenir des informations dynamiques sur le système complet.

La majorité des études séculaires ne concerne qu’une partie très particulière de l’espace
des phases, qui correspond aux problèmes planétaires ou aux problèmes lunaires. Dans
sa thèse [Féj99], J. Féjoz présente une étude plus globale de la dynamiques séculaire du
problème plan des trois corps. Il étudie en particulier la dynamique au voisinage de
situations de collision double. Appliquant un théorème KAM bien adapté à ce système, il
établit l’existence de plusieurs familles de tores invariants (correspondant à des solutions
quasipériodiques), et celle de solutions de quasi-collision dans lesquelles deux des corps
ont des rencontres de plus en plus proches sans avoir cependant de collision. L’existence
de ce dernier type de solutions généralise le résultat de A. Chenciner et J. Llibre [CL88]
sur l’existence de solutions de quasi-collision dans le problème réstreint plan circulaire des
trois corps.

Contrairement à ce qui se passe pour le problème des trois corps dans le plan, dans le
problème spatial des trois corps, les systèmes séculaires ne sont a priori pas intégrables.
Toutefois, comme l’a d’abord observé Harrington [Har68], si on développe le système
séculaire en puissances du rapport des demi grands axes, un heureux hasard fait que le
premier terme non trivial est intégrable: c’est le système quadripolaire. Dans [LZ76], Li-
dov et Ziglin ont présenté une étude globale la dynamique quadripolaire. Néanmoins, leur
étude au voisinage des collisions n’est pas complète. Après avoir justifié leur étude au voisi-
nage des collisions en utilisant la technique de régularisation, nous montrons l’existence de
certaines familles de solutions quasi-périodiques et également de familles de solutions de
quasi-collision dans le problème spatial des trois corps. En fait, l’existence de solutions de
quasi-collision avait déjà été prédite par C. Marchal dans [Mar78]. Notre étude constitue
ainsi une confirmation rigoureuse de sa prédiction.

Le système étudié par Lidov et Ziglin vit naturellement dans l’espace séculaire réduit
par les rotations dans l’espace et les rotations de l’ellipse extérieure dans son plan (qui
forment un groupe SO(3) × SO(2)). Or cet espace réduit est singulier lorsque l’ellipse
intérieure dégénère tout en étant orthogonale au plan de l’ellipse extérieure. Au prix de
la restriction à un sous-espace contenant les situations où l’ellipse intérieure dégénère et
du passage à un revêtement à deux feuillets ramifié en ces points, nous pouvons continuer
à utiliser certaines cordonnées de Delaunay et ainsi donner un sens au Hamiltonien de
Lidov et Ziglin jusqu’aux collisions, ce qui est la clé pour prouver l’existence de solutions
de quasi-collision.

L’une des subtilités de la régularisation est sa relation avec la moyennisation. Dans le
cas du problème plan où la régularisation est celle de Levi-Civita, J. Féjoz avait remarqué
que, si elles ne commutent pas, les deux opérations commutent “presque" dans un sens
précis. La régularisation que nous utilisons, dans l’espace, est celle de Kustaanheimo-
Stiefel; la notion de plan de Levi-Civita permet de faire le lien entre les deux régularisations
et ainsi de généraliser au problème spatial le traitement de ce point délicat. En particulier,
le système quadripolaire et le système régularisé quadripolaire sont orbitalement conjugués
au prix d’un petit changement de la masse du corps extérieur.

Appliquant un théorème KAM iso-énergétique équivariant bien adapté à la dégénéres-
cence propre du système (ou, ce qui est équivalent, en appliquant un théorème KAM
iso-énergétique au système réduit), nous trouvons un ensemble de mesure positive de tores
invariants sur le niveau d’énergie régularisé, rencontrant transversalement l’ensemble de
collision que la régularisation a ajouté à l’espace des phases. En montrant l’existence
d’un ensemble de mesure positive de sous-tores ergodiques qui rencontrent l’ensemble de
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collision suivant des sous-variétés de codimension 3, nous concluons qu’il existe un en-
semble de mesure positive de solutions de quasi-collisions dans le problème spatial des
trois corps. Ces solutions sont quasi-périodiques dans le système régularisé, c’est-à-dire
après changement de la loi du temps. Comme l’avait indiqué C. Marchal, ces solutions
de quasi-collision donnent, dans la modèle idéal qui vient celle de Soleil-Terre-Lune, une
probabilité positive des collisions de la lune avec la terre.
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0.2 Introduction

0.2.1 A Short Historical Survey of Perturbative and Secular Studies of
the N-Body Problem

Right after the fundamental work of Sir Issac Newton on the “inverse-square law” in his
Principia (published in 1687), the study of the Newtonian N-body problem, as a central
model of modern celestial mechanics, begins its long and exciting history.

After his success in solving the two-body problem, Newton began to study the case
of N-bodies by what we call a perturbative viewpoint. In his Proposition 65 [CW99], he
wrote

More than two bodies whose forces decrease as the squares of the distances from their
centers are able to move with respect to one another in ellipses and, by radii drawn to the
foci, are able to describe areas proportional to the times very nearly.

In Hamiltonian formalism, we may interpret this sentence in the following way: After
fixing the center of mass, in some particular region of the phase space depending on the
masses, it is possible to decompose the Hamiltonian F of the three-body problem into two
parts

F = FKep + Fpert,

where FKep is the sum of several uncoupled Keplerian Hamiltonians, and Fpert is signifi-
cantly smaller than each of the Keplerian Hamiltonians in FKep. The dynamics of F can
thus be described as uncoupled Keplerian motions with slow evolutions of the Keplerian
orbits (the so-called secular motions).

In the proof, Newton pointed out two cases allowing the above.
The first case, the planetary problem, is that of several small bodies (the “planets”)

moving around a significantly massive body (the “Sun”) with initially lower-bounded mu-
tual distances. This case models the motion of the solar system in which the masses of the
planets are very small compared to the mass of the Sun, and, their mutual interactions
can thus be ignored in first approximation.

The second case is that either a planetary system or a two-body system is affected by
another body far away. In the first approximation, the planetary system or the two-body
system is not affected by the distant body, hence the system with all its mass considered
as being concentrated at its center of mass and the distant body form a two-body system.
The Earth-Moon-Sun system is an example, which explains that one speaks of the lunar
system.

In his Proposition 66 and its twenty-two corollaries, Newton had made the first series
of perturbative studies of the three-body problem. Notably, in the eleventh corollary, he
studied the evolution of the node of the moon with the orbital plane of the sun in the lunar
problem, and concluded that the node will either move retrogradely or stay stationary
and is therefore carried backward at each revolution. As the node is an elliptical element
which does not depend on the fast Keplerian motion (the movement of the moon on its
elliptic orbit), this is also the first result concerning the secular dynamics of the three-
body problem, that is, the dynamics of the slow evolutions of the Keplerian ellipses in the
three-body problem.

After Newton, understanding the secular motions of the solar system became a topic
of great interest in mathematico-astronomical research. The term “secular system”, which
is the averaged system of Fpert over the fast angles, together with a series of important
results on its dynamics, appeared already at the time of Lagrange (e.g. [Lag73], [Lag81],
[Lag82]) and Laplace (e.g. [Lag83], [Lap72], [Lap84]). After the important contributions
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of Euler, Clairaut, D’Alembert and Lagrange, Laplace proved the first order1 secular
invariance of the semi major axes in the Sun-Jupiter-Saturn system in [Lap73]2. Later on,
the secular evolution of the orbital elements was further studied by Lagrange, Laplace and
their successors. Mathematically, these studies gave birth to many important ideas and
phenomena of the perturbation theory, or more generally, the theory of dynamical systems:
averaging method, periodic and quasi-periodic motions, effect of resonances, method of
variation of constants, problem of stability and instability, and so on. The study of the
secular dynamics was later continued by many mathematicians and astronomers, notably
Cauchy, Le Verrier, Tisserand, Poincaré, Arnold, Moser, Lieberman, Lidov-Ziglin etc, up
to nowadays, where the power of computers allows studying the dynamics on extremely
long duration of time (See for example the works of Laskar [Las88], [Las90], [Las08]).

0.2.2 Some Methods of Secular Studies

To study the secular dynamics, one usually expands the perturbing part into a power series
of some small quantities (e.g. the mass ratios, the eccentricities or ratios of the semi major
axes), then truncates the series properly and averages over the fast Keplerian angles (or in
the opposite order, as in the study of planetary problem) to get an approximating system
(often called secular system), which is a closed system in the slow secular elements, i.e. the
elements that describe the shapes and positions of the ellipses. Based on the dynamical
knowledge of the approximating system, one can then apply techniques of perturbation
theory to understand the dynamics of the full system.

In this strategy, the study boils down to finding a proper approximating system whose
dynamics can be studied explicitly at least locally, and verify that the tools from pertur-
bation theory can be applied. A particular problem encountered in applying techniques
of perturbation theory is the proper degeneracy of the Keplerian part: Among the 3N − 3
action variables, it only depends on N − 1 of them. One thus needs more informations
about the perturbing part. In fact, if we can find an approximating system as mentioned
above, then by putting it together with the Keplerian part, we get a Hamiltonian which
will most probably depend non-trivially on more action variables (thus remove the proper
degeneracy), and whose dynamics is equally known.

0.2.3 Local and Global Secular Studies

The approximating system need not be integrable. This fact often forces a local nature of
study. Indeed, even if the approximating system is not integrable, one may possibly get an
elliptic singularity (i.e. an elliptic equilibrium) from the symmetries and the Hamiltonian
nature of the system. By building Birkhoff normal forms around this singularity, one
obtains its nearby dynamics up to a sufficiently high order, which may enable us to apply
perturbation theory. This analysis can only be carried out locally in the phase space, and
was naturally called local secular study. See Jefferys-Moser [JM66], Lieberman [Lie71] and
Laskar-Robutel [LR95], Robutel [Rob95], Féjoz [Féj04] for example.

On the other hand, if one has constructed an integrable approximating system, then
it is possible to study its dynamics globally. For example, the secular systems of the
planar three-body problem are integrable. In fact, the first order secular system (i.e. the
averaged system, which is defined by the averaged Hamiltonian of the perturbing part over
the two fast angles) has two degrees of freedom and is invariant under the Hamiltonian

1The development was made for the eccentricities.
2Several years later, Lagrange has shown that if one expands the secular system in the power series of

the eccentricities, then the semi major axes has also no secular evolution.
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SO(2)-action of rotations in the plane. By fixing the angular momentum and reducing the
system by the SO(2)-symmetry, we arrive at a Hamiltonian system with only one degree
of freedom. For the same reason, if the two Keplerian frequencies are Diophantine, or if
they do not appear at the same order of magnitude, then the higher order secular systems
(which one gets from higher order averaging over the fast angles) remain integrable. In his
thesis [Féj99] (see also [Féj02]), J.Féjoz studied the dynamical behaviors and bifurcations
of the first order secular system in detail, especially in the neighborhood of a degenerate
inner ellipse (which was not much studied before his work), and thus gave a global view
of the first order secular dynamics of the planar three-body problem. As the smallness of
the perturbing function is expressed by a relation involving the masses and semi major
axes, this study remains valid in the perturbing region defined in [Féj02]. In particular it
covers not only the traditional planetary and lunar regions but also other regions of the
phase-parameter space in terms of the masses and the ratio of semi major axes α.

In the present study of the spatial three-body problem, the situation is different. The
secular systems will in general have four degrees of freedom. They also possess the SO(3)-
symmetry. Reduction by this SO(3)-symmetry will in general lead to systems with two
degrees of freedom, which are a priori not integrable. However, as was first observed by
Harrington [Har68] in 1968, if we expand the first order secular system in powers of the
ratio α of the semi major axes, then luckily the first non-trivial term admits an additional
SO(2)-symmetry. The presence of this unexpected symmetry implies the integrability
of the truncated secular system reduced to this term, which is called the quadrupolar
system and denoted by α3Fquad. A global study of Fquad was carried out by Lidov and
Ziglin [LZ76] and supplemented by Ferrer and Osacar [FO94]. We will further supplement
the study of Lidov and Ziglin by a reformulation of their study in the neighborhood of a
degenerate inner ellipse. As a result, we obtain a global view of the quadrupolar dynamics.
A treatment of the quadrupolar dynamics with the restricted problem with an infinitesimal
outer body was treated in [FL10].

As we require α to be small, we need to stick to the lunar case and cannot be more
global in the phase space.

0.2.4 Lindstedt Series and Kolmogorov-Arnold-Moser Theorem

In the eighteenth century, the perturbative methods for secular study faced a serious
problem: the existence of secular terms (i.e. those terms tending to infinity when time
tends to infinity) in the expansion of the perturbing part along an invariant torus of an
approximating system. A problem of working with such expansion is that the motions that
its truncations describe do not fit well with the slow evolution of the secular dynamics: due
to the existence of the secular terms, the truncated series in general determines a dynamics
in which there are many escaping motions and the escaping velocity is polynomially in
time. This is one of the main deficits of the old method.

The new method began its fast development from Poincaré’s proof of the existence of
Lindstedt series, which do not contain any secular term. In such series, the expansion is
made with e.g. fixing frequencies3 at an invariant torus in an approximating system. A
truncation at a right number of terms of such a series can therefore be taken as a good
approximation of the full motion in which the terms do not blow up when the time goes to
infinity. Poincaré’s method was later brought by Von Zeipel to the situation that only some
of the phases were eliminated, and thus well-suitable to the systems with proper degeneracy

3The frequencies are not the only quantities that one may to fix to obtain Lindstedt series. For example,
one can equally fix the energy and the ratio of the frequencies instead.
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and/or resonances. As noticed by Poincaré, such series depending on variable frequencies
are in general divergent. The reason for the divergence are two folds: each term in the
series is itself determined by some series, whose coefficients contain small divisors: the
frequencies that are too close to resonance imply that infinitely many denominators of the
terms of the expansion are “very small” compared to the corresponding numerators, which
makes the series divergent in general. Even if all the terms of the series are convergent,
the Lindstedt series (with variable frequencies, depending on some small parameter) itself
may well be divergent, caused by the destruction of the resonant tori, as observed by
Poincaré in [Poi92].

Nevertheless, are some of such series convergent? It was found that the convergence
of the terms in the Lindstedt series are closely linked with the arithmetical property of
its frequencies. The main breakthrough started in 1954, when A. Kolmogorov showed
that a invariant torus with Diophantine frequencies of an analytic Hamiltonian system
persists under small perturbations, provided some non-degeneracy condition on the fre-
quency map is satisfied [Kol54]. After Siegel’s work on complex dynamics, this was the
second important achievement on the small divisor problem. The degenerate case perti-
nent to the planetary problem was then treated by V. Arnold in 1963 [Arn63], which is
also the first application of such techniques in celestial mechanics. These results, together
with J. Moser’s similar results on smooth twist maps, gave birth to the celebrated KAM
theory. The issue of convergence of the Lindstedt series was finally settled by Moser in
[Mos67], in which he showed that the persisting invariant torus depends analytically on the
small parameter of the Lindstedt series, and therefore the corresponding Lindstedt series
with fixed Diophantine frequencies converge. With Jefferys, Moser also established the
existence of quasi-periodic motions in the spatial three-body problem arising from a hy-
perbolic secular singularity in the planetary and the lunar cases in [JM66]. An application
of KAM theorems to the planar three-body problem was done by Lieberman [Lie71].

As noticed by several authors, due to a surprising resonance of the linear part discov-
ered by Herman, the original proof of Arnold on the stability of the planetary problem is
only valid for the planetary system with two planets in the plane. The theorem is proven
for the spatial three-body problem by F. Robutel in [Rob95], Following a manuscript of M.
Herman, a complete proof of Arnold’s theorem concerning the stability of the planetary
problem with many planets in R3 was carried out by J. Féjoz [Féj04]. Another proof of this
result has been achieved by Chierchia and Pinzari [CP11b]. In the planetary three-body
problem, some elliptic invariant 2-tori was shown to exist in [BCV06].

In his thesis [Féj99], based on the global study of the secular dynamics of the planar
three-body problem, J.Féjoz has proved that there exists a set of positive measure of
Lagrangian tori which arise from secular invariant tori, and a positive relative measure
(the Lebesgue measure in some appropriate parameter space; this set of tori are lower
dimensional, hence has zero measure in Π) of invariant isotropic tori that arise from the
secular singularities in the planar three-body problem.

In the spatial three-body problem, based on Lidov-Ziglin’s study of the quadrupolar
system, by applying KAM theorem, we prove
Theorem 0.1. In the spatial three-body problem, after reduction of the SO(3)-symmetry,
there exists a set of positive measure of 4-dimensional invariant ergodic Lagrangian tori,
which arise from 4-dimensional quadrupolar invariant tori, and a positive relative measure
of 3-dimensional invariant isotropic ergodic tori which arise from the quadrupolar elliptic
singularities. They give rise to 5-dimensional invariant tori and 4-dimensional invariant
tori of the spatial three-body problem respectively.

We already recalled that the persistence of a lower dimensional tori arising from the
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hyperbolic secular singularity (which is present only for large enough mutual inclinations),
is already shown by Jefferys and Moser [JM66]. Part of our results can be seen as a
generalization of their result to elliptic secular singularities in the lunar case.

0.2.5 Quasi-periodic Almost Collision Orbits

In Chazy’s classification of the seven possible final motions of the three-body problem
(see [AKN06], P. 83), let us consider two particular kinds of possible motions: bounded
motions and oscillating motions. Bounded motions are those motions such that the mutual
distances remain bounded when time goes to infinity, while oscillating motions are those
motions such that as time goes to infinity, the upper limit of the mutual distances goes to
infinity, while the lower limit of the mutual distances remains finite. They are exactly the
possible final motions for which Chazy has not classified the possible velocities. We know
a number of bounded motions but still relatively few oscillating motions, with Sitnikov’s
model being one of the well-known example of the latter kind.

There is yet another possibility of oscillating motions, namely, if we replace the oscilla-
tion of mutual distances by the oscillation of relative velocities of the bodies. C. Marchal
called such bounded motions with oscillating velocities “oscillating motions of the second
kind”. By consulting the criteria for velocities in Chazy’s classification, we see that if such
motions do exist and are not oscillating motions, then they must be bounded.

In [Mar78], by analyzing the quadrupolar dynamics near a degenerate inner ellipse, C.
Marchal became aware of the existence of a positive measure of such motions in the spatial
three-body problem. Having not applied rigorous perturbative tools, he nevertheless did
mention in his study that the motions he had in mind

• are with incommensurable frequencies;

• arise from quadrupolar invariant tori;

• form a possibly nowhere dense set with small but positive measure in the phase
space.

We shall investigate a particular kind of oscillating motions of the second kind: the
quasi-periodic almost-collision orbits, which are, by definition, orbits along which two
bodies get arbitrarily close to each other but never collide: the lower limit of their distance
is zero but the upper limit is strictly positive, and they are quasi-periodic in a regularized
system. More precisely, we shall show the existence of a set of positive measure of such
orbits arising from the (regularized) quadrupolar invariant tori. These are the orbits
predicted by C. Marchal.

The first rigorous mathematical study of quasi-periodic almost-collision orbits was
achieved by A. Chenciner and J. Llibre in [CL88], where they considered the planar circular
restricted three-body problem in a rotating frame with a large enough Jacobi constant
which determines a Hill region with three connected components. After regularizing the
dynamics near the double collision of the astroid with one of the primaries, they reduce
the dynamical study to the study of the corresponding Poincaré map on an annulus of
section in the regularized system. They showed that this is a twist map with a small
twist perturbed by a much smaller perturbation, which makes it possible to apply Moser’s
theory to establish the persistence of a positive measure of invariant KAM tori. By
adjusting the Jacobi constant, they showed that a positive measure of such invariant tori
intersect transversally the codimension 2 collision set (the set in the regularized phase
space corresponds to the double collision of the astroid with one of the primaries). Such
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invariant tori were called invariant “punctured” tori because they are “punctured” by
the collisions in the regularized phase space. As the flow is linear and ergodic on each
punctured torus in the regularized system, most of the orbits will not pass through but
will get arbitrary close to the collision set. These orbits correspond to a set of positive
measure of quasi-periodic almost-collision orbits in the planar circular restricted three-
body problem.

In his thesis [Féj99], J. Féjoz generalized the study of Chenciner-Llibre to the planar
three-body problem. In his study, the inner double collisions were regularized by Levi-
Civita regularization. The secular regularized systems, i.e. the normal forms one gets by
averaging over the fast angles, can then be built with the same averaging method as the
usual non-regularized ones. A careful analysis shows that the dynamics of the secular
regularized system and the naturally extended (through degenerate inner ellipses) secular
system are conjugate up to a modification of the mass of the third body which is far
away from the inner pair. The global analysis of the secular dynamics then permitted
him to verify the non-degeneracy conditions which are necessary to apply KAM theorem.
The persistence of a set of positive measure of invariant tori is thus established. After
verifying the transversality of the intersections between the KAM tori and the codimension
2 collision set, he concluded that as the frequencies of the KAM tori are irrational, most
of the orbits will not pass through but will get arbitrary close to the collision set. These
orbits give rise to quasi-periodic almost-collision orbits of the planar three-body problem.

In this thesis, we generalize the former works of Chenciner-Llibre and Féjoz to the spa-
tial three-body problem. Simultaneously it gives a rigorous proof of Marchal’s prediction.
More precisely, we shall prove the following theorem:

Theorem 0.2. There exists a set of positive measure of quasi-periodic almost-collision
orbits on each negative energy surface of the spatial three-body problem. They form a set
of positive measure of quasi-periodic almost-collision orbits in the phase space of the spatial
three-body problem.

0.2.6 Other Types of Almost Collision Orbits

Aside from examples of, or related to, quasi-periodic almost-collision orbits cited above, we
also know some other examples, which are closely related to the existence of non-collision
singularities in the N -body problem for N > 3. Such solutions were constructed by Z. Xia
[Xia92] in the spatial problem with N = 5, and by J. Gerver [Ger91] in the planar problem
with N a large enough multiple of 3. The motions remain collisionless along these orbits,
but some of the velocities and the size of the system goes to infinity. As the number of
particles is finite, this can only happen when at least two particles get arbitrarily close to
each other.

0.2.7 Variants of Secular Space and Lidov-Ziglin’s Study of the Quadrupo-
lar System

As already mentioned above, the global secular dynamics of the lunar spatial three-body
problem that we are going to describe is closely related to the dynamics of the quadrupolar
system Fquad, which has an additional first integral: the norm of the outer angular mo-
mentum |~C2| = G2. It can then be further reduced to one degree of freedom, and hence is
integrable.

After reduction to one degree of freedom, that is after fixing ~C and G2 to non-zero
values and eliminating the conjugate angles, the quadrupolar system is well defined on the
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2-dimensional reduced space, which is a smooth manifold except when C := |~C| = G2,
where the degenerate inner ellipses orthogonal to the Laplace plane give rise to two singular
points, and possibly if G1 = L1 = |C + G2| which corresponds to a horizontal circular
inner ellipse (see Figure 2.5).

When C 6= G2, the functions G1−|C−G2| and g1 become symplectic polar coordinates
in the neighborhood of the unique point where G1 attains its minimum value, that is when
the inner and outer ellipses are coplanar.

When C = G2, the reduced space is not smooth, and the secular Delaunay coordinates
loose their regularity along the curve G1 = 0. Nevertheless, in order to use Lidov and
Ziglin’s study when the inner ellipse degenerates, we find more convenient, rather than
introducing new local coordinates, to continue using Delaunay/Deprit coordinates after
having extended their validity on the branched double cover of this reduced space, defined
as follows:

We first define the modified secular space by treating inner ellipses as decorated: A
decorated ellipse is a pair consisting of a non-oriented plane and a possibly degenerate
ellipse (oriented when the ellipse is non-degenerate) within this plane. This space is seen
as the blow-up of the secular space, or space of ellipse pairs along degenerate inner ellipses.
We then define the critical quadrupolar space as a particular codimension 1 subspace of the
modified secular space, which is invariant under the flow of the quadrupolar dynamics 4 for
C = G2. We show that on a double cover of the critical quadrupolar space, the Delaunay
and Deprit coordinates can be naturally extended by allowing the inner eccentricity e1 to
be negative, and that the extended coordinates become regular near a degenerate inner
ellipse. The quadrupolar dynamics now becomes more transparent by lifting Lidov-Ziglin’
formula for Fquad to this double cover of the critical quadrupolar space (See Figure 2.6).

0.2.8 Regularizations of the Kepler Problem

The presence of collisions makes the Keplerian flow incomplete. In order to make a pertur-
bative study of the Kepler problem near collisions, it is necessary to regularize the system
so as to get a smooth complete flow near collisions. Various methods are available with
possibly different understandings of the word “regularization”. In this thesis, we shall only
consider the following type: A regularization of the Kepler problem on a negative energy
surface consists in a compactification of the energy surface, and the extension of the flow
after a change of time to the compactified energy surface such that the resulting flow is
complete.

The first geometrical regularization of the planar Kepler Problem was constructed by
Levi-Civita in [LC20], though we should note that the main ingredient of this method was
already presented 31 years before by E. Goursat [Gou87]5.

For the spatial Kepler problem, two methods of regularizing the collisions are among
the most widely used: the Moser regularization and the Kustaanheimo-Stiefel regular-
ization. Moser’s method transforms an energy level of the Kepler problem into a dense
open subset of an energy level of the geodesic flow on S3 which can be completed di-
rectly. Moser’s method has the advantage that the underlying geometry, and in particular
the SO(4)-symmetry of the spatial Kepler problem, become evident; this method can be
generalized directly to higher dimensional Kepler problem.

4This also holds for the secular-integrable dynamics, which one get by higher order eliminations of the
angle conjugate to G2, see Subsection 2.1.3.

5This historical remark is due to A. Albouy. E. Goursat already defined the same symplectic transfor-
mation (as Levi-Civita) based on the complex square mapping to transform harmonic oscillators (resonant,
with only one frequency) into Kepler problem.
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Kustaanheimo-Stiefel regularization6 generalizes Levi-Civita regularization by trans-
forming Kepler problem into a linear system of completely resonant harmonic oscillators.
Compared to Moser’s regularization, this method has the advantage that the resulting
dynamics is linear whose expression is easier to handle. The theory of this regularization
(notably the related geometry), together with several theoretical applications, was pre-
sented in details in the book [SS71] of Stiefel and Scheifele. The relation between Moser’s
regularization and Kustaanheimo-Stiefel regularizations is explored in [Kum82].

In Section 3.1, starting with a formula in [Mik], we have formulated the Kustaanheimo-
Stiefel regularization in the language of quaternions. The benefit of such a formulation is
that it leads to very compact formulæ. Another quaternionic formulation can be found in
e.g. [Wal08]. The symplecticity of the Kustaanheimo-Stiefel regularization is established
by means of a symplectic reduction procedure. Even if the regularized flow is directly
related (via a change of time) to the Kepler flow only for a single value of the energy,
for all values of the energy of the regularized system greater than a negative quantity
depending only on the masses of the Kepler problem, we show that the corresponding
trajectories in the physical space are ellipses. Following [SS71], a link between Levi-Civita
regularization and Kustaanheimo-Stiefel regularization is presented in terms of the Levi-
Civita planes. We then build several sets of coordinates in the regularized phase space
Πreg. Following a course of A. Chenciner [Che86], J. Féjoz has built a set of coordinates
for the (Levi-Civita) regularized dynamics in the planar case in [Féj01] which we call
planar Chenciner-Féjoz coordinates. A generalization of these coordinates in the spatial
case is made, which, with proper justification, can be used to study the dynamics of
the quadrupolar regularized system (i.e. the regularized counterpart of the quadrupolar
system). Another set of action-angle coordinates (called regularized coordinates) is also
introduced, which is regular near collision-ejection motions and allows the application of
perturbative techniques.

0.2.9 Outlines of the Proofs

Outline of the proof of Theorem 0.1

We consider the lunar case, so that the third body stays far away from the other two. In
Jacobi coordinates, we make the decomposition

F = FKep + Fpert.

By hypothesis, the two Keplerian frequencies do not appear at the same order of
magnitude of α. Following Jefferys-Moser [JM66] and Féjoz [Féj02], we eliminate the fast
angles from the perturbing part, up to a remainder of higher order of smallness (of α), by
a change of coordinates close to identity, without imposing further arithmetic conditions
on the two Keplerian frequencies, and obtain an approximation by the first-order secular
system F 1

sec. We build higher order secular systems Fnsec with the same averaging method.
As we have said, an important difference with the planar case is the integrability of

the secular systems. Integrable approximating systems in the spatial case are found by
developing the secular systems in powers of α, the ratio of semi major axes a1, a2, and
truncating the series at the lowest non trivial term, which, by chance, is independent
of the argument g2 of the pericentre of the outer ellipse. We thus get the integrable
quadrupolar system Fquad. Note that this term remains the same for all the higher order

6One uses also the word “regularization" for the Levi-Civita or Kustanheimo-Stiefel constructions,
though the actual regularization are only obtained after the reduction of some symmetry (respectively by
Z/2Z or S1) coming from the construction.
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secular systems Fnsec. We then eliminate the angle g2, conjugate to G2, to get the higher
order secular-integrable systems Fn,n′sec , whose dynamics is only a small perturbation of the
quadrupolar dynamics, and orbitally conjugated to it for a dense open set of parameters.

When C and G2 are different, the triangle inequality implies that the angular momen-
tum G1 of the inner ellipse remains bounded away from zero (equivalently, the eccentricity
e1 of the inner ellipse is bounded away from 1). The required verification of iso-chronic
non-degeneracy of the secular-integrable systems reduced by the SO(3)-symmetry is done
in Appendix D. It is based on Lidov-Ziglin’s study of the quadrupolar dynamics which,
together with the effective dependance of the Keplerian part on the semi major axes, al-
lows us to apply the iso-chronic KAM theorem described in Corollary 2.1 and thus prove
the theorem. Theorem 2.2 affirms that in the reduced system, there exists a family of
periodic orbits of the reduced system accumulating every Lagrangian KAM torus.

Outline of the proof of Theorem 0.2

To prove Theorem 0.2, we first regularize the inner double collisions of the system on a
negative energy surface F = −f, f > 0 by Kustaanheimo-Stiefel regularization and obtain
a regularized system F which is no longer singular on the set Col consisting of inner double
collisions. Note that by construction, F has an additional SO(2)-symmetry, and that the
actual regularization is obtained from F by reduction of this symmetry. (Subsection 3.1.2,
3.2.2)

We decompose F as
F = Fkep + Fpert.

The Hamiltonian Fkep describes the uncoupled motions of four harmonic oscillators in
1 : 1 : 1 : 1 resonance (the regularized inner motion) and an outer Keplerian motion,
and Fpert is of smaller magnitude comparing to FKep. Again, FKep is properly degenerate
(Subsection 3.2.2). In order to make perturbative studies, we need to study some integrable
approximations of Fpert.

Analogously as in the initial non-regularized case, we eliminate the fast angles in Fpert
by a change of coordinates close to identity, without imposing further arithmetic conditions
on the fast frequencies, to get the n-th order secular regularized systems Fnsec. (Subsection
3.2.5)

As the secular systems Fnsec, the secular regularized systems Fnsec are a priori not
integrable. Nevertheless, if we expand Fnsec into the powers of α, then the truncation
at the first non-trivial term is again integrable, since it is invariant under the SO(3)-
symmetry, and has an additional first integral G2. This term defines the quadrupolar
regularized system Fquad. We can then build the secular-integrable regularized systems
Fn,n

′
sec by again eliminating g2. These systems remain integrable and their dynamics is

only a small perturbation of Fquad (Subsection 3.2.6). The function Fquad descends to a
function on the regularized secular space, a space which can be identified with the secular
space. We study its dynamics in the neighborhood of degenerate inner ellipses in the
critical quadrupolar space, on whose double cover Chenciner-Féjoz coordinates and the
“Deprit-like coordinates” extend to regular coordinates. (Subsection 3.2.4, Subsection
3.2.3; see also Subsection 1.2.3, Subsection 3.1.6).

In order to understand the dynamics of Fquad, especially in the neighborhood of the
regularized critical quadrupolar space, we first establish its relation with Fquad. The
regularization and averaging procedure do not commute.. Nevertheless ,we show that after
being symplectically reduced by the SO(3)-symmetry, the dynamics of Fquad is conjugate
to the dynamics of Fquad, up to a modification of the mass m2 of the non-fictitious outer
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body and a (secular) constant factor (Proposition 3.2.4). This allows us to directly deduce
the dynamics of Fquad from the dynamics of Fquad, especially in the neighborhood of the
critical quadrupolar space (Section 2.2). Moreover, up to a constant factor, the invariant
tori in the corresponding quadrupolar system and the quadrupolar regularized system are
conjugate. (Subsection 3.2.7) We then deduce the geometry of the invariant tori of Fn,n′sec

and the existence of their torsions from that of Fquad, which in turn is deduced from that
of Fquad. In particular, with our study of the quadrupolar system Fquad (Section 2.2),
we immediately deduce the quadrupolar iso-chronous non-degeneracy in need from the
quadrupolar iso-chronous non-degeneracy of Fquad, which holds in a dense open subset of
the secular space for a dense open set of parameters.(Appendix D) The iso-energetical non-
degeneracy of the regularized Keplerian part with respect to the action variables conjugate
to the fast angles are verified directly(Subsection 3.2.8). Therefore we have obtained all the
non-degeneracy conditions in need to apply the equivariant iso-energetic KAM theorem
(Corollary 2.3) in Π′reg.

By applying Corollary 2.3, we establish the existence of a positive measure of La-
grangian invariant tori on the regularized zero-energy surface for any negative energy of
the non-regularized system(Subsection 3.2.8). We then show that the collision set in-
tersects a positive measure of these invariant tori transversely (so that, in the original
phase space, they give rise to invariant punctured tori, i.e. invariant tori punctured by the
collisions). (Subsection 3.2.9)

Such an invariant Lagrangian torus, which intersect the collision set transversally, is
foliated by lower dimensional ergodic subtori. These ergodic subtori are interchanged by
the symmetries of the system. We use this fact to prove that these ergodic subtori intersect
the collision set on codimension 3 submanifolds. As the flow is irrational on these tori,
almost all the trajectories get arbitrarily close to Col, but never actually intersect it. As
a result, for each negative value of the energy, there exists a set of positive measure of
quasi-periodic almost-collision orbits on this energy surface, and hence there exists a set
of positive measure of quasi-periodic almost-collision orbits in the original phase space Π,
which proves the theorem. (Subsection 3.2.11)

Comparison between the planar and spatial cases

We explicitly list here some common points and differences between our study and the
proof of the corresponding results in the planar case by Féjoz in [Féj02].

Common Features between the Planar and the Spatial Cases

• Jacobi coordinates;

• Proper degeneracy of the Keplerian part;

• Construction of secular systems by asynchronous elimination procedure;

• Existence of integrable approximating systems;

• Application of KAM theorems;

• Transversality of the invariant tori with the collision set;

• Existence of different types of KAM tori and existence of quasi-periodic (including
quasi-periodic almost-collision) orbits.

Differences between the Planar and the Spatial Cases
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Planar case Spatial case
Degrees of freedom 6 / 4 9 / 6

(Before / after fixing center of mass)
Rotation Symmetry SO(2) SO(3)

Secular spaces S2 × S2 (S2 × S2)× (S2 × S2)
Integrability of secular systems Integrable Not a priori integrable

Integrable approximations Secular systems Secular-integrable systems
Codimension of the inner collision set 2 3
Secular Delaunay elements of an ellipse L,G, g L,G, g,H, h

Regularity at degenerate ellipse Regular Not regular
Regularization Levi-Civita Kustaanheimo-Stiefel

Additional symmetry S0 ∼= Z2 S1

Sets of regularized coordinates used Chenciner-Féjoz + Poincaré Chenciner-Féjoz+Delaunay
Deprit-like

Stiefel-Scheifele/regularized

Astronomical significance of the study

As remarked by C. Marchal [Mar78], our result concerning quasi-periodic almost-collision
orbits leads to a better understanding of collision phenomena in the universe. As soon as
the bodies occupy positive volumes, the existence of a set of positive measure of quasi-
periodic almost-collision motions implies a positive probability of collisions in some triple
star systems. The collision mechanism given by quasi-periodic almost-collision orbits is
thus more important than the mechanism given by direct collisions in the particle model.

Structure of the thesis

In Section 1.1, we recall the Hamiltonian formulation of the spatial three-body problem,
and the eliminations of the node of Jacobi and Deprit. We then introduce and analyze, in
Section 1.2, the secular space and some of its modifications.

In Section 2.1, we present the asynchronous elimination procedure which, in the sit-
uation we consider, allows obtaining the secular systems by successive single frequency
eliminations. By a new elimination, we obtain the secular-integrable systems which are
integrable approximations, refining the so-called “quadrupolar system"; their dynamics is
studied in Section 2.2. In Section 2.3, we recall how to deduce from an analytic “hypo-
thetical conjugacy theorem" an iso-chronic and an iso-energetic KAM theorem adapted
to the degeneracies of the problem and present some equivariant versions of them. By
applications of the iso-chronic KAM theorem and a theorem of Pöschel, we establish the
existence of several families of quasi-periodic solutions and periodic orbits accumulating
them in the spatial three-body problem reduced by the SO(3)-symmetry.

In Section 3.1, we formulate the Kustaanheimo-Stiefel regularization of the Kepler
problem in the language of quaternions. The planar Chenciner-Féjoz coordinates are re-
called and generalized to the spatial case. In Section 3.2, we regularize the inner double
collisions of the spatial three-body problem by Kustaanheimo-Stiefel regularization and
explore in particular the relation between the quadrupolar regularized system and the
quadrupolar system. An application of the equivariant iso-energetic KAM theorem en-
sures the existence of regularized invariant tori close to the collision set. We conclude by
showing that a set of positive measure of invariant ergodic tori intersect the collision set
transversely.

0.2.10 Some Further Questions

The present study raises several natural questions.
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Question 0.1. Are there quasi-periodic almost-collision solutions which appear near a
double collision in the planar and spatial N-body problem for N ≥ 4?

The main difficulty toward this generalization is the lack of a global integrable approx-
imating secular system, and the lack of local secular study near double collisions. On the
other hand, regularization and application of KAM theorems might allow straightforward
generalizations.

Question 0.2. Are there quasi-periodic almost-collision solutions for three-body problem
in R4?

A possible approach would be to first regularize the inner double collision and then
study the quadrupolar regularized system of the 4-dimensional three-body problem, and
then proceed as in the previous study.

Question 0.3. Are there other types of almost-collision orbits near double inner collisions
in the planar or spatial three-body problem?

The existence of non-quasi-periodic almost-collision orbits, which arise from the in-
tersection of the collision set with the Mather sets that are not Lagrangian tori in the
regularized system seems quite plausible. Comparing to the present study, the new diffi-
culty arises from the understanding of invariant objects introduced by Mather in our given
systems.

In order to gain some intuition about this problem, let us look at the simpler situa-
tion of the planar circular restricted three-body problem [CL88]. In this case, we need to
understand the intersection of the collision set with the Cantor-like Aubry-Mather sets:
Can these intersections be empty for all choice of parameters? If not, the motions corre-
sponding to actual intersections is then not quasi-periodic but only almost-automorphic
(See e.g. [Yi03]).

Question 0.4. Are there solutions of the three-body problem which are oscillating both
in positions and in velocities?

The existence of such motions could be seen as a complement to Chazy’s classification
for the final evolution of velocities. Note that according to Xia [Xia92] and Gerver [Ger91]
there are such motions respectively in the five-body problem and the 3N -body problem
for N large, but their examples concern pseudo-collision orbits, which do not exist in the
three-body problem (Painlevé [Pai97]).

Question 0.5. (E. Maderna) Are there collisionless solutions of the three-body problem
along which two particles get infinitely close when the time t → +∞, but all the mutual
distances are bounded from below by some positive quantity when t→ −∞?
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Chapter 1

Secular Spaces and Reductions

1.1 Basic Facts about the Three-Body Problem

1.1.1 The Hamiltonian of the Three-Body problem

We consider the classical Newtonian three-body problem. Let us formulate this problem
in the Hamiltonian formalism.

We identify the three-dimensional space with R3 by choosing a Cartesian reference
frame and endow the phase space

Π :=
{

(pj , qj)j=0,1,2 ∈ (R3 × R3)3| ∀0 ≤ j 6= k ≤ 2, qj 6= qk
}

with the standard symplectic form

2∑
j=0

2∑
l=0

dplj ∧ dqlj .

The Hamiltonian of the system is

F = 1
2
∑

0≤j≤2

‖pj‖2

mj
−Guni

∑
0≤j<k≤2

mjmk

‖qj − qk‖
,

in which q0, q1, q2 denote the positions of the three particles, p0, p1, p2 denote their con-
jugate momenta respectively, and qj = (q0

j , q
1
j , q

2
j ), pj = (p0

j , p
1
j , p

2
j ), j = 0, 1, 2. The Eu-

clidean norm of a vector in R3 is denoted by ‖ · ‖. The masses of the particles are respec-
tively m0,m1,m2. Thanks to the invariance of the Newton equation under the change of
unit of time, we can set the gravitational constant Guni to 1.

1.1.2 Jacobi Decomposition

The Hamiltonian F is invariant under translations and rotations. In order to reduce the
system from the translation symmetry, we pass to the Jacobi coordinates (Pi, Qi), i =
0, 1, 2, defined as

P0 = p0 + p1 + p2
P1 = p1 + σ1p2
P2 = p2


Q0 = q0
Q1 = q1 − q0
Q2 = q2 − σ0q0 − σ1q1.

The Hamiltonian is thus independent of Q0 in these coordinates. After setting P0 = 0 and
reduction by the translation symmetry with P0 = 0, the (reduced) coordinates (Pi, Qi), i =

29
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1, 2 describe the motions of two fictitious particles. In these coordinates, we decompose
the Hamiltonian F into two parts F = FKep + Fpert, where the Keplerian part FKep and
the perturbing part Fpert are

FKep = ‖P1‖2

2µ1
+ ‖P2‖2

2µ2
− µ1M1
‖Q1‖

− µ2M2
‖Q2‖

,

Fpert = −µ1m2
[ 1
σo

( 1
‖Q2 − σ0Q1‖

− 1
‖Q2‖

)
+ 1
σ1

( 1
‖Q2 + σ1Q1‖

− 1
‖Q2‖

) ]
,

with

1
µ1

= 1
m0

+ 1
m1

,
1
µ2

= 1
m0 +m1

+ 1
m2

,

1
σ0

= 1 + m1
m0

,
1
σ1

= 1 + m0
m1

,M1 = m0 +m1,M2 = m0 +m1 +m2.

We have followed the notations in [Féj02].
We shall only be interested in the region of the phase space where F = FKep +Fpert is

a small perturbation of a pair of Keplerian elliptic motions.

1.1.3 Delaunay Coordinates

Let a1, a2 be the semi major axes of the inner and outer ellipses respectively. Denote the
ratio of the semi major axes by α = a1

a2
, it will play the role of a small parameter in this

study.
We shall first use the Delaunay coordinates

(Li, li, Gi, gi, Hi, hi), i = 1, 2

for both ellipses. They are defined as the following:

Li = µi
√
Mi
√
ai circular angular momentum

li mean anomaly
Gi = Li

√
1− e2

i angular momentum
gi argument of pericentre
Hi = Gi cos ii vertical component of the angular momentum
hi longitude of the ascending node,

in which e1, e2 are the eccentricities and i1, i2 are the inclinations of the two ellipses
respectively. We shall write (L, l,G, g,H, h) to denote the Delaunay coordinates for a
body moving on an general Keplerian elliptic orbit. From their definitions, we see that
these coordinates are well-defined only when neither of the ellipses is circular, horizontal
or rectilinear. We refer to [Poi07], [Che89] or the appendix A of [Féj10] for more detailed
discussions of Delaunay coordinates.

In these coordinates, the Keplerian part FKep is in the action-angle form

FKep = −µ
3
1M

2
1

2L2
1
− µ3

2M
2
2

2L2
2
.

The proper degeneracy of the Kepler problem can be seen by the fact that FKep depends
only on two of the action variables out of six. Therefore, in order to study the dynamics
of F , it is crucial to look at higher order effects arising from Fpert.
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Figure 1.1: Some Delaunay Variables

The Delaunay coordinates are not always well-defined in the cases that we are inter-
ested in. For example they are not well-defined when the ellipse degenerates to a line
segment. If we omit the fast motion on the ellipse for, fix L, and only consider the ellipse
itself and the secular Delaunay coordinates which describes this ellipse. A difference be-
tween the planar and the spatial cases appears. The planar secular Delaunay coordinates
G, g are regular coordinates in the neighborhood of rectilinear motions. In contrast to
this, the spatial secular Delaunay coordinates G, g,H, h are not regular coordinates in
the neighborhood of rectilinear motions, since there is no privileged plane associated to
a degenerate ellipse (a line segment) in space. This is one of the practical difficulties we
encounter when studying the secular dynamics near a degenerate ellipse in the spatial
three-body problem.

1.1.4 Reduction of the SO(3)-Symmetry: Eliminations of the Nodes of
Jacobi and Deprit

The group SO(3) acts on Π by simultaneously rotating the positions Q1, Q2 and the
momenta P1, P2. This action is Hamiltonian for the standard symplectic form on Π and
it leaves the Hamiltonian F invariant. Its moment map is the total angular momentum
~C = ~C1 + ~C2, in which ~C1 := Q1 × P1 and ~C2 := Q2 × P2. To reduce F by this SO(3)-
symmetry, we fix ~C (equivalently, the direction of ~C and C = ‖~C‖) to a regular value
(i.e. ~C 6= ~0) and then reduce the system from the SO(2)-symmetry around ~C. As SO(3)
also acts on the space of directions of ~C, the reduced system must be independent of the
direction of ~C. Finally, we obtain from F a Hamiltonian system with 4 degrees of freedom.

The plane perpendicular to the total angular momentum ~C is invariant. It is called
the Laplace plane. In practice, choosing it as the horizontal reference plane (i.e. fixing
~C vertical) leads to Jacobi’s reduction of the node. Nevertheless, we can also fix ~C non-
vertical, that is choose a horizontal reference plane different from the Laplace plane. The
Deprit coordinates describe the reduction procedure in this case.

Jacobi’s elimination of the node

Since the angular momenta ~C1, ~C2 of the two Keplerian motions and the total angular
momentum ~C = ~C1 + ~C2 must lie in the same plane, the node lines of the orbital planes
of the two ellipses in the Laplace plane must coincide (i.e. h1 = h2 + π). Therefore, by
fixing the Laplace plane as the reference plane, we can express H1, H2 as functions of G1,



32 CHAPTER 1. SECULAR SPACES AND REDUCTIONS

G2 and C := ‖~C‖:

H1 = C2 +G2
1 −G2

2
2C ,H2 = C2 +G2

2 −G2
1

2C ,

and, since ~C is vertical, dH1 ∧ dh1 + dH2 ∧ dh2 = dC ∧ dh1.
We can then reduce the system by the SO(2)-symmetry around the direction of ~C.

The number of degrees of freedom of the system is then reduced from 6 to 4.
This reduction procedure was first carried out by Jacobi and is thus called “Jacobi’s

elimination of the node”.

Remark 1.1.1. Denote by Π′vert the subspace of the phase space Π one gets by assuming
C 6= 0 and fixing the direction of ~C to the vertical direction (0, 0, 1). The space Π′vert is
an invariant symplectic submanifold of Π. Jacobi’s elimination of node implies that the
coordinates

(L1, l1, G1, g1, L2, l2, G2, g2, C, h1)

are Darboux coordinates on a dense open set1 of Π′vert.

Reduction in the Deprit variables

When the inner ellipse degenerates to a line segment, the outer ellipse is contained in the
Laplace plane. In order to keep using Delaunay coordinates for the outer ellipse, we must
suppose that the Laplace plane is different from reference horizontal plane and even that
it makes a sufficiently large angle with the reference plane.

For ~C non-vertical, the reduction procedure is conveniently understood in the Deprit
coordinates2

(L1, l1, L2, l2, G1, ḡ1, G2, ḡ2,Φ1, ϕ1,Φ2, ϕ2),

defined as follows (see Figure 1.2): Let νL be the intersection line of the two orbital planes3,
νT be the intersection of the Laplace plane with the horizontal reference plane. We orient
νL by the ascending node of the inner ellipse, and choose any orientation for νT . Let

• ḡ1, ḡ2 denote the angles from νL
4 to the pericentres;

• ϕ1 denotes the angle from νT to νL;

• ϕ2 denotes the angle from the first coordinate axis in the reference plane to νT ;

• Φ1 = C = ‖~C‖, Φ2 = Cz = the vertical component of ~C.

Proposition 1.1.1. (Chierchia-Pinzari [CP11a]) Deprit coordinates are Darboux coor-
dinates. In the open dense subset of Π where all the Delaunay and Deprit variables are
well-defined, we have:

dL1 ∧ dl1 + dG1 ∧ dg1 + dH1 ∧ dh1 + dL2 ∧ dl2 + dG2 ∧ dg2 + dH2 ∧ dh2

= dL1 ∧ dl1 + dG1 ∧ dḡ1 + dL2 ∧ dl2 + dG2 ∧ dḡ2 + dΦ1 ∧ dφ1 + dΦ2 ∧ dφ2.

1The set is defined such that on which all the variables are well-defined, i.e. the ellipse they describe
are non-degenerate, non-circular, non-horizontal.

2The terminology follows from [CP11a].
3This is the common node line of the two planes in the Laplace plane.
4A conventional choice of orientation of the node line, is given by their ascending nodes, which leads to

opposite orientations of νL in the definition of ḡ1 and ḡ2.
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Figure 1.2: Some Deprit Variables

The coordinates (L1, l1, L2, l2, G1, ḡ1, G2, ḡ2,Φ1, ϕ1) are Darboux coordinates on a dense
open set (on which all the variables are well-defined) of Π′, any of the subspace of Π one
gets by fixing the direction of ~C non-vertical. In these coordinates, the Hamiltonian can
be written in closed form in the “planar variables” (L1, l1, G1, ḡ1, L2, l2, G2, ḡ2) and C, i.e.

F = F (L1, l1, G1, ḡ1, L2, l2, G2, ḡ2, C),

which can be seen as a function defined in Π′. We can then fix C and reduce the system
from the SO(2)-symmetry around the direction of ~C to complete the reduction procedure.

In [Dep83], Deprit established a set of coordinates closely related to the set of coordi-
nates presented above. The actual form of our Deprit coordinates was first presented by
Chierchia and Pinzari in [CP11a]. Note that in both of these references, Deprit coordinates
are built for the general N-body problem, with the aim to generalize Jacobi’s elimination
of node, or to conveniently reduce the SO(3)-symmetry of the N -body problem for N ≥ 4,
which is of significant importance for the perturbative study of the N -body problem.
Remark 1.1.2. In Π′vert, we have ḡ1 = g1, ḡ2 = g2 and Φ1 = Φ2. The angles φ1, φ2 are not
defined individually. Nevertheless, their sum φ1 + φ2 remains well defined. One can then
recover Jacobi’s elimination of the node from the Deprit variables using a limit procedure,
see [CP11a] for details.
Remark 1.1.3. We may slightly modify the coordinates (L1, l1, G1, ḡ1, L2, l2, G2, ḡ2) to pairs
of planar Poincaré coordinates5 to obtain regular coordinates near circular motions as well.

Nevertheless, the reduction procedure in Deprit coordinates still does not extend to
degenerate inner ellipses for two reasons: The mean anomaly l1 and the inner orbital plane
are not defined. The first problem can be solved by changing the time (i.e. taking the
eccentric anomaly u1 instead of l1 as part of the coordinates). To deal with the second
problem, we shall show in Subsection 1.2.3 that on a well-chosen manifold, except for
the fast angle l1, a natural extension of the set of Deprit coordinates (and the Delaunay
coordinates) remains regular near a degenerate inner ellipse.

5See [Poi07] or [Féj99], among others, for the definitions of these coordinates.



34 CHAPTER 1. SECULAR SPACES AND REDUCTIONS

1.1.5 A digression: Partial Reduction

This section dedicates to present a generalization of the partial reduction [MRL02], which
simultaneously gives a conceptual way of understanding this procedure.

Let us start by present the partial reduction procedure. Fixing the direction of ~C
defines an invariant submanifold of the phase space Π. The dense open set of Π where
~C 6= 0 is foliated by such invariant submanifolds. Each leaf is the image of any other
one under some rotation. Since the standard symplectic form on Π is invariant under the
SO(3)-action, each leaf is an invariant symplectic submanifold of Π, on which the SO(3)-
symmetry of the system F reduces to a (Hamiltonian) SO(2)-symmetry. The study of the
dynamics of F could hence be restricted to any of the leaves. In [MRL02], this restriction
is called the partial reduction (see Subsection 1.1.5 for a more general viewpoint).

Now let us generalize the idea of partial reduction. This generalized viewpoint also
leads us to a more general version of equivariant KAM theorem (Subsection 2.3.3). In the
rest of this subsection we shall use some basic notions in the theory of moment maps. We
refer to the book [Aud04] about moment map, and the book [FH91] about representation
theory.

Let Ǧ be a compact connected Lie group which acts Hamiltonianly on a connected
symplectic manifold (M̌, ω̌) and let µ̌ : M̌ → g∗ be the associated moment map, in which
g∗ is the dual of the Lie algebra g of Ǧ. For any fixed Cartan subalgebra h∗ ⊂ g∗, denote
by Ť the corresponding Cartan subgroup (i.e. a maximal torus) in Ǧ. Let us choose a
(positive) Weyl chamber W+ in h∗. It turns out that the pre-image µ̌−1(W+) of W+ is a
“symplectic cross-section” (in the words of [GS82]) of the Ǧ action on (M̌, ω̌):

Theorem 1.1. (Guillemin-Sternberg [GS82]) µ̌−1(W+) is a Ť -invariant symplectic sub-
manifold of (M̌, ω̌). The restriction of the G action to µ̌−1(W+) is a Hamiltonian torus
action of Ť . For any closed subgroup Ť ′ ⊂ Ť , the subset of µ̌−1(W+) consisting in Ť ′-fixed
points is a symplectic submanifold of µ̌−1(W+).

Since Ǧ is a compact connected Lie group, the Cartan subalgebras of g∗ are conjugate
to each other. As µ̌ interwines the Ǧ action on (M̌, ω̌) and the coadjoint action of Ǧ on
g∗, any two of these “symplectic cross-sections” are the image of each other under the
Ǧ-action.

Remark 1.1.4. The original statement also requires that M̌ be compact. However, in
order to get the statements we cite here, this requirement is not used and this hypothesis
is therefore unnecessary.

In the spatial three-body or N -body problems, the group SO(3) acts Hamiltonianly
on their phase spaces. Its associated moment map is just the total angular momentum
vector ~C. The algebra so(3)∗ is naturally identified with R3. Now, any Cartan subalgebra
(which is the algebra of infinitesimal generators of rotations with fixed rotation axis) is a
1-dimensional vector subspace (homeomorphic to R) in R3, and a positive Weyl chamber
is therefore a connected component of this 1-dimensional vector subspace deprived of the
origin, i.e. an open half line, consisting in infinitesimal generators of rotations around the
fixed axis with some chosen orientation. The pre-image of this open half line is exactly
the submanifold one gets by fixing the direction of ~C. Theorem 1.1 shows that this
submanifold is symplectic, and the restriction of the SO(3)-action on this submanifold is
the SO(2)-action around the fixed direction of ~C. This is exactly the “partial reduction”
procedure of [MRL02].
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1.2 Spaces of Spatial Ellipse Pairs

In this section, we shall introduce several spaces of spatial ellipse pairs. The first one is the
secular space, or space of ellipse pairs, a natural space which carries the secular dynamics.
Nevertheless, for the purpose of carrying out our study of the secular and secular-integrable
dynamics (defined in Section 2.1) in the neighborhood of the degenerate inner ellipse,
especially in order to use natural extensions of Delaunay and Deprit coordinates in this
neighborhood, we shall blow up the degenerate inner ellipses in the secular space to obtain
themodified secular space. Geometrically, the blowing-up means to replace each degenerate
ellipse by the set of pairs of this ellipse and a non-oriented plane containing it. Moreover, as
the set {C = G2} is invariant under the quadrupolar and the secular-integrable dynamics,
we shall further investigate the critical quadrupolar space as a subset of the modified
secular space, on which the secular-integrable dynamics with parameters satisfying C = G2
naturally lies in, and show that on a double cover, Delaunay and Deprit coordinates
can be extended to regular coordinates near a degenerate inner ellipse. In order to deal
with circular or horizontal motions, we also define the second kind decorated ellipse and
introduce the second modified secular space, on which the Delaunay/Deprit coordinates can
also be extended to cover the circular or horizontal motions. These spaces serve as spaces
which carry the (extended) secular/secular-integrable dynamics. The secular-integrable
dynamics can be directly studied on the secular space, but these modifications of spaces
allow us to keep using (extensions of) classical coordinates.

Let us first fix some settings. By “ellipse” we mean a ellipse with eccentricity e ranging
from 0 (circle) to 1 (degenerate ellipse, that is a line segment). By “Keplerian ellipse” we
mean an elliptic Keplerian orbit with fixed semi major axis, which has a focus at the origin
and possesses an orientation as long as it is non-degenerate. The semi major axes a1, a2
of the two ellipses are conservative quantities for systems that does not depend on fast
angles. We suppose that a1, a2 are fixed. The Delaunay/Deprit coordinates are considered
only at the secular level, i.e. the fast angles l1, l2 are dropped, and their conjugate action
variables L1 and L2 are fixed together with a1 and a2.

1.2.1 Secular Space

The following construction shows that the space of Keplerian ellipses in the three-dimensional
Euclidean space is homeomorphic to S2 × S2 (See also [Pau26],[Sou70],[Alb02]).

We denote by S2
L ∈ R3 the sphere of radius

√
L. For each spatial ellipse with semi major

axis a and circular angular momentum L (Subsection 1.1.3), we take its angular momentum
~C and the vector ~T1 from the origin to its second focus (or the second endpoint), then

calculate the eccentricity vector6 ~T =
~T1
2a and the normalized angular momentum ~S =

~C

L
.

They satisfy the relation ‖~T‖2 + ‖~S‖2 = 1. The two points
√
L (~T + ~S) and

√
L (~T − ~S)

are exactly the two points on the sphere S2
L that we are looking for. This construction

defines a map which sends a spatial ellipse to a point in S2
L × S2

L. On checks easily that
this map is a bijection.

Let ΩS2
L
be the area form on S2

L. The manifold S2
L×S2

L, equipped with the symplectic
form ΩS2

L
⊗ (−ΩS2

L
)7, is called the Pauli-Souriau space. One checks directly that, when all

6In this convention, the eccentricity vector points toward the direction of the apocentre rather than the
direction of the pericentre. Note that the converse convention using the direction of the pericentre is also
popular.

7The form ΩS2
L
⊗ (−ΩS2

L
) evaluate at a vector (ṽ1, ṽ2) ∈ TxS2 is equal to ΩS2

L
,x(ṽ1)− ΩS2

L
,x(ṽ2)
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the Delaunay elements are well defined, the Pauli-Souriau symplectic form ΩS2
L
⊗ (−ΩS2

L
)

agrees with dG ∧ dg + dH ∧ dh. Indeed this relation is easily seen in the case of planar
ellipses, and one can then use the “Rotation Lemma” (Lemma 3.1.3) and carry out the
calculation (direct but long) to conclude in the general case.

Another way to confirm this relation without much calculation is due to A. Albouy: In
order to calculate the secular symplectic form of the Kepler problem on S2

L×S2
L (which is

equals to dG∧dg+dH∧dh, when all Delaunay elements are well-defined), one can use the
SO(4)-symmetry of the Kepler problem. The Lie algebra of SO(4) is so(4) = so(3)×so(3).
Each factor so(3) acts on one of the components S2, which can be “integrated” into an
action of SO(3). Now the only closed 2-form on S2

L invariant under the action of SO(3)
is, up to a factor, the area form ωS2

L
. Therefore the symplectic form on S2

L × S2
L we are

looking for is a linear combination of the two area forms on the two S2-components. The
coefficients of this linear combination can then determined by considering the subspace
formed by those ellipses lying in the horizontal plane (the space of such ellipses can be
easily identified with the sphere S2

L, equipped with the symplectic form ωS2
L
), for which

the coordinates (G, g) are just the symplectic cylindrical coordinates on the sphere S2
L.

This simultaneously determines the coefficients of the linear combination.
The secular space is the space of spatial ellipse pairs, formed by an “inner” and an

“outer” ellipse, thus homeomorphic to (S2×S2)×(S2×S2), which is a symplectic manifold
if we equip it with the sum of Pauli-Souriau symplectic forms for each S2×S2-factor. The
group SO(3) acts on the secular space by simultaneously rotating the pair of ellipses. If
we suppose the outer ellipse is non-degenerate and non-circular, then the SO(3)-action is
always free, even if the inner ellipse degenerates or becomes circular.

1.2.2 Modified Secular Space

We define the modified secular space by replacing the inner ellipse by a pair consisting of
a non-oriented plane and an oriented (if non-degenerate) ellipse in this plane (when it is
non-degenerate, it gives the plane a natural orientation).

We call such a pair a decorated ellipse. A non-degenerate decorated ellipse can be
identified with a non-degenerate ellipse, as the plane in the pair is just its orbital plane,
but each degenerate ellipse corresponds to a P1-family of degenerate decorated ellipses.
Equivalently, the space of decorated ellipses is homeomorphic to the manifold one gets by
blowing up the diagonal of S2 × S2.

Let Gr(2, 3) be the Grassmannian of non-oriented planes passing through origin in R3.
By consider the normal direction of each non-oriented plane, Gr(2, 3) can be identified
with P2.

Lemma 1.2.1. The space of decorated ellipses is homeomorphic to P2 × S2.

Proof. We define a mapping (P, ~E) 7→ (P, Ep) from Gr(2, 3)× S2 ∼= P2 × S2 to the space
of decorated ellipses in the following way: Each element of P2 × S2 (in which S2 is the
unit sphere in R3) consists in a non-oriented plane P and a unit vector ~E. Decompose
the unit vector ~E into ~E = ~E1 + ~E2 where ~E1 is the orthogonal projection of ~E on P,
and ~E2 is orthogonal to P. The ellipse Ep given by ~E in P is the one with the eccentricity
vector ~E1 and the normalized angular momentum vector ~E2. One checks that this map is
bijective.

We do not change the space S2×S2 of outer ellipses. As a result, the modified secular
space is homeomorphic to (P2 × S2)× (S2 × S2).
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Figure 1.3: Construction of a decorated ellipse

Let us now consider the reduction procedure by the SO(3)-symmetry of the modified
secular space. After fixing ~C 6= 0, the SO(2) group action of rotations around the direction
of ~C induces the SO(2)-action on P2 × S2 × (S2 × S2):

R · ((P, ~E), ( ~E3, ~E4)) = (R · P, R · ~E,R · ~E3, R · ~E4),

where R is a rotation which fixes ~C, ( ~E3, ~E4) ∈ S2 × S2. This action fixes only eight
points:

(plane orthogonal to ~C,±
~C

‖~C‖
,±

~C

‖~C‖
,±

~C

‖~C‖
).

They correspond either to circular inner and outer ellipses orthogonal to ~C, or circular
inner ellipses orthogonal to ~C and degenerate outer ellipse parallel to ~C. In particular,
the action is free in a neighborhood of degenerate inner decorated ellipses parallel to ~C,
thanks to the blow up.

1.2.3 Critical Quadrupolar Space

In their study of the quadrupolar dynamics (defined in Subsection 2.1.3), Lidov and Ziglin
[LZ76] have noticed several particular properties of this system (we shall recall part of
their study in Section 2.2):

1) C and G2 are commuting first integrals. The existence of the additional first in-
tegral G2 makes it possible to reduce the system to one degree of freedom and implies
integrability.

2) When the inner ellipse degenerates (this is possible only if C = G2), its limit
orbital plane contains ~C. This implies that the indeterminacy of the orbital plane for the
degenerate ellipse disappears as long as the degenerate ellipse is not parallel to ~C.

Moreover, when C = G2, if we naïvely allow G1 to take negative values, and consider

the evolution of G1 instead of G
2
1

L2
1
in the equation of quadrupolar motions in [LZ76], then

in the (G1, ḡ1)-plane, Ġ1 does not vanish at G1 = 0 and G1 changes its sign along generic
phase portraits.
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These properties roughly characterize the space on which the quadrupolar dynamics
and higher order secular-integrable dynamics (will be defined in Subsection 2.1.3) naturally
lies in, when the parameters satisfies C = G2. These observations motivate the definition of
the critical quadrupolar space, which is the key to understand the quadrupolar dynamics
on {C = G2}, and is important for the investigation of quasi-periodic almost-collision
orbits.

Definition of the Critical Quadrupolar Space

Definition 1.2.1. In the subspace of the modified secular space where C 6= 0, the critical
quadrupolar space is defined to be the closure of ((P2×S2)×(S2×S2\Diagonal))∩{G1 6=
0, C = G2}.

The diagonal elements of S2 × S2 correspond to degenerate outer ellipses, which must
have G2 = ‖~C2‖ = 0 and are therefore excluded.

The condition C = G2 implies that when the inner ellipse degenerates (i.e. when ~C1
tends to ~0) the limiting direction of ~C1 must be perpendicular to ~C. Therefore, taking the
closure amounts to adding the degenerate decorated inner ellipses whose orbital planes
contains ~C to the space consisting of non-degenerate inner and outer ellipses. If the
degenerate inner ellipse is not parallel to ~C, such a plane is unique. If the degenerate
inner ellipse is parallel to ~C, then a P1-family of non-oriented planes can be attached to
it, and form a P1-family of degenerate decorated inner ellipses.

Proposition 1.2.1. If L1 6= 2L2 (which, the masses being fixed, is always the case if α
is small enough), the critical quadrupolar space is a smooth submanifold of the modified
secular space.

If G1 6= 0, we have

C −G2 = 0⇔ G1(G1 + 2G2 cos(i1 − i2)) = 0
⇔ G1 + 2G2 cos(i1 − i2) = 0.

with the hypothesis L1 6= 2L2, we thus deduce that 0 is a regular value of C −G2 outside
{G1 = 0}. Therefore we only have to check the regularity of the critical quadrupolar space
in a small neighborhood of degenerate decorated inner ellipses. We shall define a subspace
D of the critical quadrupolar space, such that on its double cover, defined by giving to
each plane its two possible orientations, we can smoothly extend the Delaunay/Deprit
coordinates through degenerate decorated inner ellipses. The smoothness of the critical
quadrupolar space follows from the existence of such smooth coordinates.

Definition of the Subspace D

Recall that i1 and i2 are the inclinations of the inner and outer orbital planes respectively.
Let us define a subspace D of the modified secular space by the following additional
conditions (as the inner orbital plane is possibly not oriented, the angle i1 − i2 is defined
modulo π) :

• e1 6= 0, e2 6= 0, 1;

• C = ‖~C2‖ >
L1
2 ;

• i2 6= 0 (modπ).



1.2. SPACES OF SPATIAL ELLIPSE PAIRS 39

The second condition ensures that the inner orbital plane never lies in the Laplace
plane. The third condition together with the first ensures that the Delaunay coordinates
are regular for the outer ellipse8. Notice that being a subspace of the critical quadrupolar
space implies the orthogonality of ~C1 and ~C2 at the limit when the inner ellipse degenerates,
that is

cos (i1 − i2)|e1=1 = 0.

From the definition, we see that the subspace D is open and dense in the critical
quadrupolar space.

Coordinate Analysis

The restriction to D allows the use of Delaunay/Deprit coordinates to make some further
analysis. Seen as a function on the double cover of the modified space, G1 may now
become negative. More precisely, if we fix ~C (which simultaneously gives the direction of
~C and the value C = G2) and only consider the inner orbital plane, then when G1 6= 0
and when the inner orbital plane is not horizontal, the oriented inner orbital plane can
be defined uniquely by the pair (|G1|, h1): The inclination ĩ1 of the plane with respect to

the Laplace plane is determined by the formula cos ĩ1 = |G1|
2C . There exists a S1-family of

planes with this inclination. Each of these planes is (co-)oriented by ~C1, or equivalently by
~C − ~Cp, in which ~Cp is the projection of ~C in this plane, which is non-zero by hypothesis.
For each plane with node line passing through ~h1 = (cosh1, sin h1, 0) (there are actually
two planes with the same |G1| and the same node line), we assign a (co-)orientation by
the vector ~h1× ~Cp. Let us call this orientation h-orientation. In this way, a pair (|G1|, h1)
gives h-orientations to two planes, while only for one of them its h-orientation agrees with
its natural orientation.

We assign to the pair (G1, h1) the one of the two oriented planes defined by (|G1|, h1),
such that its h-orientation agrees with (resp. opposes to) its natural orientation when
G1 > 0 (resp. G1 < 0). We note that when G1 6= 0, two pairs (G1, h1) and (−G1, h1 + π)
define the same oriented plane, whose orientation agrees with its natural orientation. In
Deprit coordinates, the role of h1 is played by φ1. We define the angle φ1 to be the
longitude of the node of the inner ellipse in the Laplace plane. This definition agrees with
the usual one and remains valid for a degenerate inner ellipse (in this case the outer orbital
plane is the Laplace plane).

Now let us consider those oriented planes containing ~C, which correspond to a pair
of the form (G1 = 0, h1). They serve as orbital planes for degenerate decorated inner
ellipses. There is no way to associate to each non-oriented plane containing ~C a natural
orientation, but as long as h1 is given, the h-orientation of the inner orbital plane is also
well-defined. We note that the pairs (0, h1) and (0, h1 + π) give the same non-oriented
plane containing ~C.

For given L1, the quotient space of the annulus {(G1, h1) ∈ R×T : −L1 < G1 < L1} by
the equivalence relation (G1, h1) ∼ (−G1, h1 + π) is an open Möbius band (with the open
annulus {(G1, h1) ∈ R × T : −L1 < G1 < L1} as its orientable double cover), each of its
element determines a non-oriented inner orbital plane (with its natural orientation when
G1 6= 0) and the eccentricity of the inner ellipse. By adding the angle g1, we find that the

8The conditions e2 6= 0, i2 6= 0 (modπ) are non-essential. To drop these restrictions we just need to
take any convenient coordinates in the neighborhood of circular/horizontal outer ellipses (e.g. the Poincaré
coordinates, [Che89]). We keep these restrictions (unless in situation where it is necessary to drop them)
so to handle the outer ellipse more easily.
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space of inner ellipses is the quotient space of {(G1, h1, g1) ∈ R × T2 : −L1 < G1 < L1}

by the equivalence relation (G1, h1, g1) ∼ (−G1, h1 + π, π − g1), so that |G1|
L1

defines its
eccentricity, (G1, h1) defines its h-oriented orbital plane, and g1 gives its direction of the
pericentre inside the h-oriented orbital plane. Similar discussion also holds for Deprit
variables.

Extended Delaunay/Deprit coordinates

Let D̃ be the orientable double cover of D. The former discussion shows that the secular
Delaunay coordinates and secular Deprit coordinates can be extended to D̃ so as to let G1
vary in the interval (−L1, L1). We shall call them extended Delaunay/Deprit coordinates.
They agree with the usual Delaunay/Deprit coordinates in the region G1 ∈ (0, L1).

A remarkable phenomenon is that these coordinates can be extended smoothly through
the subset {G1 = 0} in D̃:

The coordinate G1 can be regarded as a map G1 : G̃r(2, 3) × S2 → R on the double
cover of the space of decorated ellipses by associating to each ellipse a pair (P+, ~E) of an
oriented plane and a vector of length L1 the normal component of ~E with respect to P+.
More precisely, if ~N is the unit normal vector of P+, then G1(P+, ~E) = ~E · ~N . The map G1
defined in this way is therefore a smooth function. Similarly, the element H1 = G1 cos i1
is also smooth. The element h1, φ1 : G̃r(2, 3)→ T depends only on the oriented plane and
therefore is smooth when it is defined. Now as g1 and ḡ1 are smooth functions of P, ~E,
they are also smooth functions on G̃r(2, 3)× S2 as long as they are defined.

To define the full set of extended Deprit coordinates, we just have to take the same
extension for G1, and redefine the angle φ1 to be the longitude of the node of the inner
orbital plane with the Laplace plane. The angle φ1 plays the role in the extended Deprit
coordinates as h1 plays in the extended Delaunay coordinates: for each non-oriented plane,
φ1 gives it an orientation. The equivalence relation is (G1, φ1) ∼ (−G1, φ1 + π).

These discussions show that the extended Delaunay/Deprit coordinates are regular
coordinates on D̃. We can carry out our dynamical studies, in particular, part of the
quadrupolar dynamical studies near a degenerate inner ellipse, in these coordinates.

Note that we have only defined a set of coordinates on the codimension 1 submanifold
D̃ of the modified secular space. In particular, the extended Delaunay/Deprit coordinates
are not action-angle coordinates in the neighborhood (in the modified secular space) of any
pair in D̃ with a degenerate inner ellipse. If one wants to have a set of regular coordinates
in such a neighborhood, a natural choice would be to replace H1 by i1 in the extended
Delaunay coordinates. The defect for such a choice is that the resulting coordinates are
not Darboux coordinates even outside degenerate inner ellipses.

Proof of Proposition 1.2.1

To prove Proposition 1.2.1, we only have to investigate the region of the critical quadrupo-
lar space near degenerate inner (decorated) ellipses. As the outer ellipse might be circular,
we need to temporarily extend the definition of D and D̃ to include such cases. We fix
the direction of ~C non-vertically and choose the neighborhood small enough, so that the
extended Delaunay coordinates are well-defined and i2 6= 0 (modπ) in this neighborhood,
and use the extended Delaunay coordinates in the neighborhood of degenerate decorated
inner ellipse in D̃, so that the inner ellipses are decorated by h-oriented planes. We see
from the discussions we have made that, this neighborhood is smoothly parametrized by
the extended Delaunay coordinates (G1, h1, g1) together with
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• (G2, g2) when G2 < L2;

• (ξ1, ξ2) ∈ R2 satisfying ξ2
1 + ξ2

2 <
L2
2 and

(ξ1, ξ2) = (
√
L2 −G2 cos g2,

√
L2 −G2 sin g2)

when (ξ1, ξ2) 6= (0, 0).
Therefore this neighborhood is smooth, which, by rotating the direction of ~C, implies that
D̃ is smooth. Since the identification relation is induced by a free discrete group action
on D̃, the quotient space D is smooth. Hence, the critical quadrupolar space is a smooth
manifold.

Reduction by the SO(3) Symmetry in D and D̃

In the secular space, after fixing ~C, when a degenerate inner ellipse is parallel to ~C, its
isotropy group is SO(2). As SO(2) acts in its secular deleted9 neighborhood freely, the
reduced space of the secular neighborhood of a degenerate inner ellipse which is parallel
to ~C is not smooth.

The situation is a little different in the critical quadrupolar space. The SO(2)-action
around ~C is locally free10 in a small neighborhood of a degenerate decorated inner ellipse
parallel to ~C and is free in a small neighborhood of a degenerate decorated inner ellipse
not parallel to ~C. Even more, this action is free in the neighborhood of any degenerate
decorated inner ellipse on the orientable double cover of the critical quadrupolar space.
Therefore the reduced space of D is not smooth, but the reduced space of D̃ is a smooth
manifold.

In the sequel, the study of the reduced quadrupolar dynamics lies naturally in the
reduced space of D by the symmetry SO(3) × SO(2), which can be naturally lifted to D̃,
on which we may take coordinates G1 and ḡ1 in {(G1, ḡ1) ∈ R × T : −L1 ≤ G1 ≤ L1}.
In practice, the reduction procedure in the double cover of the critical quadrupolar space
amounts to first fix ~C and then ignore the inner orbital planes. In our coordinates, the
reduction means to fix C = G2 6= 0 and ignore the variables h1, φ1, φ2. The equivalence
relation is then (G1, ḡ1) ∼ (−G1, π − ḡ1). The quotient of the set {|G1| < L1} is then
smooth outside two singular points (G1 = 0, ḡ1 = ±π2 ). The boundary {G1 = L1}
corresponds to an inner circle and should be further identified to a point. This point is
singular in the quotient if C = G2 = L1

2 and regular otherwise. Finally, the quotient space,
or the reduced critical quadrupolar space, is a manifold outside two or three singularities
(Figure 1.4). Moreover, in the reduction procedure, the group acts freely on the decorated
degenerate ellipses non parallel to ~C while the isotropy subgroup has 2 elements when the
degenerate ellipse is parallel to ~C; hence, the reduced critical quadrupolar space and the
quotient space of the set {C = G2} in the secular space are topologically the same, have
the same singular points, and can thus be identified. When G1 = 0, the angle ḡ1 gives the
“inclination” of a degenerate inner ellipse with respect to the Laplace plane.

1.2.4 A Summarizing Diagram

The following graph summarizes the discussions in this section.“MSS” denotes the mod-
ified secular space, “CQS” denotes the critical quadrupolar space (which is also denoted

9More precisely, ellipse paris with degenerate inner ellipses parallel to ~C are deleted.
10It has a discrete Z2-symmetry at a degenerate decorated inner ellipse, and is free in the deleted

neighborhood of the degenerate decorated inner ellipse.
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Figure 1.4: The reduced critical quadrupolar space

briefly by {C = G2}reg), “SS” denotes the secular space, and “D/D” denotes the extended
Delaunay/Deprit coordinates:

(S2 × S2)× (S2 × S2)

/2
��

˜{C = G2}reg

/2
��

? _oo D̃ (D/D)

��

? _oo

MSS : (P2 × S2)× (S2 × S2)

��

CQS: {C = G2}reg? _oo

��

D? _oo

SS : (S2 × S2)× (S2 × S2) {C = G2}? _oo

1.2.5 Another digression: The Second Kind Decorated Ellipses

In subsection 1.2.2, we have blown-up the diagonal of S2×S2 (homeomorphic to the secular
space) to obtain the modified secular space, for the purpose of dealing with degenerate
ellipses in the secular studies. This subsection is devoted to the treatment of circular
or horizontal ellipses, again by blow-up techniques, to extend the validity of Delaunay
coordinates to the secular neighborhood of these ellipses. This subsection is not used in
the proofs of existence of invariant tori and almost-collision orbits.

Let us first fix a reference plane in the space. An ellipse is said to be horizontal if it
lies in the reference plane, and is said to be non-horizontal if not. Remind that a direction
is understood as oriented, therefore two vectors differ by an angle of π have opposite
directions.

Definition 1.2.2. A second kind decorated ellipse consists in a triple of an oriented non-
degenerate ellipse, a direction and a straight line: the direction is the direction of the
pericentre when the ellipse is not circular, and any direction in its orbital plane if the
ellipse is circular. The straight line lies in the intersection of the orbital plane of the
ellipse and the horizontal plane.

We see that if a non-degenerate ellipse is non-circular and non-horizontal, then a second
kind decorated ellipse can be identified with the ellipse itself. If the non-degenerate ellipse
is circular but non-horizontal (resp. horizontal but non-circular), then a S1 (resp. P1)-
family of directions can be associated to it. When the non-degenerate ellipse is both
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Figure 1.5: Blowing up two points on S2.

circular and planar, then a S2 × P1-family of pairs of direction and straight line can be
associated to it.

Lemma 1.2.2. The space of second kind decorated ellipses is homeomorphic to (0, 1] ×
S1 ×K2, in which K2 denotes the Klein bottle.

Proof. The space G̃r(2, 3) of oriented 2-planes in R3 is homeomorphic to the sphere S2.
We blow-up the two poles on the sphere, corresponding to the two horizontal planes by
associate a straight line inside it to such a plane. We explain in Figure 1.5 that blowing up
two points of S2 results in K2. In a given oriented plane, the non-degenerate ellipses with
the same orientation as the plane are parametrized by the eccentricity and the argument
of the pericentre, therefore they form an open disc. The oriented blow-up of a point inside
the open disc, corresponds to associating all directions inside the plane passing through
the origin to a circle, resulting in a cylinder homeomorphic to (0, 1]× S1. Therefore, the
space of second kind decorated ellipses is homeomorphic to (0, 1]× S1 ×K2.

The Delaunay elements are then everywhere well-defined on the orientable double cover
of the space of second kind decorated ellipses, homeomorphic to R× S1 × T2. Especially,
they can be directly adapted to study the dynamics which preserves the boundary {L =
G}, corresponding to circles.

To use the same idea to study secular dynamics of the three-body problem, we di-
rectly set the Laplace plane to be horizontal (i.e. consider only the space Π′vert) in the
forthcoming definition.

Definition 1.2.3. The second modified secular space is the space of pairs consisting of
an (inner) second kind decorated ellipse and an outer ellipse, with C 6= 0 and horizontal
Laplace plane. The outer ellipse is a pair of an ellipse and a direction, which is the
direction of the pericentre when it is non-circular, and any direction in its orbital plane
passing through the origin if it is circular.

When the inner and outer ellipses are both horizontal, the node line of the inner
ellipse plays the role of the common node line. The Deprit elements (G1, ḡ1, G2, ḡ2, C, φ1)
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are then everywhere well-defined on the orientable double cover of the second modified
secular space, with the equivalence relation

(G1, ḡ1, G2, ḡ2, C, φ1) ∼ (G1, π − ḡ1, G2, π − ḡ2, C, φ1 + π).

Especially, they can be directly adapted to study the dynamics of flows which preserves
the boundary {Gi = |C −Gj |} ∪ {Gi = min{Li, |C −Gj |}}, i 6= j ∈ {1, 2} 11.

The reduction by the SO(2)-symmetry around the direction of ~C in the second modified
secular space takes a very simple form: one just needs to forget the direction of the inner
node line. Note that this reduction procedure does not lead to an effective reduction
procedure (of the SO(2)-symmetry) for coplanar ellipse pairs in the secular space, since
we have just ruled out the additional directions (of the node) which are added to coplanar
ellipse pairs.

From the discussions of this section, we see that the classical Delaunay coordinates (as
well as the Deprit coordinates) can be used more “globally”, thanks to proper modification
of the secular space. In particular, these coordinates can be used to show that Lidov-
Ziglin’s study of the quadrupolar dynamics [LZ76] is a global study in proper blow-ups of
the secular spaces, up to circular or horizontal inner motions, and circular or horizontal
outer motions. The quadrupolar dynamics on the secular spaces can be deduced directly.

11This boundary is deduced from the triangular inequality and Gi ≤ Li, i = 1, 2



Chapter 2

Quadrupolar Dynamics and
Quasi-periodic Solutions

2.1 Secular and Secular-integrable Systems
In the lunar case, the two Keplerian frequencies do not appear at the same magnitude
of the small parameter α. This fact enables us to build normal forms up to any order,
without necessarily considering the interaction between the two frequencies. This is the
asynchronous elimination procedure that we are going to describe. In the literature, this
particular elimination procedure is carried out by Jefferys and Moser in [JM66]. Another
method of this elimination procedure is presented by Féjoz in [Féj02], in which the termi-
nology asynchronous region is coined. In order to build integrable approximating systems,
we shall further average over g2 to obtain the secular-integrable systems by an additional
single frequency averaging.

2.1.1 Definition of the Asynchronous Region

We fix the masses m0,m1,m2 arbitrarily, and suppose that the eccentricities e1 and e2 are
bounded away from 0, 1, so there exist positive real numbers e∨1 , e∧1 , e∨2 , e∧2 , such that

0 < e∨1 < e1 < e∧1 < 1, 0 < e∨2 < e2 < e∧2 < 1.

Recall that α = a1
a2

is the ratio of the semi major axes, which plays the role of a small
parameter in this study. We suppose that α < α∧ for

α∧ := min{1− e∧2
80 ,

1− e∧2
2σ0

,
1− e∧2

2σ1
},

in which 1
σ0

= 1 + m1
m0

,
1
σ1

= 1 + m0
m1

(see Appendix A for the choice of α∧). In particular,

max{σ0, σ1}α
1 + e1
1− e2

< 1,

i.e., the two ellipses are always bounded away from each other for all the time.
Without loss of generality, we fix two real numbers a∧1 > a∨1 > 0, such that the relation

a∨1 < a1 < a∧1 holds for all time.
The subset of the phase space Π in which Delaunay coordinates for both ellipses are

regular coordinates, and satisfy these restrictions is denoted by P∗: it can thus be regarded

45



46CHAPTER 2. QUADRUPOLAR DYNAMICS AND QUASI-PERIODIC SOLUTIONS

(by Delaunay coordinates) as a subset1 of T6×R6. The function Fpert can thus be regarded
as an analytic function on P∗ ⊂ T6 × R6.

Let ν1, ν2 denote the two Keplerian frequencies: νi = ∂FKep
∂Li

=
√
Mi

a3
i

, i = 1, 2.

Let TC = C6/Z6 × C6 and Ts be the s-neighborhood of T6 × R6 := R6/Z6 × R6 in TC.
Let TA,s be the s-neighborhood of a set A ⊂ T6 × R6 in Ts.

The complex modulus of a transformation is the maximum of the complex moduli of
its components. We use | · | to denote the modulus of either a function or a transformation.

Lemma A.3 states that there exists some small real number s > 0, such that in TP∗,s,
|Fpert| ≤ Cst |α|3, in which the constant Cst is independent of α.

2.1.2 Asynchronous Elimination of the Fast Angles

Proposition 2.1.1. For any n ∈ N, there exist an analytic Hamiltonian Fn : P∗ → R
independent of the fast angles l1, l2, and an analytic symplectomorphism φn : P∗ ⊃ P̃ →
φn(P̃), |α|

3
2 -close to the identity, such that

|F ◦ φn − Fn| ≤ C0 |α|
3(n+2)

2

on TP̃,s′′ for some open set P̃ ⊂ P∗, and some real number s′′ with 0 < s
′′
< s. Moreover,

locally the density of P̃ in P∗ tends to 1 when α tends to 0.

Proof. The strategy is to first eliminate l1 up to sufficiently large order, and then eliminate
l2 to the desired order.

We describe the first step of eliminating l1. In order to eliminate the angle l1 in the
perturbing function Fpert, we look for an auxiliary analytic Hamiltonian Ĥ, which is of
order O(α3). We denote its Hamiltonian vector field by XĤ and its flow by φt. The
symplectic coordinate transformation that we are looking for is given by the time-1 map
φ1(:= φt|t=1) of XĤ .

Define the first order complementary part F 1
comp,1 by the equation

φ∗1F = FKep + (Fpert +XĤ · FKep) + F 1
comp,1,

in which XĤ is seen as a derivation operator. Let

〈Fpert〉1 = 1
2π

∫ 2π

0
Fpert dl1

be the average of Fpert over l1, and F̃pert,1 = Fpert − 〈Fpert〉1 be its zero-average part.
As the two Keplerian frequencies do not appear at the same magnitude of α, we do

not need to ask Ĥ to solve the (standard) cohomological equation:

ν1∂l1Ĥ + ν2∂l2Ĥ = F̃pert,1;

instead, we just need Ĥ to solve the perturbed cohomological equation

ν1∂l1Ĥ = F̃pert,1.

1The condition defining P∗ can be replaced by other conditions, e.g. by asking that the Deprit coordi-
nates to be regular.
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We thus set
Ĥ(l2) = 1

ν1

∫ l1

0
F̃pert,1 dl1

as long as ν1 6= 0. The last condition is indeed satisfied for any Keplerian frequency. This
amounts to proceed with a single frequency elimination for l1. We have

|Ĥ| ≤ Cst |α|3 in TP∗,s.

We obtain by Cauchy inequality that in TP∗,s−s0 , |XĤ | ≤ Cst |Ĥ| ≤ Cst |α|3 for some
0 < s0 < s/2. Shrinking from TP∗,s−s0 to TP∗∗,s−s0−s1 , where P∗∗ is an open subset of P∗,
so that φ1(TP∗∗,s−s0−s1) ⊂ TP∗,s−s0 , with s− s0 − s1 > 0. The time-1 map φ1 of XH thus
satisfies |φ1 − Id| ≤ Cst |α|3 in TP∗∗,s−s0−s1 .

The function φ∗1F is analytic in TP∗∗,s−s0−s1 . Now F is conjugate to

φ∗1F = FKep + 〈Fpert〉1 + F 1
comp,1,

and |F 1
comp,1| is of order O(α

9
2 ): indeed, analogous to [Féj02], the complementary part

F 1
comp,1 =

∫ 1

0
(1− t)φ∗t (X2

Ĥ
· FKep)dt+

∫ 1

0
φ∗t (XĤ · Fpert)dt− ν2

∂Ĥ

∂l2

satisfies

|F 1
comp,1| ≤ Cst |XĤ |(|F̃pert,1|+ |Fpert|) + ν2|Ĥ| ≤ Cst |α|

9
2 .

The first order averaging with respect to l1 is then accomplished. One proceeds anal-
ogously and eliminate the dependence of the Hamiltonian of l1 up to order O(α

3(n+2)
2 ) for

any chosen n ∈ Z+. The Hamiltonian F is then analytically conjugate to

FKep + 〈Fpert〉1 + 〈F 1
comp,1〉1 + · · ·+ 〈F 1

comp,n−1〉1 + F 1
comp,n,

in which the expression FKep+ 〈Fpert〉1 + 〈F 1
comp,1〉1 + · · ·+ 〈F 1

comp,n−1〉1 is independent

of l1, and F 1
comp,n is of order O

(
α

3(n+2)
2

)
.

After this, we proceed by eliminating l2 from

FKep + 〈Fpert〉1 + 〈F 1
comp,1〉1 + · · ·+ 〈F 1

comp,n−1〉1.

This is again a single frequency averaging and it can be carried out as long as ν2 6= 0.
The Hamiltonian generating the transformation for the first step of averaging over l2

is

1
ν2

∫ l2

0
(〈Fpert〉1 − 〈Fpert〉)dl2 ≤ Cst |α|

3
2 .

The other steps are similar to the first step of eliminating l1.
By eliminating l2, the Hamiltonian F is conjugate to

FKep + 〈Fpert〉+ 〈Fcomp,1〉+ · · ·+ 〈Fcomp,n−1〉+ Fcomp,n,

in which the (first order) secular system

F 1
sec = 〈Fpert〉 := 1

4π2

∫ 2π

0

∫ 2π

0
Fpertdl1dl2
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and the n-th order secular system

Fnsec := 〈Fpert〉+ 〈Fcomp,1〉+ · · ·+ 〈Fcomp,n−1〉

is independent of l1, l2, with

〈Fcomp,i〉 = O(α
3(i+2)

2 ), Fcomp,n = O(α
3(n+2)

2 )

in TP̃,s′′ for some open subset P̃ ⊂ P∗ and some 0 < s
′′
< s both of which are obtained

by finite steps of constructions analogously to that we have described for the first step
elimination of l1. In particular, the set P̃ is obtained by shrinking P∗ from its boundary
by a distance of O(α

3
2 ). We may thus set

Fn := FKep + Fnsec.

The function Fnsec is defined on a subset of the phase space Π. It does not depend on
the fast Keplerian angles. To study its dynamics, we fix L1 and L2, then quotient by the
Keplerian T2-symmetry. The resulting function is then defined on a subset of the secular
space. We keep the same notation Fnsec for the resulting function.

2.1.3 Secular-integrable Systems

Unlike the planar case, the spatial secular systems Fnsec has two degrees of freedom after
being reduced by the SO(3)-symmetry, and therefore they are a priori not integrable. As
a result, they cannot directly serve as an “integrable approximating system” for our study.

In P∗, the function F 1
sec is of order O(α3), and the functions Fcomp,n, n ≥ 2 are of order

O(α
9
2 ).
We express Fnsec as a function

Fnsec(a1, α, e1, e2, g1, g2, h1, h2, i1, i2),

then expand it in powers of α:

Fnsec =
∞∑
i=0

Fn,isecα
i+1 = Fn,0sec α+ Fn,1sec α

2 + · · · .

As a consequence of Lemma A.1, we see that

∀n ∈ N+, F
n,i
sec = 0, i = 0, 1.

Moreover, since Fncomp, n ≥ 1 is of order O(α
9
2 ), therefore

Fnsec − F 1
sec = O(α

9
2 ),

in particular, we have

Fn,2sec = F 1,2
sec , F

n,3
sec = F 1,3

sec , ∀n = 1, 2, 3, · · · .
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As noticed by Harrington in [Har68]2, the term F 1,2
sec is independent of g2, thus G2 is

an additional first integral of the system F 1,2
sec . The system F 1,2

sec can then be reduced to
one degree of freedom after reduction of the symmetries, hence it is integrable. We call
Fquad := F 1,2

sec the quadrupolar system.
The integrability of the quadrupolar Hamiltonian is, in Lidov and Ziglin’s words, a

“happy coincidence”: it is due to the particular form of Fpert. Indeed, if one goes to even
higher order expansion in powers of α, then in general the truncated Hamiltonian will no
longer be independent of g2 (resp. ḡ2) (c.f. [LB10]).

In order to have better control of the perturbation so as to apply KAM theorems,
we need to build higher order integrable approximations by eliminating g2 in the secular
systems Fnsec. This is a single frequency elimination procedure and can be carried out
everywhere as long as the frequency of g2 is not zero.

Let νquad,2 be the frequency of g2 in the system Fquad. Since the analytic function
Fquad depends non trivially on G2 (See Section 2.2), For any ε small enough, we have
|νquad,2| > ε on an open subset P̌ of P∗ and locally the density of P̌ in P∗ tends to 1 when
ε tends to 0. For any fixed ε, analogous to Subsection 2.1.2, for small enough α, there
exists an open subset P̂ in P̌ with local density in P̌ tending to 1 when α tends to 0, such
that on P̂ we can conjugate our system up to small terms of higher orders to the normal
form that one gets by the standard elimination procedure3 to eliminate g2.

More precisely, as the elimination of l2 in the proof of Proposition 2.1.1, for the first
step of elimination, we eliminate the angle g2 in FKep +α3(Fquad +αF 1,3

sec ) by a symplectic
transformation ψ3 close to identity, which is the time-1 map of the Hamiltonian

α

νg2

(∫ g2

0

(
F 1,3
sec −

1
2π

∫ 2π

0
F 1,3
secdg2

)
dg2

)
.

The transformation is then of order α. We proceed analogously for higher order elimina-
tions. We denote by ψn′ : P̂ → ψn

′(P̂) the corresponding symplectic transformation, so
that

ψn
′∗Fnsec = α3Fquad + α4F̃n,3sec + · · ·+ αn

′
F̃n,n

′
sec + Fn

′+1
secpert,

in which Fn′+1
secpert = O(αn′+2) and F̃n,isec, i = 1, 2, · · · are independent of g2.

Let
Fn,n

′
sec = α3Fquad + α4F̃n,3sec + · · ·+ αn

′
F̃n,n

′
sec

and call it the (n, n′)-th order secular-integrable system. We have

ψn
′∗φn∗F = FKep + Fn,n

′
sec + Fn

′+1
secpert + Fncomp.

For α small enough, the latter two terms can be made arbitrarily small by choosing n, n′
large enough. Since Fn,3sec depends non-trivially on g2 (See e.g. [LB10]), the transformation
ψ3 (the transformation used to eliminate the dependence of g2 in Fn,3sec ) is of order α, the
transformation φn is of order O(α3/2), therefore the transformation φnψn′ is of order α,
and is dominated by the transformation ψ3.
Remark 2.1.1. A Hamiltonian function does not depend on g2 when it is expressed in
Delaunay coordinates if and only if it does not depend on ḡ2 when it is expressed in

2For the (inner) restricted spatial three-body problem, the integrability of the quadrupolar system
has been discovered in 1961 by Lidov [Lid61] (see also Lidov [Lid62], Kozai [Koz62]). Its link with the
non-restricted quadrupolar system has been discussed in [LZ76].

3The elimination method we use is the standard procedure described in [Arn83].
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Deprit coordinates: this is because they are conjugate to the same action variable G2 in
different Darboux coordinates. Therefore it is equivalent to eliminate either of them in
their corresponding coordinate systems.

2.2 Quadrupolar Dynamics

The secular-integrable systems Fn,n
′

sec are O(α4) perturbations4 of α3Fquad, therefore for
α small, the key to understand the dynamics of Fn,n

′
sec is to understand the dynamics of

Fquad (seen as a function defined on a subset of the secular space). In this section, we
shall reproduce and reformulate some of the study of Lidov-Ziglin in [LZ76].

In Deprit coordinates, after reduction by the SO(3)-symmetry, the quadrupolar Hamil-
tonian takes the form

Fquad = −µquadL
3
2

8a1G3
2

{
3G

2
1

L2
1

[
1 + (C2 −G2

1 −G2
2)2

4G2
1G

2
2

]
+ 15

(
1− G2

1
L2

1

)[
cos2 ḡ1 + sin2 ḡ1

(C2 −G2
1 −G2

2)2

4G2
1G

2
2

]
− 6
(

1− G2
1

L2
1

)
− 4
}
,

where the constant µquad = m0m1m2
m0 +m1

only depends on the masses.
Notations: We separate the variables of the system and the parameters by a semicolon

so as to make the difference between different reduced systems more apparent.
The functions L1, L2, C and G2 are first integrals of Fquad(G1, ḡ1, C,G2, L1, L2). We

fix the direction of ~C and these first integrals, and reduce the system by the conjugate
T4-symmetry, so that C and G2 are considered as parameters of the reduced system. The
resulting system is thus written as Fquad(G1, ḡ1;C,G2, L1, L2).

By applying the triangular inequality to the vectors ~C, ~C1, ~C2, we see that the param-
eters L1, C and G2 must satisfy the condition

|C −G2| ≤ L1.

This condition defines the region of admissible parameters in the (C,G2)-parameter space.
By triangular inequality and definition of G1, when C and G2 are fixed, the quantity |G1|
belongs to the interval [G1,min, G1,max], where G1,min := |C −G2|, G1,max := min{L1, C +
G2}.

Recall that after blow-up of the secular space, we may still use (G1, ḡ1, G2, ḡ2) to study
circular inner or outer ellipses or coplanar pairs of ellipses. In this section, we retain
this convention unless otherwise stated. Note that the reduction procedure of the SO(2)-
symmetry around ~C for coplanar pairs of ellipses after the blow-up procedure, however,
does not lead to an effective reduction procedure in the secular space. See Subsection 1.2.5
for more details.

From its explicit expression, we see that the Hamiltonian Fquad is regular for C 6= G2
for all 0 < G1 < L1; it is also regular when C = G2, since the factor G2

1 in the denominator
is cancelled out by G4

1 appearing in the numerator. This phenomenon also holds for any
F
n,n′

sec .5 For G1 < G1,min, the dynamics determined by the above expression of Fquad
is irrelevant to the real dynamics; nevertheless, the fact that the expression of Fquad is

4Actually Fn,3sec = 0 but Fn,4sec 6= 0, therefore Fn,n′
sec − α3Fquad is of order O(α5).

5Each Fn,n′
sec depends polynomially on cos(i1− i2) (through Legendre polynomials), therefore it remains

analytic in G1 for 0 < G1 < L1 if we substitute cos(i1 − i2) by C2−G2
1−G

2
2

2G1G2
.
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analytic in G1 for all 0 < G1 < L1 enable us to develop Fquad into Taylor series of G1
at {G1 = G1,min} for G1,min > 0. In Appendix D, this allows us to show the existence
of torsion for those quadrupolar invariant tori near {G1 = G1,min} with some simple
calculations.

Now we may fix C and G2 and reduce the system to one degree of freedom. When
C 6= G2, the (physically relevant) reduced quadrupolar dynamics lies in the cylinder
defined by the condition G1,min ≤ G1 ≤ G1,max. When C = G2, the reduced quadrupolar
dynamics naturally lies in the reduced critical quadrupolar space (Figure 1.4). The analysis
of the quadrupolar dynamics in this space is the key for the proof of the existence of quasi-
periodic almost-collision orbits (Section 3.2).

As is shown by Lidov-Ziglin, for fixed L1 and L2, in different regions of the (C,G2)-
parameter space, the phase portraits in the (G1, ḡ1)- plane have periodic orbits, finitely
many singularities and separatrices; the first two kinds give rise to invariant 2-tori and
periodic orbits of the reduced system of Fquad by the SO(3)-symmetry, and invariant 3-tori
and 2-tori of the system Fquad (not being reduced by the SO(3)-symmetry) in the secular
space.

The quadrupolar phase portraits in the (G1, ḡ1)-space are invariant under the transla-
tions

(ḡ1, G1)→ (ḡ1 + nπ,G1), n ∈ Z,

and the reflections
(ḡ1, G1)→ (−ḡ1, G1).

Therefore, without loss of generality, we can identify points obtained by reflexions and
translations. In particularly, we shall make this identification for the singularities.

Figure 2.1 and Figures 2.2, 2.3 are the parameter space and phase portraits of the
quadrupolar system, which are slight modifications of the corresponding figures in [LZ76].

When C 6= G2, the dynamics of Fquad can be easily deduced from [LZ76] by using the
relations (�,� denote respectively the symbols ε, ω in [LZ76])

� = G2
1

L2
1
, � = g2.

According to different choices of parameters, we list different quadrupolar phase portraits
in the following:

1. G2 < C, 3G2
2 + C2 < L2

1.
In this case, there exists an elliptical singularity

B : (ḡ1 = π

2 (modπ), G1 = G1,B),

where G1,B is determined by the equation

G6
1,B
L6

1
−
(
G2

2 + 2C2

2L2
1

+ 5
8

)
G4

1,B
L4

1
+ 5(C2 −G2

2)2

8L4
1

= 0.

There also exists a hyperbolic singularity

A :
(
ḡ1 = 0 (modπ), G1 =

√
3G2

2 + C2
)
.



52CHAPTER 2. QUADRUPOLAR DYNAMICS AND QUASI-PERIODIC SOLUTIONS

2. G2 + C < L1, 0 < (G2 − C)(G2 + C)2 < 5C(L2
1 − (C +G2)2)

or
G2 + C > L1, 0 < 2L2

1(3G2
2 + C2 − L2

1) < 5(4L2
1G

2
2 − (C2 −G2

2 − L2
1)2).

In this case, there exist two singularities: the elliptic singularity B, and a hyperbolic
singularity E:

E : (ḡ1 = arcsin
√

(G2 − C)(G2 + C)2

5C(L2
1 − (G2 + C)2)

, G1 = G1,max)

if C +G2 < L1, and

E : (ḡ1 = arcsin
√

2L2
1(3G2

2 + C2 − L2
1)

5(4L2
1G

2
2 − (C2 −G2

2 − L2
1)2)

, G1 = G1,max)

if C +G2 > L1.

3. (C −G2)2 <
2
3(G

2
2

2 + C2 + 5L2
1

8 ) < min{L2
1, (C +G2)2}

L2
1(C2 +G2

2)2 <
32
135(G

2
2

2 + C2 + 5L2
1

8 )3

5C(L2
1 − (C +G2)2) < (G2 − C)(G2 + C)2, if C +G2 < 1 and

5(4L2
1G

2
2 − (C2 −G2

2 − L2
1)2) < 2L2

1(3G2
2 + C2 − L2

1), if C +G2 > 1.
In this case, there exists an elliptic singularity B and a hyperbolic singularity A′ on
the line defined by ḡ1 = π

2 (modπ). The ordinate of A′ is determined by the same
equation that defines the ordinate of B in the case (1).

4. The border cases of the above-listed choices of parameters. For such parameters,
the corresponding phase portraits can be easily deduced by limiting procedures. We
shall not list them in details, as we do not need them in this study.

5. There are no singularities for other choice of parameters.

When C = G2 (Figure 2.3), the quadrupolar Hamiltonian Fquad defines a dynamical
system on the dense open set D̃ of the critical quadrupolar space, on whose double cover
we can use the extended Deprit coordinates, which, after reduction by the SO(3)× SO(2)
symmetry, give coordinates (G1, ḡ1) which are regular near degenerate inner ellipses on
the branched double cover of the reduced critical quadrupolar space. The phase portraits
of this system can be easily deduced from [LZ76]:

1. C = G2 ≤
L1
2 .

The expressions of the hyperbolic singularities A and E coincide, and give out one
hyperbolic singularity A = E at (ḡ1 = 0 (modπ), G1 = G1,max). There also exist
two elliptic singularities: (ḡ1 = 0 (modπ), G1 = 0) and (ḡ1 = π

2 (modπ), G1 = 0).

2. C = G2 >
L1
2 .

Only one hyperbolic singularity E exists, together with two elliptic singularities:
(ḡ1 = 0 (modπ), G1 = 0) and (ḡ1 = π

2 , (modπ), G1 = 0).

In either of the two cases, a dense open set of trajectories passes through the subset
{G1 = 0}, as indicated by the phase portraits. Remind that these are the phase portraits
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Figure 2.1: The parameter space of the quadrupolar system

on the branched double cover of the reduced critical quadrupolar space. To obtain the
corresponding phase portraits on the reduced critical quadrupolar space, we have to reduce
the system by the equivalence relation (G1, ḡ1) ∼ (−G1, π−ḡ1). The quotient space (a part
of it is depicted in Figure 2.5) is then a disc6 with two singular points when C = G2 ≥

L1
2 .

In particular, the frequency of a periodic orbit in the reduced critical quadrupolar space
and its lift in the branched double cover winding around the singularity (G1 = 0, ḡ1 = π

2 )
are differed by a factor of 2, while for periodic orbits in the reduced critical quadrupolar
space whose lift wind around the singularity (G1 = 0, ḡ1 = 0), each of them has the same
frequency as its lift.

In order to understand the phase portraits in and near the reduced critical quadrupolar
space in the reduced secular space, we need to carry out the reduction procedure in the
secular space but not in its blow-ups. If we fix the direction of ~C and suppose that the
outer ellipse is non-degenerate and non-circular, then the only points in the restriction
of the secular space on which the action of SO(2) × SO(2) is not free are ellipse pairs
containing degenerate inner ellipse parallel to ~C or a circular inner ellipse perpendicular
to ~C (on which the isotropy group is SO(2)). Therefore the quotient is a smooth manifold
outside these points. The reduction also leads into identifying the circles {G1 = G1,min}
and {G1 = G1,max} to points (see Figure 2.5 for the resulting phase portraits near {G1 =
G1,min}).

We summarize the relations between variants of the secular space and reductions in
these space in Figure 2.6.

Remark 2.2.1. The use of non-symplectic coordinates � = G2
1

L2
1
,� = ḡ1 in [LZ76] calls for

some comments. First, the reduced system is integrable and has only one degree of free-
dom, therefore the use of non-symplectic coordinates does not cause much inconvenience.
Moreover, the choice of � respects the symmetry (G1, ḡ1)→ (−G1, ḡ1) of the quadrupolar
system, and when C 6= G2 the quadrupolar dynamics is naturally restricted to the subset
of the phase space Π in which the transformation (�,�)→ (G1, ḡ1) is regular. In the case
when C = G2, the formulation of the quadrupolar dynamics in coordinates (�,�) in the
region � > 0 indicates that along a dense open set of trajectories, the eccentricity e1 of

6In Figure 2.4, we further identify the set {G1 = G1,max} to a point, while here we have not made this
identification.
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Figure 2.2: The phase portraits of the quadrupolar system for C 6= C2.

Figure 2.3: The G1-ḡ1 phase portraits on the branched double cover of the reduced critical
quadrupolar space, ḡ1 ∈ [−π2 ,

π

2 ].
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Figure 2.4: The flow foliation on the reduced critical quadrupolar space and its branched
double cover.

Figure 2.5: The reduced quadrupolar flow near the reduced critical quadrupolar space.
Only the phase portraits near G1 = G1,min are depicted.



56CHAPTER 2. QUADRUPOLAR DYNAMICS AND QUASI-PERIODIC SOLUTIONS

Figure 2.6: Variants of the secular spaces and reductions

the inner ellipse will tend and reach 1. This is well-adapted to their purpose, which is
to generalize their former studies of the quadrupolar dynamics of the restricted spatial
three-body problem to the (non-restricted) spatial three-body problem and to show that
in this case, except for initial values lying in the subset {|G1| = G1,max}, even for initial
value arbitrarily close to this subset, the inner orbital plane tends to be perpendicular to
the Laplace plane, and the eccentricity e1 of the inner ellipse tends to 1. If one considers
the Earth-Moon-Astroid system, then regardless of whether one models the system by the
spatial restricted three-body problem or the spatial three-body problem, then even if the
astroid is released in an orbit very close to the orbital plane of the moon around the earth,
the astroid will eventually have its orbital plane becoming perpendicular to the orbital
plane of the moon, and its eccentricity tending to 1, which will finally end up in a collision
with the Earth. Unfortunately, these informations are insufficient for our purpose, and
further analysis is needed.

In the phase space Π, consider the system FKep + α3Fquad when C = G2: each choice
of the two Keplerian frequencies and the two secular frequencies gives rise to invariant
4-tori in the system reduced by the SO(3)-symmetry. Moreover, if the two Keplerian
frequencies and the two secular frequencies are not in resonance, then the flow is ergodic
on such invariant 4-tori. Based on the quadrupolar dynamics, we see that the flow on
such tori gives rise to a zero measure set of collision orbits and to a set of full measure of
almost-collision orbits in {C = G2}. These almost-collision orbits are, strictly speaking,
not quasi-periodic, as we need to exclude the set of inner collisions from their closures.

For each pair (n, n′) of positive integers, the higher order secular-integrable systems
Fn,n

′
sec has first integrals C and G2. As for Fquad, when C 6= G2, the inner eccentricity e1

is bounded away from 1. After fixing C and G2 and reducing Fn,n
′

sec by the SO(2)-actions
of their conjugate angles, the reduced dynamics of Fn,n

′
sec is defined in the same space as

that of Fquad for C 6= G2. By analyticity of Fquad, we will show that for a dense open set
of the parameter space, the singularities A,B,A′, E are of Morse type (Proposition C.1).
These Morse singularities persist under small perturbations (i.e. for small enough α) and
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serve as singularities for Fn,n
′

sec . The phase portraits of Fn,n
′

sec are just small perturbations
of (and orbitally conjugate to) that of the quadrupolar system Fquad. To obtain the same
result near the singularity {G1 = G1,min}, we do not need to verify if the singularity
{G1 = G1,min} is Morse or not (see Appendix C).

Lidov-Ziglin’s study of the quadrupolar dynamics near the secular neighborhood of
a circular inner ellipse may be understood more clearly by considering the quadrupolar
dynamics in the second modified secular space (Definition 1.2.3), therefore Lidov-Ziglin’s
study can be regarded as valid up to circular inner ellipse after blowing-up the secular
space as described in (Definition 1.2.3). In order to get the “real” quadrupolar dynamics
in the secular space, it is enough to proceed with the corresponding blow-down procedure.

In [FO94], Ferrer and Osacar used regular coordinates in the neighborhood of a circular
inner ellipse to supplement the study of the quadrupolar dynamics of Lidov-Ziglin. Near
a degenerate inner ellipse, they have identified the line segment {G1 = 0} in the critical
quadrupolar space to a single point, thus worked in a quotient of the actual reduced space.

2.3 KAM Theorems and Applications

We present some KAM results in this section. We first give an analytic version of a
powerful “hypothetical conjugacy” theorem (see e.g. [Féj04]); this result does not depend
on any non-degeneracy condition. We then discuss some classical (strong) non-degeneracy
conditions which guarantee the existence of KAM tori. Some equivariant KAM theorems,
applicable for systems which are invariant under a (free) Hamiltonian torus action are
presented thereafter, as well as discussions about the case of more general symmetry of
a compact connected Lie group. We also present a theorem of J.Pöschel, which shows
the existence of families of periodic solutions accumulating KAM tori. Finally we apply
the iso-chronic KAM theorem to obtain some invariant tori of the system F which are
bounded away from inner collisions.

2.3.1 Hypothetical Conjugacy Theorem

For p ≥ 1 and q ≥ 0, consider the phase space Rp ×Tp ×Rq ×Rq = {(I, θ, x, y)} endowed
with the standard symplectic form dI ∧ dθ + dx ∧ dy. All mappings are assumed to be
analytic except when explicitly mentioned otherwise.

Let δ > 0, q′ ∈ {0, ..., q}, q′′ = q − q′, $ ∈ Rp, and β ∈ Rq. Let Bp+2q
δ be the

(p+ 2q)-dimensional closed ball with radius δ centered at the origin in Rp+2q, and N$,β =
N$,β(δ, q′) be the space of Hamiltonians N ∈ Cω(Tp ×Bp+2q

δ ,R) of the form

N = c+〈$, I〉+
q′∑
j=1

βj(x2
j+y2

j )+
q∑

j=q′+1
βj(x2

j−y2
j )+〈A1(θ), I⊗I〉+〈A2(θ), I⊗Z〉+O3(I, Z),

with c ∈ R, A1 ∈ Cω(Tp,Rp ⊗ Rp), A2 ∈ Cω(Tp,Rp ⊗ R2q) and Z = (x, y); the isotropic
torus Tp×{0}×{0} is an invariant $-quasi-periodic torus of N , and its normal dynamics is
elliptic, hyperbolic, or a mixture of both types, with Floquet exponents β. The definitions
of tensor operations can be found in e.g. P. 62 [Féj04].

Let γ̄ > 0 and τ̄ > p− 1, | · | be the `2-norm on Zp. Let HDγ̄,τ̄ = HDγ̄,τ̄ (p, q′, q′′) be
the set of vectors ($,β) satisfying the following homogeneous Diophantine conditions:

|k ·$ + l′ · β′| ≥ γ̄(|k|τ̄ + 1)−1
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for all k ∈ Zp \ {0} and l′ ∈ Zq′ such that |l′1| + · · · + |l′q′ | ≤ 2; we have denoted β′ =
(β1, ..., βq′). Let ‖ · ‖s be the s-analytic norm of an analytic function, i.e., the supremum
norm of its analytic extension to the s-neighborhood of its (real) domain in the complexified
space.

Theorem 2.1. Let ($o, βo) ∈ HDγ̄,τ̄ and No ∈ N$o,βo. For some d > 0 small enough,
there exists ε > 0 such that for every Hamiltonian N ′ ∈ Cω(Tp ×Bp+2q

δ ) such that

‖N ′ −No‖d ≤ ε,

there exists a vector ($,β) satisfying the following properties:

• the map N ′ 7→ ($,β) is of class C∞ and is ε-close to ($o, βo) in the C∞-topology;

• if ($,β) ∈ HDγ̄,τ̄ , N ′ is symplectically analytically conjugate to a Hamiltonian
N = c(N) + 〈$, I〉+ · · · ∈ N$,β.

Moreover, ε can be chosen of the form Cst γ̄k (for some Cst > 0, k ≥ 1) when γ̄ is small.

This theorem is an analytic version of the C∞ “hypothetical conjugacy theorem”
of [Féj04]. Its complete proof will appear in the article [Féj13] of J. Féjoz. Since ana-
lytic functions are C∞, except for the analyticity of the conjugation, other statements of
the theorem directly follow from the “hypothetical conjugacy theorem” of [Féj04].

2.3.2 Iso-chronic and Iso-energetic KAM theorems
We now assume that the Hamiltonians No = No

ι and N ′ = N ′ι depend analytically (C1-
smoothly would suffice) on some parameter ι ∈ Bp+q

1 . Recall that, for each ι, No
ι is of the

form

No
ι = coι+〈$o

ι , I〉+
q′∑
j=1

βoι,j(x2
j+y2

j )+
q∑

j=q′+1
βoι,j(x2

j−y2
j )+〈Aι,1(θ), I⊗I〉+〈Aι,2(θ), I⊗Z〉+O3(I, Z).

Theorem 2.1 can be applied to No
ι and N ′ι for each ι. We will now add some classical non-

degeneracy conditions to the hypotheses of the theorem, which ensure that the condition
“($ι, βι) ∈ HDγ̄,τ̄” actually occurs often in the set of parameters.

Call
HDo =

{
($o

ι , β
o
ι ) ∈ HDγ̄,τ̄ : ι ∈ Bp+q

1/2

}
the set of “accessible” (γ̄, τ̄)-Diophantine unperturbed frequencies. The parameter is re-
stricted to a smaller ball in order to avoid boundary problems.

Corollary 2.1 (Iso-chronic KAM theorem). Assume the map

Bp+q
1 → Rp+q, ι 7→ ($o

ι , β
o
ι )

is a diffeomorphism onto its image. If ε is small enough and if ‖N ′ι −No
ι ‖d < ε for each

ι, the following holds:
For every ($,β) ∈ HDo there exists a unique ι ∈ Bp+q

1 such that N ′ι is symplectically
conjugate to some N ∈ N$,β. Moreover, there exists γ̄ > 0, τ̄ > p− 1, such that the set

{ι ∈ Bp+q
1/2 : ($ι, βι) ∈ HDo}

has positive Lebesgue measure.
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Proof. If ε is small, the map ι 7→ ($ι, βι) is C1-close to the map ι 7→ ($o
ι , β

o
ι ) and is thus

a diffeomorphism over Bp+q
2/3 onto its image, which contains the positive measure set HDo

for some γ̄ > 0, τ̄ ≥ p − 1. The first assertion then follows from Theorem 2.1. Since the
inverse map ($,β) 7→ ι is smooth, it sends sets of positive measure onto sets of positive
measure.

Example-Condition 2.1. When No = No(I) is integrable, q = 0, we may set No
ι (I) :=

No(ι+I). The iso-chronic non-degeneracy of No
ι is just the non-degeneracy of the Hessian

H (No)(I) of No with respect to I:

|H (No)(I)| 6= 0.

When this is satisfied, Corollary 2.1 asserts the persistence of a set of Lagrangian invariant
tori of No = No(I) parametrized by a positive measure set in the action space. By Fubini
theorem, these invariant tori form a set of positive measure in the phase space.

If the system No(I) is properly degenerate, say

I = (I(1), I(2), · · · , I(N)),

and there exist real numbers

0 < d1 < d2 < · · · < dN

such that
No(I) = No

1 (I(1)) + εd1No
2 (I(1), I(2)) + · · ·+ εdNNo

N (I),
then,

|H (No)(I)| 6= 0, ∀ 0 < ε << 1 ⇐ |H (No
i )(I(i))| 6= 0, ∀i = 1, 2, · · · , N.

i.e. the non-degeneracy of No(I) can be verified separately at each scale.
Let us explain this fact by a simple example: Let No(I1, I2) = No

1 (I1) + εNo
2 (I1, I2),

then
|H (No)(I1, I2)| = ε · d

2No
1 (I1)
dI2

1
· d

2No
2 (I1, I2)
dI2

2
+O(ε2).

Therefore for small enough ε, to have |H (No)(I1, I2)| 6= 0 it suffices to have

d2No
1 (I1)
dI2

1
6= 0, d

2No
2 (I1, I2)
dI2

2
6= 0.

The smallest frequency of No(I) is of order εdN . if No(I) is non-degenerate, then for
any 0 < ε << 1, there exists a set of positive measure in the action space, such that
under the frequency map, its image contains a set of positive measure of homogeneous
Diophantine vectors in HDεdN γ̄,τ̄ whose measure is uniformly bounded from below for
0 < ε << 1. Actually, since for any vector ν ′ ∈ Rp+q,

εdN ν ′ ∈ HDεdN γ̄,τ̄ ⇔ ν ′ ∈ HDγ̄,τ̄ ,

the measure of Diophantine frequencies of No(I) in HDεdN γ̄,τ̄ is at least the measure of
Diophantine frequencies of

No
1 (I(1)) +No

2 (I(1), I(2)) + · · ·+No
N (I)

in HDγ̄,τ̄ , which is independent of ε.
Following Theorem 2.1, we may thus set ε = Cst (εdN γ̄)k for the size of allowed per-

turbations, for some positive constant Cst and some k ≥ 1, provided γ̄ is small.
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We now characterize invariant tori in terms of their energy and of the projective class
of their frequency. We denote by [·] the projective class of a vector. Let co := co0, and

Do =
{

(coι , [$o
ι , β

o
ι ]) : coι = co, ($o

ι , β
o
ι ) ∈ HD2γ̄,τ̄ , ι ∈ Bp+q

1/2

}
;

note that the factor 2 in the Diophantine constant 2γ̄, meant to take care of the fact that
along a given projective class, locally the constant γ̄ may worsen a little (we will apply
Theorem 2.1 with Diophantine constants (γ̄, τ̄)).

Corollary 2.2 (Iso-energetic KAM theorem). Assume that the map

Bp
1 → R×P(Rp), ι 7→ (coι , [$o

ι ])

is a diffeomorphism onto its image. If ε is small enough and if for some d > 0, we have
‖N ′ι −No

ι ‖d < ε for each ι, and the following holds:
For every (co, ν) ∈ Do, there exists a smooth function cι which is C1-close to coι , and

a unique ι ∈ Bp+q
1 such that (cι, [$ι]) = (co, ν), and N ′ι is symplectically (analytically)

conjugate to some Nι ∈ N$ι,βι of the form

Nι = co + 〈$ι, I〉+ 〈A1(θ), I ⊗ I〉+O(|I|3).

Moreover, there exists γ̄ > 0, τ̄ > p− 1, such that the set

{ι ∈ Bp+q
1/2 : cι = co, $ι ∈ HDo}

has positive (p− 1)-dimensional Lebesgue measure.

Proof. From the hypothesis, the image of the restriction to {ι : coι = co} of the mapping
ι 7→ $o

ι is a (p − 1)-dimensional smooth manifold, diffeomorphic to a subset of P(Rp)
with non-empty interior, hence it contains a positive measure set of Diophantine vectors.
Therefore there exists γ̄ > 0, τ̄ > p−1, such that the setDo has positive (p−1)-dimensional
measure.

Moreover, Do ⊂ D′ =
{

(co, [$ι]) : $ι ∈ HDγ̄,τ̄ , ι ∈ Bp
2/3

}
. Indeed, if (co, [$o

ιo ]) ∈
Do, ιo ∈ B1/2, then there exists some ι′ ∈ B2/3 such that (co, [$o

ιo ]) = (co, [$ι′ ]). If
ε is small enough, $ι′ is close enough to $o

ιo ∈ HD2γ̄,τ̄ , hence belongs to HDγ̄,τ̄ , and
(co, [$ι′ ]) ∈ D′.

In view of Theorem 2.1, we may set cι = c(N ′ι) when $(N ′ι) ∈ HDγ̄,τ̄ , which is C1-close
to coι on HDγ̄,τ̄ , and extend it to a smooth function C1-close to coι on ι ∈ Bp

2/3 .
If ε is small, the mapping ι 7→ (cι, [$ι]) is C1-close to ι 7→ (coι , [$o

ι ]), hence it is a
diffeomorphism, and the image of its restriction to Bp

2/3 contains the set D′.
The first assertion then follows from Theorem 2.1. Since the map ι 7→ (cι, [$ι]) is

smooth, the pre-image of a set of positive (p− 1)-Lebesgue measure has positive (p− 1)-
dimensional Lebesgue measure.

Example-Condition 2.2. When No = No(I) is integrable, q = 0, we may set No
ι (I) :=

No(ι + I). The iso-energetic non-degeneracy of No
ι is just the non-degeneracy of the

bordered Hessian

H B(No)(I) =


0 No′

I1 · · · No′
Ip

No′
I1 No′′

I1,I1 · · · No′′
I1,Ip

...
... . . . ...

No′
Ip No′′

Ip,I1 · · · No′′
Ip,Ip


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(in which No′
Ii = ∂No

∂Ii
, No′′

Ii,Ij = ∂2No

∂Ii∂Ij
) satisfying

|H B(No)(I)| 6= 0.

When this is satisfied, Corollary 2.2 asserts the persistence under sufficiently small per-
turbations of a set of Lagrangian invariant tori of No = No(I) parametrized by a positive
(p− 1)-Lebesgue measure set in the action space. By Fubini theorem, these invariant tori
form a set of positive measure in the energy surface with energy c0.

If the system No(I) is properly degenerate, say I = (I(1), I(2), · · · , I(N)), 0 < d1 <
d2, · · · , < dN and

No(I) = No
1 (I(1)) + εd1No

2 (I(1), I(2)) + · · ·+ εdNNo
N (I),

then,

|H B(No)(I)| 6= 0, ∀ 0 < ε << 1⇐ |H B(No
1 )(I(1))| 6= 0, |H (No

i )(I(i))| 6= 0,∀i = 2, · · · , N.

2.3.3 Equivariant KAM theorems

In this subsection, we state some equivariant KAM theorems for Hamiltonian systems
with Hamiltonian symmetries, which allow us to directly show the existence of Lagrangian
invariant tori in such systems without passing to the quotient. These results are not new,
but they make the applications of KAM theorems for symmetric systems more flexible.
As an application, we shall apply the equivariant iso-energetic theorem in Section 3.2.

Hamiltonian torus symmetry

We suppose that both No and N ′ are invariant under the Hamiltonian action of a torus
Tm and let Γ ∈ Rm be the associated moment map. In this case, we may symplectically
reduce the systems No and N ′ from the Tm-symmetry. Denote by N̄o and N̄ ′ the reduced
systems at a common moment level Γ = Γ0 respectively. In order to apply KAM theorems
to N̄o and N̄ ′, we have to show that the frequency map

Bp+q−m
1 → Rp+q−m, ῑ 7→ ($r

ῑ , β
r
ῑ )

of N̄o is a diffeomorphism onto its image. As long as we know the existence of an invariant
torus of N̄ ′, we may recover an invariant torus of N from the action of the symmetric group
Tm.

Nevertheless, in some applications, the reduction procedure might be difficult to carry
out explicitly in a simple way, hence the non-degeneracy of the frequency map

Bp+q−m
1 → Rp+q−m, ῑ 7→ ($r

ῑ , β
r
ῑ )

might be difficult to verify.
Let us present another approach without descending to the quotient. Following M.

Herman (who attributed this method to Poincaré), we modify the Hamiltonians “in the
directions of symmetry”: for ι′ ∈ Rm, set

N̂o = No + ι′ · Γ, N̂ ′ = N ′ + ι′ · Γ.

From the hypothesis, the flows of N̂ ′ and N ′ commute.
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Denote by ιΓ the frequency of the angle conjugate to Γ. In proper coordinates, the
frequency of N̂o is written as (ιΓ+ι′, $r

ῑ , β
r
ῑ ). By allowing ι′ to take value in (−1, 1)m ⊂ Rm,

we see that the mapping

Bp+q−m
1 → Rp+q−m, ῑ 7→ ($r

ῑ , β
r
ῑ )

is a diffeomorphism onto its image if and only if the mapping

Bp+q−m
1 × (−1, 1)m → Rp+q, (ῑ, ι′) 7→ (ιΓ + ι′, $r, βr)

is a diffeomorphism onto its image.
Therefore, the non-degeneracy of N̄o with parameter ῑ is equivalent to the non-degeneracy

of N̂o with parameter (ι′, ῑ). When the non-degeneracy of N̂o is verified, we may apply
Corollary 2.1 or Corollary 2.2 to find invariant KAM tori of N̂ ′. If these tori are La-
grangian, then the following proposition assures that they are also invariant Lagrangian
tori of N ′. Note that since we have modified the frequency, we do not know if the flows of
N ′ on these Lagrangian tori are ergodic or not.

Proposition 2.3.1. (Herman) For fixed ι′, any invariant Lagrangian torus of N̂ ′ on which
all the orbits are dense is also an Lagrangian invariant torus of N ′.

Proof. By Lagrangian intersection theory, an invariant Lagrangian torus of N̂ ′ must in-
tersects its image under small Hamiltonian isotopy determined by the flow of N ′. To see
this, one uses Weinstein’s Lagrangian neighborhood theorem (Theorem 3.33, [MS98]) to
identify a small neighborhood of the torus with a small neighborhood of zero section in
the cotangent bundle of the torus, and then apply the Lagrangian intersection theorem for
cotangent bundle (Theorem 11.18, [MS98]). The commutativity of the two Hamiltonians
implies that the N̂ ′-orbit of an intersection point lies entirely in the intersection. Since
all the orbits of N̂ ′ are dense on the invariant torus, so is the intersection. As a result,
the torus necessarily agrees with its image under the time-t0 map of N ′. Therefore, this
invariant Lagrangian torus is also invariant under the flow of N ′.

Let us summarize the above discussions in the following corollaries:

Corollary 2.3 (Equivariant iso-chronic KAM theorem in the torus case). Set ι = (ι′, ι′′).
Assume the map

Bp+q
1 → Rp+q, ι 7→ ($o

ι , β
o
ι )

is a diffeomorphism onto its image. If ε is small enough and if ‖N ′ι −No
ι ‖d < ε for each

ι, the following holds:
For every ($,β) ∈ HDo there exists a unique ι ∈ Bp+q

1 such that N̂ ′ι = N ′ι + ι′ · Γ is
symplectically conjugate to some N ∈ N$,β.

In particular, there exists γ̄ > 0, τ̄ > p− 1, such that the set

{ι ∈ Bp+q
1/2 , ($ι, βι) ∈ HDo}

has positive Lebesgue measure.
Moreover, every invariant Lagrangian ergodic torus of N̂ ′ thus established is an invari-

ant Lagrangian torus of N ′.

Corollary 2.4 (Equivariant iso-energetic KAM theorem in the torus case). Set ι = (ι′, ι′′).
Assume that the map

φ : Bp+q
1 → R×P(Rp+q), ι 7→ (cι + ι′ · Γ, [$o

ι , β
o
ι ])
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is a diffeomorphism onto its image. If ε is small enough and if ‖N ′ι −No
ι ‖d < ε for each

ι, the following holds:
For every (co, ν) ∈ Do, there exists a unique ι ∈ Bp+q

1 such that N̂ ′ι = N ′ι + ι′ · Γ is
symplectically conjugate to some Nι ∈ N$ι,βι with energy co, thus of the form

Nι = co+〈$ι, I〉+
q′∑
j=1

βι,j(x2
j+y2

j )+
q∑

j=q′+1
βι,j(x2

j−y2
j )+〈Aι,1(θ), I⊗I〉+〈Aι,2(θ), I⊗Z〉+O3(I, Z).

Moreover, there exists γ̄ > 0, τ̄ > p− 1, such that the set

{ι ∈ Bp+q
1/2 : N̂ ′ι = c0, ($ι, βι) ∈ HDo}

has positive Lebesgue measure. Every invariant Lagrangian ergodic torus of N̂ ′ι with energy
c+ ι′ · Γ thus established is an invariant Lagrangian torus of N ′ with energy c.

Hamiltonian symmetry of a connected compact group action

We have only presented equivariant KAM theorem for systems with (free) Hamiltonian
torus symmetry, which seems to be a strict restriction. Nevertheless, we have seen in
Subsection 1.1.5 that for the symmetry induced by the Hamiltonian action of a connected
compact group, if we are only interested in the dynamics in the submanifold of the phase
space where the image of the associated moment map intersects each Weyl chamber (and
does not intersect the boundaries of the Weyl chamber), we may always restrict the system
to a proper invariant symplectic submanifold of the phase space of the system, where the
restriction of the symmetry is a Hamiltonian torus symmetry. The equivariant KAM
theorems established above are therefore applicable to the restricted system. The exact
statements are just a combination of Theorem 1.1 with Corollary 2.3 or Corollary 2.4
respectively. They shall not be used in the sequel and hence we omit their statements.

2.3.4 Periodic Solutions accumulating KAM tori

A theorem of J. Pöschel (the last statement of Theorem 2.1 in [Pös80]) permits us to show
that there are families of periodic solutions accumulating the KAM Lagrangian tori. In
our settings, this theorem can be stated in the following way:

Theorem 2.2. (Pöschel) Under the hypothesis of Corollary 2.1, the Lagrangian KAM
tori of the system N ′ι lie in the closure of the set of its periodic orbits.

2.3.5 Far from Collision Quasi-periodic Orbits of the Spatial Three-
Body problem

Now let us consider the Hamiltonian FKep + Fn,n
′

sec + Fn
′+1

secpert + Fncomp, seen as a system
reduced by the SO(3)-symmetry by Jacobi’s elimination of node. We now consider Fn,n

′
sec

as defined on a subset of the (reduced) phase space instead of the (reduced) secular space,
which has 4 degrees of freedom. By assuming the Laplace plane to be horizontal, we have
ḡ1 = g1.

To apply Corollary 2.1, we start by verifying the non-degeneracy conditions in the
system FKep + Fn,n

′
sec . As noted in Condition-Example 2.1, due to the proper degeneracy

of the system, we just have to verify the non-degeneracy conditions in different scales.
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Let us first consider the Kepler part:

FKep(L1, L2) = −µ
3
1M

2
1

2L1
2 −

µ3
2M

2
2

2L2
2
.

Considered only as a function of L1 and L2, it is iso-chronically non-degenerate with
respect to (L1, L2).

To obtain the secular non-degeneracies of the system Fn,n
′

sec , let us first consider the
quadrupolar system Fquad. From Figure 2.2, we see that for C 6= G2, in the (G1, g1)-space,
three types of regions are foliated by four kinds of closed curves of Fquad(G1, g1;C,G2, L1, L2).
They are regions around the elliptical singularities B inside the separatrix of A or A′, and
the regions from G1 = G1,max and G1 = G1,min up to the nearest separatrix. These
regions in turn correspond to three types of regions in the (G1, g1, G2, g2)-space, foliated
by invariant two-tori of the system Fquad(G1, g1, G2;C,L1, L2). We build action-angle co-
ordinates7, and let I1 be an action variable in any one of these corresponding regions
in the (G1, g1)-space. In Appendix D, we show that the quadrupolar frequency map is
non-degenerate in a dense open set for almost all C

L1
and G2

L1
.

Finally, for any fixed C 6= 0, the frequency map

(L1, L2, I1, G2) 7→
(µ3

1M
2
1

L3
1
,
µ3

2M
2
2

L3
2
, α3νquad,1, α

3νquad,2
)

of FKep + α3Fquad is a local diffeomorphism in a dense open set Ω of the phase space
Π symplectically reduced from the SO(3)-symmetry, in which νquad,i, i = 1, 2 are the
two frequencies of the quadrupolar system Fquad(G1, g1, G2;C,L1, L2) in the (Gi, gi)-plans
respectively, which are independent of α.

For any (n, n′), the Lagrangian tori of the system Fn,n
′

sec are O(α)-deformations of
Lagrangian tori of α3Fquad. The frequency map of FKep + Fn,n

′
sec are of the form

(L1, L2,J 1, G2) 7→
(µ3

1M
2
1

L3
1
,
µ3

2M
2
2

L3
2
, α3νquad,1 +O(α4), α3νquad,2 +O(α4)

)
,

which is thus non-degenerate in a open subset Ω′ of Π symplectically reduced from the
SO(3)-symmetry for any choice of n, n′, with the relative measure of Ω′ in Ω tends to 1
when α → 0, in which J 1 is defined analogously in the system Fn,n

′
sec as I1 in Fquad. At

the expense of restricting Ω′ a little bit, we may further suppose that the transformation
φnψn

′ is well-defined. We fix α such that the set Ω′ has sufficiently large measure in Ω.
In Ω′, there exist γ̄ > 0, τ̄ ≥ 3, such that the set of (α3γ̄, τ̄)-Diophantine invariant

Lagrangian tori of FKep + Fn,n
′

sec form a positive measure set whose measure is uniformly
bounded for small α (Example-Condition 2.1). By definition of Ω′, near such a torus with
action variables (L0

1, L
0
2,J

0
1, G

0
2), there exists a λ-neighborhood for some λ > 0, such that

the torsions of the Lagrangian tori of FKep + Fn,n
′

sec do not vanish in this neighborhood.
Let

(L1, L2,J 1, G2) = φλ(Lλ1 , Lλ2 ,J
λ
1 , G

λ
2) := (L0

1 + λLλ1 , L
0
2 + λLλ2 ,J

0
1 + λJ λ1 , G0

2 + λGλ2).

Thus for any (Lλ1 , Lλ2 ,J
λ
1 , G

λ
2) ∈ B4

1 , and for any choice of n, n′, the frequency map of the
Lagrangian torus of FKep+Fn,n

′
sec corresponding to (L0

1+λLλ1 , L0
2+λLλ2 , I

0
1+λ Iλ1 , G0

2+λGλ2)
is non-degenerate. The existence of λ follows from the definition of Ω′.

7See [Arn89] for the method of building action-angle coordinates we use here.
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We may now apply Corollary 2.1 for Lagrangian tori (i.e. p = 4, q = 0) near the torus of
FKep +Fn,n

′
sec with action variables (L0

1, L
0
2,J

0
1, G

0
2). We take N ′ = φλ∗ψn

′∗φn∗F (See Sec-
tion 2.1 for definition of ψn and φn′), No = φλ∗(FKep(L1, L2) +Fn,n

′
sec (Lλ1 , Lλ2 ,J

λ
1 , G

λ
2 ;C)),

with parameter (L1, L2,J 1, G2) ∈ B4
1 and perturbation φλ∗(Fn′+1

secpert + Fncomp), whose rate
of smallness with respect to α can be made arbitrarily large by choosing large enough
integers n and n′. Hence Corollary 2.1 is applicable when n and n′ are large enough. This
confirms the existence of invariant Lagrangian tori of φλ∗ψn′∗φn∗F (and thus of F ) close
to the Lagrangian torus of FKep + Fn,n

′
sec with action variables (L0

1, L
0
2,J

0
1, G

0
2). We apply

Corollary 2.1 near other (α3γ̄, τ̄)-Diophantine invariant Lagrangian tori of FKep + Fn,n
′

sec

in Ω′ analogously.
We thus get a set of positive measure of Lagrangian tori in the perturbed system

N ′ = φλ∗ψn
′∗φn∗F (and thus of F ) for any fixed C > 0. It remains to show that most of

these Lagrangian tori stay away from the collision set. The transformations we have used
to build the secular and secular-integrable systems are of order O(α), which shall bring an
O(α)-deformation to the collision set. Therefore, for C and G2 of order 1, most of these
invariant Lagrangian tori stay away from the collision set, provided α is small enough.

Theorem 2.3. For each fixed C, there exists a positive measure of 4-dimensional La-
grangian tori in the spatial three-body problem reduced by the SO(3)-symmetry, which are
small perturbations of the corresponding Lagrangian tori of the system FKep + α3Fquad
reduced by the SO(3)-symmetry. They give rise to a positive measure of 5-dimensional
invariant tori in the lunar spatial three-body problem.

We establish the following types of quasi-periodic motions in the spatial three-body
problem (the required non-degeneracy conditions are presented in Appendix D):

• Motions along which g1 librate around π

2 , corresponds to the phase portraits around
the elliptical singularity B;

• Motions along which G1 remains large (eventually near {G1 = G1,max}) while g1
decreases;

• Motions along which G1 remains large (eventually near {G1 = G1,max}) while g1
increases;

• Motions along which G1 remains small but bounded from zero, while g1 increases.

From Theorem 2.2, we get

Theorem 2.4. There exist periodic orbits accumulating each of the KAM tori in the
spatial three-body problem reduced by the SO(3)-symmetry.

Let us now consider isotropic tori. We set p = 3, q = 1. The frequency of an elliptical
isotropic torus with parameters (L1, L2, G2, C) corresponds to the only elliptic quadrupolar
singularity B in Figure 2.2 is of the form(µ3

1M
2
1

L3
1
,
µ3

2M
2
2

L3
2
, α3νquad,2 +O(α4), α3νquadn,G2 +O(α4)

)
,

in which νquadn,G2 denotes the normal quadrupolar frequency of the elliptical isotropic
torus. We show in Appendix D that the quadrupolar frequency map

(G2, C)→ (νquad,2, νquadn,G2)
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is non-degenerate for almost all C
L1
,
G2
L1

. Set C = C0 +λCλ. We may now apply Corollary

2.1 in the same way as for Lagrangian tori, with parameters Lλ1 , Lλ2 , Gλ2 , Cλ to obtain a
positive 4-dimensional Lebesgue measure set of 3-dimensional isotropic elliptic tori in the
direct product of the phase space of the reduced system of the spatial three-body problem
(by the SO(3)-symmetry) with the space of parameters C. Let’s call this 4-dimensional
Lebesgue measure a “relative measure”.

Theorem 2.5. There exists a positive relative measure of 3-dimensional isotropic elliptic
tori in the spatial three-body problem reduced by the SO(3)-symmetry, which are small
perturbations of the isotropic tori corresponding to the elliptic secular singularity of FKep+
α3Fquad reduced by the SO(3)-symmetry. They give rise to 4-dimensional isotropic tori of
the spatial three-body problem.



Chapter 3

Regularization and
Almost-collision orbits

3.1 Kustaanheimo-Stiefel Regularization
In order to study the neighborhood of inner double collisions of the three-body problem,
we shall first regularize the system so as to get a smooth complete flow in this neighbor-
hood. The regularization we use is the Kustaanheimo-Stiefel regularization, which leads
to compact formulæ. It also has a direct link with the Levi-Civita regularization of double
collisions of the planar problem. This section is dedicated to presenting Kustaanheimo-
Stiefel regularization and some further results that we are going to use in the next section.

3.1.1 Preliminary on Quaternions

A quaternion z = z0 + z1i + z2j + z3k ∈ H can be naturally identified with a point
(z0, z1, z2, z3) ∈ R4. We denote by Re{z} the real part z0 of z, and by Im{z} the imaginary
part z1i + z2j + z3k of z. A quaternion of the form z1i + z2j + z3k (i.e. with vanishing
real part) is called a purely imaginary quaternion, and can be identified with the vector
(z1, z2, z3) in R3. Due to the identification, we can further take inner (“·”) or vector
product (“×”) of two purely imaginary quaternions, which results in a real number or
a purely imaginary quaternion respectively. The conjugation z̄ of z is defined by z̄ =
z0 − z1i− z2j − z3k. The product of two quaternions is defined by

z ·w = Re{z}Re{w}− Im{z} · Im{w}+Re{z}Im{w}+Re{w}Im{z}+ Im{z}× Im{w}.

A quaternion-valued mapping fH : H → H is called differentiable if it is differentiable
when considered as a mapping from R4 to R4. Its derivative dfH = ∂fH

∂z0
dz0 + ∂fH

∂z1
dz1 +

∂fH
∂z2

dz2 + ∂fH
∂z3

dz3 is a 1-form with values in R4 which we shall consider as quaternion-
valued 1-form on H.

Following A. Sudbery [Sud79], the wedge product φH ∧ ψH of two quaternion-valued
1-forms φH, ψH is defined by:

∀vH, wH ∈ H, φH ∧ ψH(vH, wH) = φH(vH)ψH(wH)− φH(wH)ψH(vH),

which is a quaternion-valued differential 2-form. The detailed discussions can be found
in [Sud79]. Here, we shall only deal with quaternion-valued 1-forms and their wedge
products.

67
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Note that due to the non-commutativity of the quaternion algebra, the exterior product
of two quaternion-valued 1-forms is not anti-symmetric in general. In particular, the
exterior product of a quaternion-valued 1-form with itself need not be zero. By direct
calculation, one finds

dz ∧ dz = 2(dz2 ∧ dz3)i+ 2(dz3 ∧ dz1)j + 2(dz1 ∧ dz2)k.1

Nevertheless, one directly verifies that the real part of the product of two quaternions
is symmetric: it is independent of the order of the two quaternions involved. We define
the inner product of two quaternions x, y to be

〈x, y〉 = Re{x̄y} = Re{ȳx}.

The inner product of two quaternionic 1-forms is defined similarly. The modulus
√
〈x, x〉

of a quaternion x is denoted by |x|.
In such notations, the canonical symplectic form on T ∗H can be written as

Re{dȳ ∧ dx} = −Re{dx̄ ∧ dy},

in which x ∈ H, y ∈ T ∗xH ∼= H are the natural coordinates on the cotangent bundle T ∗H.
Rotations in R3 ∼= IH := {z ∈ H : Re{z} = 0} can be represented by unit quaternions

in the following way: If ρ1 is a purely imaginary quaternion and ρ = cos θρ2 +Im{ρ} a unit
quaternion, then ρ̄ρ1ρ is the purely imaginary quaternion rotated from ρ1 with rotation
angle θρ and rotation axis Im{ρ}. Unit quaternions form a group Spin(3) ∼= SU(2), which
is diffeomorphic to S3. Two unit quaternions ρ and −ρ define the same rotation. This
gives a two-to-one covering map between Spin(3) and SO(3).

3.1.2 Kustaanheimo-Stiefel Transformation

We identify R3 with IH := {z ∈ H : Re(z) = 0} ⊂ H, the space of purely imaginary
quaternions, by

(z1, z2, z3) 7→ z1i+ z2j + z3k ∈ IH.

Definition 3.1.1. We define the Hopf map by

Hopf : H \ {0} → IH \ {0}
z 7→ Q = z̄iz.

The Hopf map is a fibration whose fibres are the circles Sz = {eiϑz, ϑ ∈ R/2πZ}.

Let z = z0 + z1i+ z2j + z3k, w = w0 + w1i+ w2j + w3k be two quaternions. Let

BL(z, w) := Re{z̄iw} = z1w0 − z0w1 + z3w2 − z2w3.

By identifying T ∗H with H×H (the fibres in T ∗H are identified with the second factor),
we may consider BL(z, w) as a function on T ∗H. Define the 7-dimensional quadratic cone
Σ by the equation

BL(z, w) = 0.

This equation is the bilinear relation in [SS71]2.
1Note that our formula differs from Formula (2.35), [Sud79] by a factor of 2.
2If we identify H with R4 and equip it with the standard symplectic form, any two linearly independent

quaternions satisfy the bilinear relation if and only if they generate a Lagrangian plane.
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Let Σ0 := Σ \ {(0, 0)}, which is a 7-dimensional coisotropic submanifold in the 8-
dimensional symplectic space (T ∗H, Re{dw̄ ∧ dz}). Since the condition BL(z, w) = 0
defines a quadratic cone in T ∗H with index 4, Σ0 is diffeomorphic to S3 × S3 × R.

By standard symplectic reduction, the symplectic form Re{dw̄ ∧ dz} determines a
symplectic form ω1 on the quotient V 0 of Σ0 by its characteristic foliation. Since the
circle action on Sz is free, the quotient V 0 is a smooth manifold.

We define Σ1 = Σ\{z = 0} (diffeomorphic to S3×R3×R). This is a dense open subset
of Σ0. By the same symplectic reduction procedure, we get another reduced symplectic
manifold (V 1, ω1).

Definition 3.1.2. The Kustaanheimo-Stiefel mapping is defined as the following:

K.S. :T ∗(H \ {0})→ IH×H

(z, w) 7−→ (Q = z̄iz, P = z̄iw

2|z|2
).

The fibres of this mapping are the circles Sz,w = {(eiϑz, eiϑw), ϑ ∈ R/(2πZ)}. We call
the angle ϑ the Kustaanheimo-Stiefel angle. The mapping K.S. sends Σ1 to T ∗(IH \ {0}),
and its fibres in Σ1 coincide with the leaves of the characteristic foliation of Σ1 (See also
the proof of Proposition 3.1.1). Computing the derivative, we see that the mapping K.S.
induces a diffeomorphism from the quotient space V 1 to T ∗(IH \ {0}).

Proposition 3.1.1. For any F ∈ C2(T ∗IH,R), the space Σ0 is invariant under the flow
of XK.S.∗F .

Proof. The SO(2)-action ϑ · (z, w) 7→ (eiϑz, eiϑw) of the Kustaanheimo-Stiefel angle on
T ∗H \ {(0, 0)} is generated by the vector field (iz, iw), which is exactly the Hamiltonian
vector field of −BL. In other words, this SO(2)-action is Hamiltonian with moment map
−BL. The function K.S.∗F is invariant under this SO(2)-action, therefore the associated
moment map −BL (and thus BL) is a first integral of the system K.S.∗F . Therefore the
space Σ0 is invariant under the flow of XK.S.∗F .

Proposition 3.1.2. K.S.∗Re{dP̄ ∧ dQ}|Σ1 = Re{dw̄ ∧ dz}|Σ1.

Proof. The relation BL(z, w) = 0 implies

z̄iw = w̄iz,

and equivalently
z−1iw = w̄iz̄−1.

By differentiating the last equality, we obtain

d(z−1)iw + z̄idw

|z|2
= dw̄iz

|z|2
+ w̄id(z̄−1).

From the relation
0 = d(z−1z) = d(z−1)z + z−1dz

we have
d(z−1) = −z−1(dz)z−1.

Also, one checks directly that
Im(dz̄i ∧ dz) = 0.
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Our aim is to calculate the expression

K.S.∗Re
{
dP̄ ∧ dQ

}
= Re

{
d(z−1iw) ∧ d(z̄iz)

}
= −Re

{
(1
2d(z−1)iw + z̄idw

2|z|2 ) ∧ (dz̄iz + z̄idz)
}
.

By the help of the relations deduced before, we have

Re

{
(1
2d(z−1)iw + z̄idw

2|z|2 ) ∧ (dz̄iz)
}

= −Re
{

(dz̄iz) ∧ (1
2d(z−1)iw + z̄idw

2|z|2 )
}

= Re

{1
2dz̄iz ∧ z

−1dzz−1iw − dz̄iz ∧ z̄idw2|z|2
}

= −Re
{1

2dz̄i ∧ dzz
−1iw}

}
−Re

{
dz̄iz ∧ z̄idw2|z|2

}
= 1

2Re {dz̄ ∧ dw} .

Re

{
(1
2d(z−1)iw + z̄idw

2|z|2 ) ∧ (z̄idz)
}

= Re

{
(1
2 w̄id(z̄−1) + dw̄iz

2|z|2 ) ∧ (z̄idz)
}

= −Re
{

(1
2 w̄iz̄

−1d(z̄)z̄−1 ∧ z̄idz − dw̄iz

2|z|2 ∧ z̄idz
}

= −1
2Re {dw̄ ∧ dz}

= 1
2Re {dz̄ ∧ dw} .

Therefore

K.S.∗Re
{
dP̄ ∧ dQ

}
= Re

{
(dz̄iz + z̄idz) ∧ (1

2d(z−1)iw + z̄idw

2|z|2 )
}

= −1
2Re {dz̄ ∧ dw} −

1
2Re {dz̄ ∧ dw}

= Re {dw̄ ∧ dz} .

The smooth 2-form Re{dw̄ ∧ dz} on Σ1 can be extended to a smooth 2-form on Σ0,
which in turn induces a symplectic form on V 0, whose restriction on V 1 is just ω1.

Proposition 3.1.3. K.S. induces a symplectomorphism from (V 1, ω1) to (T ∗(IH \ {0}),
Re{dP̄ ∧ dQ}).

Proof. We have seen that K.S. induces a diffeomorphism from (V 1, ω1) to (T ∗IH, Re{dP̄ ∧
dQ}). Moreover, we see from Proposition 3.1.2 that K.S. induces a symplectomorphism.

3.1.3 Regularization of the Spatial Kepler Problem

The Hamiltonian of the spatial Kepler problem with mass parameters (µ0,M0) is of the
form

T (P,Q) = 1
2µ0
‖P‖2 + µ0M0

‖Q‖
,
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where (P,Q) ∈ T ∗(R3 \ {0}) ∼= T ∗(IH \ {0}). All negative energy levels of T (P,Q) are
orbitally conjugate to each other. For any f > 0, we change the time from t to τ with
‖Q‖ dτ = dt on the negative energy surface T + f = 0. In the new time variable τ , the
flow on {T + f = 0} is given by the Hamiltonian ‖Q‖(T + f). We further assume that
at τ = 0 the particle stays at the pericentre of the corresponding Keplerian ellipse. In
the system ‖Q‖(T + f), the velocities are bounded at ‖Q‖ = 0. Finally, we pull back the
Hamiltonian ‖Q‖(T + f) by K.S. to obtain

K.S.∗(‖Q‖(T + f)) = K(z, w) = |z|2(T (P,Q) + f) = 1
8µ0
|w|2 + f |z|2 − µ0M0.

In the Hamiltonian system K(z, w), the set3 {z = 0} ⊂ T ∗H\{(0, 0)} corresponding to
the collisions of the Kepler problem defines a codimension 4 submanifold of T ∗H\{(0, 0)}.
It is contained in Σ0 and has codimension 3 in Σ0, and is no longer singular in the system
K(z, w). By adding {z = 0} to Σ1, we obtain Σ0. By extending K analytically near
{z = 0} ⊂ T ∗(H \ {0}), we get a system regular at {z = 0}, which descends to a regular
system on V 0. The SO(2)-fibre action of the Kustaanheimo-Stiefel angle acts freely on
{z = 0}, hence this set reduced by the SO(2)-action is a codimension 3 submanifold in
V 0.

Let us now consider the dynamics of K(z, w). The function K(z, w) is defined on
the whole T ∗H, where it defines four harmonic oscillators in (1, 1, 1, 1)- resonance. Let
ω =
√

8µ0f . The Hamiltonian system defined by K(z, w) can be solved explicitly as{
z = ᾱ cosωτ + β̄ sinωτ
w = −ωᾱ sinωτ + ωβ̄ cosωτ.

Note that it is only on Σ0 defined by BL(z, w) = 0 that the dynamics of K(z, w)
extends the dynamics of the spatial Kepler problem that we intend to study. Being
reduced by the additional symmetry associated to ϑ, the function K(z, w)|Σ0 descends to
a function on V 0. We call V 0 the regularized phase space of the regularized Kepler problem
K(z, w). This method of regularizing the collision of the spatial Kepler problem is called
Kustaanheimo-Stiefel regularization.

Let us sum up these discussions by a diagram:

S1 = {(eiϑz, eiϑw)}

vv ��
T ∗(H \ {0})

K.S.

''

K(z,w)

11

Σ1(⊂ Σ0)? _oo //

K.S.

))

(V 1(⊂ V 0), ω1)

symplectic

��
(IH \ {0})×H

(Q, P )

‖Q‖(T (P,Q)+f)

//

(T ∗(IH \ {0}), Re{dQ̄ ∧ dP})

‖Q‖(T (P,Q)+f)
��

? _oo

R

Corollary 3.1. The compactification of the energy surface of the spatial Kepler problem
determined by K.S. is homeomorphic to S3 × S2.

3We always remove the point (0, 0) from {z = 0}. We keep the notation for its simplicity.
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Proof. In Kustaanheimo-Stiefel regularization, the compactification of a negative-energy
surface of T is the zero-energy surface of K(z, w), which is

{(z, w) | f |z|2 + 1
8µ0
|w|2 = µ0M0 > 0},

diffeomorphic to S7. Since the quadratic cone Σ = {(z, w) : BL(z, w) = 0} has index 4,
its intersection with the set {(z, w) : f |z|2 + 1

8µ0
|w|2 = Cst} is diffeomorphic to S3 × S3.

The group SO(2) acts diagonally on this intersection by

ϑ · (x, y) = (eiϑx, eiϑy), ϑ ∈ R/2πZ, (x, y) ∈ S3 × S3 ⊂ H×H.

In order to calculate the quotient of S3 × S3 by this SO(2)-action, we apply the
diffeomorphism (x, y) → (x, x−1y) from S3 × S3 to itself. The diagonal SO(2)-action on
the source space S3 × S3 induces an SO(2)-action on the target space

ϑ · (x, y) 7→ (eiϑx, y), ϑ ∈ R/2πZ.

The quotient of the first factor S3 by the Hopf S1-action being diffeomorphic to S2, the
quotient of S3 × S3 by the SO(2)-action is S2 × S3.

3.1.4 The Relations between Levi-Civita and Kustaanheimo-Stiefel Reg-
ularizations

Levi-Civita Planes

The orbits of the regularized Kepler problem lie in a particular kind of planes in H: the
Levi-Civita planes. Let us now characterize these planes.

Definition 3.1.3. The Levi-Civita planes are the planes spanned by two vectors v1, v2 ∈ H
satisfying BL(v1, v2) = 0.

Lemma 3.1.1. For any x, y ∈ H satisfying BL(x, y) = 0, one has

|x|2ȳiy + |y|2x̄ix = 〈x, y〉(x̄iy + ȳix).

Proof.
BL(x, y) = Re{x̄iy}x̄iy − ȳix = 0,

hence
(x̄y − ȳx)(x̄iy − ȳix) = 0,

that is
|y|2x̄ix+ |x|2ȳiy = ȳxȳix+ x̄yx̄iy,

2|y|2x̄ix+ 2|x|2ȳiy = 2(ȳx+ x̄y)(x̄iy + ȳix),

and finally
|y|2x̄ix+ |x|2ȳiy = 〈x, y〉(x̄iy + ȳix).

Remark 3.1.1. (A. Chenciner) The more general equality holds:

|z1|2z̄2iz2 + |z2|2z̄1iz1 = 2Re{z̄1z2}Im{z̄1iz2} − 2Re{z̄1iz2}Im{z̄1z2}.
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Corollary 3.2. Suppose x and y are unit quaternions satisfying BL(x, y) = 0 and 〈x, y〉 =
0, then

• x̄ix = −ȳiy,

• 1
2(x̄iy+ȳix) = x̄iy is an unit quaternion and it is linearly independent of x̄ix = −ȳiy.

Proof. The first statement is a direct corollary of Lemma 3.1.1. It is thus clear that
1
2(x̄iy + ȳix) = x̄iy is unit. Since x and y are linearly independent and x̄i is non-zero,
thus x̄ix and x̄iy are also linearly independent.

Corollary 3.3. The Hopf map sends a Levi-Civita plane to a plane (containing the origin)
in IH.

On the other hand, we have

Proposition 3.1.4. Any plane containing the origin in IH is exactly the image of a P1-
family of Levi-Civita planes.

Proof. Let e1, e2 be an orthogonal basis of a plane in IH. There exists a rotation sending i
to e1, which determines a unit quaternion x such that e1 = x̄ix. Then there exists another
unit quaternion y = −ixe2 such that e2 = x̄iy. Since e2 is purely imaginary, Re{e2} =
Re{x̄iy} = BL(x, y) = 0. We also have 0 = 〈e1, e2〉 = Re{ē1e2} = −Re{x̄ixx̄iy} =
Re{x̄y}. Therefore the plane spanned by x and y is a Levi-Civita plane.

The family (eiϑx, eiϑy), ϑ ∈ R/2πZ corresponds to the same (e1, e2). In such a family,
(eiϑx, eiϑy) and (eiϑ+iπx, eiϑ+iπy) determine the same oriented Levi-Civita plane. There-
fore for each oriented two-plane in IH passing through the origin, there exists a P1-family
of oriented Levi-Civita planes in its pre-image.

The fibres of the Hopf map are S1-circles. Each circle intersects a Levi-Civita plane
in 0 or 2 points. As a result, the pre-image of any plane in IH consists in a P1-family of
Levi-Civita planes.

Definition 3.1.4. Let z = c1va + c2vb, w = c3va + c4vb ∈ H, where c1, c2, c3, c4 ∈ R, va, vb
are two unit orthogonal quaternions. We call the mapping

z 7→ (c2
1 − c2

2)v̄aiva + 2c1c2v̄bivb

the square mapping, the mapping

(z, w) 7→
(

(c2
1 − c2

2)v̄aiva + 2c1c2v̄bivb,
(c1c3 + c2c4)v̄aiva + (c1c4 − c2c3)v̄bivb

2(c2
1 + c2

2)

)
is called generalized Levi-Civita transformation.

Remark 3.1.2. If one identifies va with v̄aiva, vb with v̄bivb, then the square mapping is just
z 7→ z2, the generalized Levi-Civita transformation has the expression (z, w) 7→ (z2,

w

2z ),
which is the same as the usual Levi-Civita transformation in the plane.
Remark 3.1.3. Restricted to a Levi-Civita plane, the Hopf map reduces to the square
mapping. The Kustaanheimo-Stiefel transformation reduces to the generalized Levi-Civita
transformation between the cotangent space of the Levi-Civita plane and its image under
the Hopf map, hence Kustaanheimo-Stiefel regularization reduces to Levi-Civita regular-
ization if one makes the identification as in Rem 3.1.2.
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Proposition 3.1.5. If a Keplerian orbit always lies in a particular plane in the phys-
ical space, then any corresponding (K.S.-) regularized orbit lies in a Levi-Civita plane
determined by one of the corresponding initial conditions of the regularized system.

Proof. Any initial value (pv, qv) ∈ T ∗IH of the Kepler problem corresponds, viaK.S., to an
S1-family of initial values (zv, wv) ∈ T ∗H of the regularized system satisfying BL(zv, wv) =
0. Therefore, the orbit in the regularized system with initial value (zv, wv) lies in the Levi-
Civita plane containing zv and wv.

3.1.5 Dynamics in the Physical Space

Lemma 3.1.2. For any regularized energy f̃ satisfying f̃ > −µ0M0, the projections of
the orbits of the regularized Kepler flow in the physical space are ellipses.

Proof. The equation

K = |w|
2

8µ0
+ f |z|2 − µ0M0 = f̃

is equivalent to

‖Q‖(‖P‖
2

2µ0
− µ0M0 + f̃

‖Q‖
+ f) = 0,

that is
‖P‖2

2µ0
− µ0M0 + f̃

‖Q‖
= −f.

By assumption µ0M0 + f̃ > 0. The flows of this Hamiltonian and T (P,Q) are the same up
to time parametrization. Since the orbits of the Keplerian problem with negative energies
are ellipses, the projections in the physical space of the orbits of the regularized Kepler
flow are ellipses too.

We shall call these ellipses physical ellipses, and call the Keplerian ellipses of

T (P,Q) = ‖P‖
2

2µ0
− µ0M0
‖Q‖

initial ellipses. From Lemma 3.1.2, we see that for the same initial condition (P,Q), the
corresponding KS-ellipse is just the corresponding (initial) Keplerian ellipse, after changing

the mass M0 to M0 + f̃

µ0
.

As the regularized Kepler flow is, up to time parametrization, the same as the non-
regularized Kepler flow, the following proposition is straightforward:

Remark 3.1.4. Let (Q̂1, P̂1), (Q̂2, P̂2) ∈ T ∗IH. Suppose that span{Q̂1, P̂1} and
span{Q̂2, P̂2} are both contained in the same plane, then the initial ellipse with initial
value (Q̂1, P̂1) and the regularized ellipse with initial value (Q̂2, P̂2) are both contained in
this plane.

3.1.6 Chenciner-Féjoz Coordinates

Remark 3.1.4 allows us to adapt the planar Chenciner-Féjoz Coordinates (L, δ,G, γ) (de-
fined in [Féj01]), and extend them to the spatial Chenciner-Féjoz Coordinates by a “Ro-
tation Lemma” (Lemma 3.1.3).
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Levi-Civita Regularization and Planar Chenciner-Féjoz Coordinates

Let us first recall the Chenciner-Féjoz coordinates built in [Féj99] for the planar case, in
which the double collision of the Kepler problem is regularized by Levi-Civita regulariza-
tion. Following Remark 3.1.3, let us restrict K.S. to one of the Levi-Civita planes, and
identify this Levi-Civita plane together with its image with C. The restricted mapping
L.C. can be expressed as

L.C. :T ∗C→ T ∗C

(z, w) 7−→ (Q = z2, P = w

2z ).

It is direct to verify that

L.C.∗Re(dP̄ ∧ dQ) = Re(dw̄ ∧ dz).

The function
T (P,Q) = 1

2µ0
‖P‖2 + µ0M0

‖Q‖

is considered as defined on T ∗(C \ {0}). For f > 0, we change the time from t to τ as in
Subsection 3.1.3 on the energy hypersurface

T (P,Q) + f = 0.

In the new time variable τ , the flow on this energy hypersurface is given by the Hamiltonian
‖Q‖(T (P,Q) + f).

The pull-back of ‖Q‖(T (P,Q) + f) by L.C. is of the form

L.C.∗(‖Q‖(T (P,Q) + f)) = 1
8µ0
|w|2 + f |z|2 − µ0M0,

which is the Hamiltonian of two harmonic oscillators in 1 : 1 resonance.
As in [Féj01], we switch to the symplectic coordinates

(W,Z) =
( w

4√8µ0f
, 4
√

8µ0fz
)
,

in which the function K = K(Z,W ) is of the form

K =
√

f

8µ1
(|Z|2 + |W |2)− µ0M0.

We diagonalize the associated Hamiltonian vector field by posing

(W,Z) =
(W ′ + Z̄ ′√

2
,
W ′ − Z̄ ′

i
√

2
).

In (W ′, Z ′) coordinates

K =
√

f

8µ1
(|Z ′|2 + |W ′|2)− µ0M0,

and the symplectic form is transformed to i

2(dW ′ ∧ dW̄ ′ + dZ ′ ∧ dZ̄ ′).
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We further switch to polar symplectic coordinates (ra, θa, rb, θb) defined by

(Z ′,W ′) = (
√

2raeiθa ,
√

2rbeiθb).

In these coordinates,

K =
√

f

2µ1
(ra + rb)− µ0M0.

Finally, we set

(L, δ,G, γ) = (ra + rb
2 , θa + θb,

ra − rb
2 , θa − θb + π).

In these coordinates, the Hamiltonian K is written as:

K = L
√

2f
µ0
− µ0M0,

and the symplectic form is transformed into the form dL ∧ dδ + dG ∧ dγ. The translation
by π in the definition of γ is due to the reason that one considers the argument of the
pericentre of an ellipse rather than its apocentre.

The set of coordinates (L, δ,G, γ) originates in [Che86], and was called “Delaunay-
like coordinates” in [Féj01]. We shall call this set of coordinates planar Chenciner-Féjoz
coordinates.

Spatial Chenciner-Féjoz Coordinates

Now let us come back to the spatial case. Following [Féj99], since by Remark 3.1.4,
span(P,Q) = span(P ′, Q), we define the diffeomorphism kf from V 0 to itself by the
formula

kf : (P,Q) 7→ (P ′ = P√
2µ0fL

,Q)

such that the ellipse determined by (P,Q) in the physical space under the flow of the
regularized Hamiltonian K(z, w) coincides with the ellipse determined by (P ′, Q) under
T (P,Q). We note that in the above formula, somehow ambiguously, L is defined by the
system K(z, w) and its energy f̃ . This corresponds to the modification of masses by f̃ in
the physical space (See the discussions below Lemma 3.1.2). In particular,

√
2µ0fL = 1

only if f̃ = 0.
The mapping kf induces the identity from S2 × S2 to itself, seen as two spaces of

Keplerian ellipses with equally fixed semi major axis. Note that the mass parameters for
this two spaces of Keplerian ellipses are not necessarily the same, therefore, the secular
symplectic forms on the source and target space do not necessarily agree, hence the identity
mapping of S2 × S2 is not symplectic in general.

In terms of the Delaunay coordinates (L, l,G, g,H, h) and the diffeomorphism kf , we
define the Chenciner-Féjoz Coordinates, seen as coordinates on an open subset Ṽ 1 of the
regularized phase space V 0 determined by the conditions that the corresponding physical
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ellipse is non-degenerate, non-circular and non-horizontal, as the following:

L =
√

2fL2

µ
3/2
0 M0

◦ kf

δ = u ◦ kf

G =
√

2fLG
µ

3/2
0 M0

◦ kf

γ = g ◦ kf
H = H
ζ = h.

This set of coordinates is a direct extension of the planar Chenciner-Féjoz coordinates

to the spatial case. On the energy surface K(z, w) = 0, we have f = µ3
0M

2
0

2L2 , therefore
kf induces identity in terms of the Chenciner-Féjoz coordinates and Delaunay coordi-
nates (except for the fast angle, which is the eccentricity anomaly u in Chenciner-Féjoz
coordinates and l in Delaunay coordinates) as presented above.

In order to obtain a simple proof of the symplecticity of the Chenciner-Féjoz coordi-
nates, let us first prove the following “Rotation Lemma”:

Let RI1 be the simultaneous rotation in each factor of R3 × R3 around the first axis
with angle I, Rh3 be the simultaneous rotation in each factor of R3 ×R3 around the third
(“vertical”) axis with angle h. Let

Rh3 ◦RI1(x1, x2, 0, y1, y2, 0) = (x′1, x′2, x′3, y′1, y′2, y′3).

Then

Lemma 3.1.3. (Rotation Lemma)

dy′1 ∧ dx′1 + dy′2 ∧ dx′2 + dy′3 ∧ dx′3 = dy1 ∧ dx1 + dy2 ∧ dx2 + d(x′1y′2 − x′2y′1) ∧ dh.

Proof. The rotation matrix of RI1, Rh3 and Rh3 ◦RI1 are respectively

1 0 0
0 cos I − sin I
0 sin I cos I

 ,
cosh − sin h 0

sin h cosh 0
0 0 1

 ,
cosh − sin h cos I sin h sin I

sin h cosh cos I − cosh sin I
0 sin I cos I

 .
Therefore 

x′1 = x1 cosh− x2 sin h cos I
x′2 = x1 sin h+ x2 cosh cos I
x′3 = x2 sin I
y′1 = y1 cosh− y2 sin h cos I
y′2 = y1 sin h+ y2 cosh cos I
y′3 = y2 sin I.

An elementary calculation leads to

dx′1 ∧ dy′1 + dx′2 ∧ dy′2 + dx′3 ∧ dy′3 = dx1 ∧ dy1 + dx2 ∧ dy2 + dh ∧ d((x1y2 − x2y1) · cos I)
= dx1 ∧ dy1 + dx2 ∧ dy2 + dh ∧ d(x′1y′2 − x′2y′1).
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As a first application of this lemma, we can now easily deduce the spatial Delaunay
coordinates (L, l,G, g,H, h) from the planar Delaunay coordinates (L, l,G, g):

Corollary 3.4. If (L, l,G, g) are Darboux coordinates on T ∗R2 when they are well defined:

dy1 ∧ dx1 + dy2 ∧ dx2 = dL ∧ dl + dG ∧ dg,

then (L, l,G, g,H := x′1y
′
2 − x′2y′1, h) are Darboux coordinates on T ∗R3 when they are well

defined, i.e.

dy1 ∧ dx1 + dy2 ∧ dx2 + dy3 ∧ dx3 = dL ∧ dl + dG ∧ dg + dH ∧ dh.

The planar Chenciner-Féjoz Coordinates (L, δ,G, γ) are Darboux coordinates. As an-
other corollary of Lemma 3.1.3 and Proposition 3.1.3, we deduce that the Chenciner-Féjoz
Coordinates are also Darboux coordinates:

Proposition 3.1.6. Chenciner-Féjoz coordinates are Darboux coordinates on Ṽ 1.

Note that while Chenciner-Féjoz coordinates are very helpful for our study due to
their similarity with the Delaunay coordinates, they are not regular in the neighborhood
of collision-ejection Keplerian motions, because there is no well-defined “orbital plane”
for a degenerate ellipse. We shall discuss there extensions (similar to Subsection 1.2.3) in
Subsection 3.2.4.

It is helpful to have Darboux coordinates which are regular in the neighborhood of
collision-ejection Keplerian motions. We shall build such coordinates in the next subsec-
tion.

3.1.7 Regularized Coordinates

We now define a set of action-angle coordinates for the system of four harmonic oscillators
in 1 : 1 : 1 : 1 resonance. Recall that ω =

√
8µ0f . Let

ωzi =
√

2Ii sin ( ū2 − φi), wi =
√

2Ii cos ( ū2 − φi), i = 0, 1, 2, 3.

We take
(Ii
ω
,
ū

2 − φi) 7→ (zi, wi), i = 0, 1, 2, 3

and

P0 = (I0 + I1 + I2 + I3)
ω

, ϑ0 = ū

2 − φ0,

Pi = Ii
ω
, ϑi = φ0 − φi, i = 1, 2, 3.

The change of coordinates

(P0,P1,P2,P3, ϑ0, ϑ1, ϑ2, ϑ3) 7→ (z0, z1, z2, z3, w0, w1, w2, w3)

satisfies
P0 ∧ ϑ0 + P1 ∧ ϑ1 + P2 ∧ ϑ2 + P3 ∧ ϑ3 = Re{dw̄ ∧ dz}.

We shall call (P0,P1,P2,P3, ϑ0, ϑ1, ϑ2, ϑ3) the regularized coordinates., which are well-
defined as long as

P0 − P1 − P2 − P3 > 0,P1 > 0,P2 > 0,P3 > 0.

In these coordinates, the physical ellipse has
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• semi major axis: P0
ω

;

• eccentricity4:

e = P−1
0 sqrt

{
(P0 − P1 − P2 − P3 + P1 cos (2ϑ1) + P2 cos (2ϑ2) + P3 cos (2ϑ3))2

−(P1 sin (2ϑ1) + P2 sin (2ϑ2) + P3 sin (2ϑ3))2
}
.

In these coordinates, the Hamiltonian K takes the form

K = P0
2

√
2f
µ0
− µ0M0.

In comparing with its expression in the Chenciner-Féjoz coordinates, we obtain L = P0
2 ;

in turn, if we consider ϑ0 only as a function of δ, we have dδ = 2dϑ0.
These coordinates are regular Darboux coordinates in the neighborhood of the collision-

ejection motions, thus they can be used in the perturbative study of these motions, which
is essential for the elimination procedure of the fast angle in the regularized system. Never-
theless, the study of the secular (or quadrupolar) regularized dynamics in these coordinates
leads to very complicated formulæ. For this purpose, we shall rather use coordinates closer
to the ones we have used in the non-regularized phase space.

3.2 Quasi-periodic Almost-collision orbits

3.2.1 Outline of the Proof

We show the existence of a set of positive measure of quasi-periodic almost-collision solu-
tions in the spatial three-body problem through the following steps:

1. Regularize the inner double collisions of F on the energy surface F = −f < 0
by Kustaanheimo-Stiefel regularization to obtain a Hamiltonian F , which preserves the
SO(3) × SO(2)-symmetry. It is only on the zero-energy surface that the dynamics of F
extends the dynamics of F (on the energy surface F = −f, f > 0).

2. Build the secular regularized systems Fnsec, the secular-integrable regularized sys-
tems Fn,n

′
sec and study their Lagrangian invariant tori near the collision set. This requires

the study of the regularized quadrupolar system Fquad for values C −G2 close or equal to
zero.

3. Apply the equivariant iso-energetic proper-degenerate KAM theorem to find a set
of positive measure of invariant tori of F on its zero-energy hypersurface.

4. Show that a set of positive measure of these invariant tori intersect the (inner)
collision set transversally. Show that a set of positive measure of invariant ergodic subtori
intersect the collision set in submanifolds of codimension at least 2. Conclude that there
exists a set of positive measure of quasi-periodic almost-collision orbits in the energy
surface F = −f . Finally, by varying f , show that these orbits also have positive measure
in the phase space of F .

4sqrt{} denotes the square root.
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3.2.2 Regularization of the Inner Double Collisions in the Three-Body
Problem

Let us regularize the inner double collision on the energy surface F + f = 0 for any fixed
f > 0 by Kustaanheimo-Stiefel regularization. We change the time on this energy surface
by multiplying F + f by ‖Q1‖, and pull back the Hamiltonian ‖Q1‖(F + f) by K.S.⊕ Id
(where Id is the identity mapping from T ∗(R3\{0}), the phase space of the outer fictitious
body, to itself). We nevertheless keep the same notation K.S. for K.S ⊕ Id:

K.S. :Σ1 × T ∗(R3 \ {0})→ T ∗H× T ∗(R3 \ {0})

(z, w,Q2, P2) 7−→ (Q1 = z̄iz, P1 = z̄iw

2|z|2
, Q2, P2),

The regularized Hamiltonian

F = K.S.∗
(
‖Q1‖

(
FKep+Fpert+f

))
= |w|

2

8µ1
+
(
f+‖P2‖2

2µ2
−µ2M2

‖Q2‖

)
|z|2−µ1M1+K.S.∗

(
‖Q1‖Fpert

)
is a function defined on Σ0 × T ∗(R3 \ {0}). This function descends to the quotient space
Πreg := V 0 × T ∗(R3 \ {0}) and is no longer singular at the set Col ⊂ Πreg consisting of
the pre-images of inner double collisions. We call Πreg the regularized phase space of the
three-body problem and consider F as defined on Πreg.

In practice, we shall also regard F as a function (independent of the Kustaanheimo-
Stiefel angle ϑ) on Π̃reg := T ∗H \ {(0, 0)} × T ∗(R3 \ {0}). It is only on the zero-energy
surface F = 0, that the dynamics of F extends the dynamics of F .

We write
F = Fkep + Fpert,

where

FKep = K.S.∗
(
‖Q1‖(FKep + f)

)
= |w|

2

8µ1
+
(
f + ‖P2‖2

2µ2
− µ2M2
‖Q2‖

)
|z|2 − µ1M1

is the regularized Keplerian part, and

Fpert = K.S.∗
(
‖Q1‖Fpert

)
is the regularized perturbing part.

We use the Delaunay coordinates for the outer body. Following [Féj01], we set

f1(L2) = f + ‖P2‖2

2µ2
− µ2M2
‖Q2‖

= f − µ3
2M

2
2

2L2
2
.

The regularized Keplerian Hamiltonian

FKep = |w|
2

8µ1
+ f1(L2)|z|2 − µ1M1

describes the dynamics of four harmonic oscillators in 1 : 1 : 1 : 1-resonance (the inner
body), whose frequency is affected by the energy of the outer motion together with a
Keplerian elliptic motion (the outer body) slowed down by the motion of the inner body.
The slowing down of the outer Keplerian motion is due to the change of time of the
regularization procedure. Comparing with the dynamics of FKep, we see that the dynamics
of FKep remains integrable, but the inner and outer motions are no longer uncoupled. The
dynamics of FKep is again properly-degenerate: it only admits invariant ergodic 2-tori in
the 12-dimensional space Πreg. We need to understand the secular dynamics of Fpert in
order to get rid of its degeneracy and apply KAM theorems to find invariant tori of Fpert.



3.2. QUASI-PERIODIC ALMOST-COLLISION ORBITS 81

3.2.3 Chenciner-Féjoz and Deprit-like coordinates

The diffeomorphism kf (defined in paragraph 3.1.6) can be directly extended to our present
setting by only applying kf to the inner motion and leaving the outer motion unchanged.
We nevertheless keep the slightly abusive notation kf to denote the extended diffeomor-
phism. In coordinates, we have

kf : (P1, Q1, P2, Q2) 7→ (P ′1, Q′1, P2, Q2) =
(

P1√
2µ1f1(L2)L1

, Q1, P2, Q2

)
.

We switch to the spatial Chenciner-Féjoz coordinates (L1, δ1,G1, γ1,H1, ζ1) for the
inner physical ellipse. Explicitly, the expressions of these coordinates in terms of the
Delaunay coordinates are: 

L1 =
√

2f1(L2)

µ
3
2
1M1

L2
1 ◦ kf

δ1 = u1 ◦ kf

G1 =
√

2f1(L2)L1

µ
3
2
1M1

G1 ◦ kf

γ1 = g1 ◦ kf
H1 = H1
ζ1 = h1.

As in [Féj01], we have to modify l2 to keep the symplectic form unchanged. In [Féj01],
only the planar case was treated for the modification of l2. The spatial case can be treated
in exactly the same way: the symplectic form remain unchanged if we modify l2 properly

by adding to it the function f
′
1(L2)

2f1(L2)

√
L2

1 − G2
1 sin δ1. We still denote this angle by the

same symbol l2.
Again kf induces identity between Delaunay coordinates and Chenciner-Féjoz coordi-

nates on the energy level FKep = 0 (“no modification of masses due to the regularized
energy”) of the regularized Keplerian part FKep, except for replacing l1 by u1 (u1 is pro-
portional to the new time) and slowing down l2 (denoted by the same letter) so that it is
proportional to the new time. From Proposition 3.1.6, we have

Proposition 3.2.1. The Chenciner-Féjoz coordinates

(L1, δ1,G1, γ1,H1, ζ1, L2, l2, G2, g2, H2, h2)

are Darboux coordinates on a dense open set of Πreg.

Likewise, we define the Deprit-like coordinates

(L1, δ1,G1, γ̄1 := ḡ1 ◦ kf = ḡ1, L2, l2, G2, g2,Φ1, φ1,Φ2, φ2).

The variables (Φ1, φ1,Φ2, φ2) are defined in the same way as for Deprit coordinates. In
the inner orbital plane with the direction of the ascending node playing the role of the first
axis direction, the symplecticity of the planar Chenciner-Féjoz coordinates implies that

dL1 ∧ dl1 + dG1 ∧ dḡ1 = dL1 ∧ dδ1 + dG1 ∧ dγ̄1,

which in turn implies that

Proposition 3.2.2. The Deprit-like coordinates (L1, δ1,G1, γ̄1, L2, l2, G2, g2,Φ1, φ1,Φ2, φ2)
are Darboux coordinates on a dense open set of Πreg.
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3.2.4 Secular Regularized Spaces

As in Section 1.2, we define the secular regularized space as:

Definition 3.2.1. The secular regularized space is the space of pairs (E1, E2) such that
E1 is the equivalent class of ellipses lying in a Levi-Civita plane in the 4-dimensional
Euclidean space with fixed center at the origin and corresponding to the same physical
Keplerian ellipse, and E2 is a ellipse lies in the three-dimensional Euclidean space with
fixed focus at the origin. Both semi major axes of the two Keplerian ellipses are fixed.

Since we have identified all the centered inner ellipses having the same image in the
physical space under the Hopf map, the secular regularized space is homeomorphic to the
secular space S2×S2×S2×S2. We therefore identify the secular regularized space with the
secular space in the sequel. After fixing L1 and L2 and dropping the fast angles, the rest
of the Chenciner-Féjoz coordinates (for the inner ellipse) or the Deprit-like coordinates
can be thus considered as defined on a dense open subset of the secular space. Moreover,
we can then smoothly extend the Chenciner-Féjoz coordinates (for the inner ellipse) or
the Deprit-like coordinates to a dense open subspace of the orientable double cover of the
critical quadrupolar space, containing the degenerate inner ellipses, by allowing G1 to take
values in [−L1,L1]. We call the resulting coordinates extended Chenciner-Féjoz/Deprit
like coordinates.

3.2.5 Secular Regularized Systems

We choose a reference frame so that the regularized coordinates (Pi, ϑi), i = 0, 1, 2, 3
(defined in Subsection 3.1.7) for the inner ellipse and the Delaunay coordinates for the
outer ellipse (note that the angle l2 has changed in order to keep the symplectic form, see
3.2.3) are both well defined. In these coordinates, the fast angles are ϑ0 and l2. In order to
have consistent fast angles with Chenciner-Féjoz coordinates and Deprit-like coordinates,
we shall take δ1 and l2 as fast angles, and take L = P0

2 instead of P0 as the action variable
conjugate to δ1. The regularized Hamiltonian reads

F = F(L1, δ1,P1, ϑ1,P2, ϑ2,P3, ϑ3, L2, l2, G2, g2, H2, h2).

For the regularized system, the asynchronous elimination procedure must be slightly
modified. We only have to drop the requirement that e1 cannot reach 1, and replace ν1

by the regularized fast frequency ∂FKep
∂L1

of the inner ellipse. By the same elimination

procedure as in Proposition 2.1.1, we obtain the transformations φ̃n close to identity, such
that

φ̃n∗F = FKep + Fnsec + Fncomp,

in which the n-th order secular regularized system Fnsec is independent of u1 and l2, and
Fncomp is of order O(α

3(n+2)
2 ). The transformation φ̃n and the functions Fnsec and Fncomp

are independent of the Kustaanheimo-Stiefel angle ϑ, therefore they are well defined on a
subset of Πreg. Moreover, P0 and L2 being fixed, the function Fnsec descends to (a subset
of) the secular space.

The first order secular regularized system F1
sec equals to

〈Fpert〉 = 1
4π2

∫
T2
Fpertdδ1dl2.
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Seen as a function on the secular space, it has a natural relation with

〈Fpert〉 = 1
4π2

∫
T2
Fpertdl1dl2.

Proposition 3.2.3. The initial and secular regularized Hamiltonians satisfy:

〈Fpert〉 = a1 · 〈Fpert〉 ◦ kf .

Proof. This is a trivial generalization of Proposition 3.1 in [Féj01] to the spatial case and
the proof is the same: Since the modification of l2 does not change the form dδ1 ∧ dl2, we
have

〈Fpert〉 = 1
4π2

∫
T2
Fpertdδ1dl2

= 1
4π2

∫
kf (T2)

Fpert ◦ k−1
f d(δ1 ◦ k−1

f )dl2.

Since the map kf preserves the configuration coordinates (Q1, Q2) and Fpert = ‖Q1‖Fpert
is only a function on the configuration space, Fpert = ‖Q1‖Fpert is invariant under kf .
Moreover, δ1 ◦ k−1

f = u1, therefore

〈Fpert〉 = 1
4π2

∫
T2
‖Q1‖Fpertdu1dl2

= a1
4π2

∫
T2
Fpertdl1dl2.

The last equality follows from the relation

‖Q1‖ du1 = a1dl1,

which is a direct consequence of Kepler’s equation.

Since kf preserves the semi major axes and induces the identity on the secular space,
we obtain

Corollary 3.5. 〈Fpert〉, F 1,2
sec , F 1,3

sec extend to analytic functions in the neighborhood of
degenerate inner ellipses.

3.2.6 Secular-integrable Regularized Systems

Since kf preserves the semi major axes, as a corollary of Proposition 3.2.3, we see that if
we expand Fnsec into power series of α as for Fnsec(Subsection 2.1.3)

Fnsec =
∞∑
i=0
Fn,isecα

i+1 = Fn,0secα+ Fn,1secα
2 + · · · ,

in which we regard Fn,isec as a function in the phase space, and Fn,isec = K.S.∗Fn,isec is a
function in Πreg after being reduced by the fibres of K.S., then

• Fn,isec = 0, i = 0, 1;
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• Fn,2sec = F1,2
sec,Fn,3sec = F1,3

sec for all n ∈ N+;

• the first non-trivial coefficient Fn,2sec = F1,2
sec does not depend on the angle ḡ2.

The system F1,2
sec is again integrable. This is the quadrupolar regularized system. We denote

it by Fquad.
We then build the secular-integrable regularized systems Fn,n

′
sec by eliminating g2. As

in Subsection 2.1.3, there exist transformations ψ̃n′ , dominated by the transformation ψ̃3

of order α, such that

ψ̃n
′∗φ̃n∗F = FKep + Fn,n

′
sec + Fn′+1

secpert + Fncomp,

in which Fn′+1
secpert = O(αn′+2). We shall describe these transformations more precisely

when needed.
The transformation ψn′ and the systems Fn,n

′
sec , Fn′+1

secpert descend to Πreg. After fixing
P0 and L2, the function Fn,n

′
sec descends further to the secular space, and is analytic near

degenerate inner ellipses. For large enough integers n and n′, the Hamiltonian FKep+Fn,n
′

sec

plays the role of an integrable approximating system of F .
In the quadrupolar regularized system Fquad and the secular-integrable regularized

system Fn,n
′

sec , we have an additional first integral G2.
We shall not study the dynamics of Fquad directly, but rather investigate the link

between the dynamics of Fquad and Fquad. From Proposition 3.2.3, we have

Fquad = a1 · Fquad ◦ kf .

Since kf is not symplectic for the symplectic structures involved, the dynamics of Fquad
is not directly equivalent to the one of Fquad. Nevertheless, we do have a simple relation
between them.

Proposition 3.2.4. For fixed masses m0, m1 and m2, the semi major axes a1 and a2, the
energy −f<0, and the angular momentum C, after full reduction by the SO(3)-symmetry
and the Keplerian T2-action of the fast angles, there exists a fictitious value m′2 > 0 of the
outer mass, such that Fquad is conjugated to a1m2

m′2
· Fquad, provided that m′2 substitutes

for m2 in Fquad. In particular, the frequencies of the corresponding invariant tori are only
differed by a factor a1m2

m′2
.

Note that the time scales of the two systems are different. The frequencies are deter-
mined with respect to their own time scales.

Proof. When C 6= G2, we consider the system

F = FKep + Fpert = −µ
3
1M

2
1

2L2
1
− µ3

2M
2
2

2L2
2

+ Fpert

on the energy level
F = −f, f > 0.

Since |Fpert| is smaller than µ3
2M

2
2

2L2
2

, we have that

µ3
1M

2
1

2L2
1
< f.
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Now as the mapping

m2 7→ µ3
2M

2
2 = (m0 +m1)3m3

2
m0 +m1 +m2

is a diffeomorphism from (0,+∞) to itself for any positive m0,m1, there exists some
m′2 > 0, such that

f1(L2,m0,m1,m
′
2) = f − µ3

2M
2
2

2L2
2

= µ3
1M

2
1

2L2
1
.

The composition of the mapping kf with the mappingm2 7→ m′2 is just the identity between
(L1,G1, γ̄1, G2, g2) and (L1, G1, ḡ1, G2, g2) in the source and target spaces respectively. This
means that the dynamical behaviors of the reduced quadrupolar regularized system

Fquad(G1, γ̄1, G2;L1, L2, C,m0,m1,m2) = m2
m′2
Fquad(G1, γ̄1, G2;L1, L2, C,m0,m1,m

′
2)

is, up to a factor m2a1
m′2

, the same as that of the non-regularized reduced quadrupolar
system

Fquad(G1, ḡ1, G2;L1, L2, C,m0,m1,m
′
2).

In particular, the frequencies of the corresponding invariant tori in the two systems are
the same up to a factor m2a1

m′2
.

If C = G2, we investigate the dynamics of Fquad and Fquad in the critical quadrupolar
space. The argument for the case C = G2 are then the same as for the case C 6= G2, by
using extended Delaunay coordinates, or extended Deprit-like coordinates on the double
cover of the critical quadrupolar space reduced by the SO(3)-symmetry.

As a result, we deduce the dynamics of Fquad immediately from the dynamics of Fquad,
which we have presented in Section 2.2. Moreover, if we replace m2 by a proper m′2 in
Fquad, then for the same parameter C, the dynamics of the quadrupolar and quadrupolar
regularized systems is the same up to a constant factor. The quadrupolar regularized
frequency map and its non-degeneracy are therefore directly deduced from Fquad.

3.2.7 Quadrupolar Regularized Dynamics

We omit to make a complete description of the dynamics of Fquad, since by Proposition
3.2.4, they are essentially the same as those of Fquad.

We shall be mainly interested in the dynamics in or near {C = G2}. When C = G2, if
we fully reduce the quadrupolar regularized system, then there exist periodic orbits of the
system Fquad(G1, ḡ1;C = G2) around the elliptic singularities

{
G1 = 0, ḡ1 = 0 (modπ2 )

}
,

which correspond to invariant tori of FKep + F1,3
sec, and also give rise to invariant tori

for F via application of KAM techniques. These tori form a set of zero measure on the
zero-energy surface of F . A set of positive measure of nearby tori for which C 6= G2
but |C − G2| is small enough (and |G1| is close enough to the minimum of its allowed
value G1,min) give rise to a set of positive measure of invariant punctured tori of F , and
quasi-periodic almost-collision orbits of F . We leave more discussions in the sequel.

The secular-integrable regularized systems Fn,n
′

sec are O(α4) small perturbations of
α3Fquad. We are only interested in their dynamics in {C = G2} and for |C − G2| small
enough. The set {G1 = G1,min} corresponds to coplanar pairs of ellipses in the physical
space, thus it is also invariant for Fn,n

′
sec . Moreover, after reduction by the SO(3)×SO(2)-

symmetry, all the elliptic singularities of α3Fquad in the branched double cover of {C = G2}
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are Morse singularities in the (G1, ḡ1)-space (Lemma C.1), hence Fn,n
′

sec is orbitally conju-
gate to Fquad. (see Figure 2.5 for the dynamics of Fquad near C = G2, and Appendix C
for the analysis of singularities).

3.2.8 Application of the Equivariant KAM Theorem

After elimination of the fast angles and of g2 up to order (n, n′), the regularized Hamilto-
nian F is transformed into

ψ̃n
′∗φ̃n∗F = 1

8µ1
|w|2 + f1(L2)|z|2 − µ1M1 + Fn,n

′
sec + Fn′+1

secpert + Fncomp,

which is regarded as a function on Πreg. In the above expression, Fn,n
′

sec is the (n, n′)-th
order secular-integrable regularized Hamiltonian considered to be defined on a subset of
Πreg. The last two terms are defined in the regularized system in the same way as Fn′+1

secpert

and Fncomp are defined in the non-regularized system. They are of higher order with respect
to Fn,n

′
sec and can be made arbitrarily small by choosing n, n′ large enough.
To directly obtain invariant Lagrangian tori of F in Πreg, we shall apply the equivariant

iso-energetic KAM theorem (Corollary 2.4)5. Let us verify the non-degeneracy of the
frequency map in need to apply Corollary 2.4, by verifying the non-degeneracy of the
frequency maps of the system ψ̃n

′∗φ̃n∗F reduced from the SO(3)-symmetry. As noted in
Example-Condition 2.2, since ψ̃n′∗φ̃n∗F is properly-degenerate, it is enough to verify the
non-degeneracy conditions for different scales separately.

Partially iso-energetic non-degeneracy of the Keplerian part

In terms of (L1, δ1, L2, l2), the function FKep is expressed as

FKep = L1

√
2f1(L2)
µ1

− µ1M1.

The regularized Keplerian frequencies are then

(√2f1(L2)
µ1

,
L1

2
√

2µ1f1(L2)

)
.

It is then direct to see that FKep, seen as a function of L1 and L2, is iso-energetically
non-degenerate with respect to L1 and L2.

Secular Non-degeneracy

By Proposition 3.2.4, When C 6= G2, the non-degeneracy of the quadrupolar regularized
frequency map is the same as the non-degeneracy of the quadrupolar frequency map,
with respect to the parameters (G1, I

′
1) and (G1, I1) respectively, in which I ′1 denotes the

corresponding action variable of Fquad in the (G1, γ1)-plane (analogous to I1 in Fquad). The
non-degeneracy of the quadrupolar frequency maps is showed in Appendix D. In particular,
the torsion does not vanish when C − G2 → 0. We thus obtain that after the reduction
of the SO(3)-symmetry, the quadrupolar regularized frequency map is non-degenerate on
a dense open set in a neighborhood of {C = G2} in its phase space, for a dense open set

5Equivalently, we can also apply the iso-energetic KAM theorem (Corollary 2.2) in the quotient system
and obtain the Lagrangian tori of F in Πreg by the symmetries.
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of parameters. The frequency map of Fn,n
′

sec are O(α4) perturbations of the quadrupolar
regularized frequency map whose torsion is of order α3, thus these non-degeneracies also
hold for their invariant tori near {G1 = G1,min}.

Thus for small enough α fixed, we deduce the existence of an open set Ω′′ ∈ Πreg con-
taining a set of positive measure of degenerate inner ellipses, on which after symplectically
reduced by the SO(3)-symmetry, the frequency map of FKep + Fn,n

′
sec is non-degenerate

for any choice of n and n′. At the expense of restricting Ω′′ a little bit, we may further
suppose that the transformation φ̃nψ̃n′ is well-defined6.

Application of the Equivariant Iso-energetic KAM Theorem

After fixing C and being reduced by the SO(3)-symmetry, the invariant tori of FKep+Fn,n
′

sec

near the point {G1 = G1,min} are smoothly parametrized by (L1, L2,J1, G2), in which for
fixed (L1, L2, G2), the variable J1 designates the area between the invariant curve (the
invariant torus reduced by Keplerian T2-symmetry and the symmetry of g2) and the point
{G1 = G1,min} (See the discussions on P. 53 and Figure 2.5).

In Ω′′, for any fixed C and Cz, there exist γ̄ > 0, τ̄ ≥ 5, such that for a positive measure
set of (L1, L2,J1, G2, ι

′
1, ι
′
2), the corresponding Lagrangian torus of

FKep + Fn,n
′

sec + ι′1C + ι′2Cz

is (α3γ̄, τ̄)-Diophantine invariant Lagrangian tori of FKep +Fn,n
′

sec + ι′1C + ι′2Cz form a set
of positive measure whose measure is uniformly bounded for small α (Example-Condition
2.1). For any such torus with actions (L0

1, L
0
2,J 0

1 , G
0
2) and parameters ι′1 = ι′1

0, ι′2 = ι′2
0,

there exists λ > 0 independent of α, such that if we set

(L1, L2,J1, G2) = φ̃
λ(Lλ1 , Lλ2 ,J λ1 , Gλ2) := (L0

1 + λLλ1 , L0
2 + λLλ2 ,J 0

1 + λJ λ1 , G0
2 + λGλ2),

and ι′′1 = ι′1 − ι′1
0, ι′′2 = ι′2 − ι′2

0, then for every (Lλ1 , Lλ2 ,J λ1 , Gλ2 , ι′′1, ι′′2) ∈ B6
1 , the frequency

map of the torus of FKep+Fn,n
′

sec with parameter (Lλ1 , Lλ2 ,J λ1 , Gλ2 , ι′′1, ι′′2) is non-degenerate.
Set

No = φ̃
λ∗(FKep + Fn,n

′
sec ),

N ′ = φ̃
λ∗(FKep + Fn,n

′
sec + Fn′+1

secpert + Fncomp),

N̂o = φ̃
λ∗(FKep + Fn,n

′
sec + ι′1C + ι′2Cz)),

N̂ ′ = φ̃
λ∗(FKep + Fn,n

′
sec + ι′1C + ι′2Cz + Fn′+1

secpert + Fncomp).

We take ι = (L0
1, L

0
2,J 0

1 , G
0
2, ι
′
1

0, ι′2
0) as parameters. We apply Corollary 2.4 in this setting

for any C,Cz satisfying {C/3 < Cz < 2C/3} of Πreg
7 (which implies in particular that for

small enough α, the Delaunay elements of the outer ellipse are always well-defined).
By applying Corollary 2.4 and varying C and Cz, we get a set of positive measure of

6-dimensional invariant Lagrangian tori in Πreg for which |C −G2| remain small8 on the
zero-energy surface of φ̃λ∗ψ̃n′∗φ̃n∗F (and hence of F). The flow of F on these invariant
tori are, however, not ergodic: The frequency conjugate to Cz are always zero, and the

6Explicit expression of Fquad shows that this restriction does not avoid {C = G2} entirely.
7The restriction of the direction of ~C is non-essential. We may recover other cases by rotations.
8The invariant tori of ψ̃n

′∗φ̃n∗F for which |C − G2| is large are not important for the existence of
quasi-periodic almost-collision orbits.
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frequency conjugate to C might be rationally dependent with other non-zero frequencies.
The flow is therefore ergodic either on some 4-dimensional or 5-dimensional tori contained
in these 6-dimensional tori, depending on whether the frequency of the rotation around
the direction of ~C is rationally dependent with the other four non-zero frequencies or not.

Theorem 3.1. When the semi major axes ratio α is small, there exists a set of positive
measure of 6-dimensional invariant Lagrangian tori on the zero-energy surface of the reg-
ularized system F in Πreg, which are small deformations of the invariant Lagrangian tori
of FKep + α3Fquad, and for which |C −G2| are small.

3.2.9 Transversality of the Lagrangian Tori with the Collision Set

In this subsection, we make the conventions that transverse intersection always means
non-empty transverse intersection, and all the invariant tori mentioned are invariant La-
grangian tori.

In the regularized phase space Πreg = V 0×T ∗(R3\{0}), the collision set Col is a smooth
codimension 3 submanifold (as seen on P. 71). The goal of this subsection is to show that
there exists a set of positive measure of invariant tori of F on its zero-energy hypersurface
(obtained by equivariant KAM theorem) intersecting Col in manifolds of codimension 3 in
these tori.

We see from Subsection 3.2.6 that

ψ̃n
′∗φ̃n∗F = FKep + Fn,n

′
sec + h.o.t. .

As in Subsection 2.1.3 (P. 49), the transformation φ̃nψ̃n′ is dominated by ψ̃3, which is of
order α.

To reach our goal of this subsection, it suffices to show that Col′ := (ψ̃3)−1(Col)
intersects transversely an open set of invariant tori in the zero-energy hypersurface of
an integrable approximating system FKep + Fn,n

′
sec of ψ̃n′∗φ̃n∗F in Πreg, and that this

transversality is preserved under perturbations.
For any C̃ > 0, denote by ΠC̃

reg the 11-dimensional subspace of Πreg with C = C̃. We
denote by Col the (transverse) intersection of Col and ΠC̃

reg. The intersection of {C = G2}
with ΠC̃

reg is denoted by {C = G2}: it is the transverse intersection of {G2 = C̃} with
{C = G2}.

Lemma 3.2.1. For small enough α, any invariant torus of FKep + Fn,n
′

sec for which C =
G2 = C̃ intersects Col transversely in {C = G2}.

Proof. In Section 2.2, we observed that in the submanifold of the secular space determined
by {C = G2}, after being symplectically reduced by the SO(3) × SO(2)-symmetry, any
1-dimensional periodic orbit of Fquad is transverse to the segment {e1 = 1} (or {G1 = 0})
representing the degenerate ellipses (see Figure 2.5). By Proposition 3.2.4, the same
phenomenon holds for the system Fquad. Therefore, in {C = G2} ⊂ ΠC̃

reg, any invariant
torus ÃT,0 of FKep+α3Fquad must be transverse to the codimension 1 submanifold {e1 = 1}
of {C = G2}. Indeed, if this is not the case, then at any intersection point p̂, we must
have Tp̂ÃT,0 ⊂ Tp̂{e1 = 1}, which, after symplectic reduction by the T2-symmetry of the
Keplerian motions and the SO(3)×SO(2)-symmetry, implies that the tangent space of the
resulting periodic orbit is contained in the tangent space of (the quotient of) {e1 = 1}.
Contradiction.

Moreover, the intersection of ÃT,0 with {e1 = 1} is foliated by the S1-orbits of δ1
(defined in Subsection 3.2.3). Hence, at any intersection point p̂ ∈ ÃT,0 ∩ {e1 = 1},
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removing the tangent direction of such an S1-orbit in Tp̂ÃT,0 does not change the sum
Tp̂ÃT,0 + Tp̂{e1 = 1} = Tp̂{C = G2}. In particular, ÃT,0 is also transverse to the set
Col = {e1 = 1} ∩ {δ1 = 0} in {C = G2}.

In {C = G2}, the invariant tori of FKep +Fn,n
′

sec are just small enough deformations of
the invariant tori of FKep + α3Fquad, therefore they are also transverse to the set Col in
{C = G2}.

However, since any of these invariant tori and Col lies in {C = G2}, they are not
transverse in ΠC̃

reg.
In Πreg, we take Delaunay coordinates (L2, l2, G2, g2, H2, h2) on T ∗(R3 \{0}), and take

any convenient coordinates on V 0 in the neighborhood of Col.
At any intersection point p̃0 of any invariant torus AT,0 of FKep + Fn,n

′
sec (in C = C̃)

with Col, we have the direct sum decomposition

Tp̃0ΠC̃
reg = E9 ⊕ EG2,g2 ,

of the tangent space at p̃0 to ΠC̃
reg, in which E9 is the 9-dimensional subspace tangent to

{C−G2 = 0, g2 = g2(p̃0)}, and EG2,g2 is the 2-dimensional subspace generated by ∂

∂G2
(p̃0)

and ∂

∂g2
(p̃0). We observe the following facts:

• E9 ⊂ Tp̃0Col + Tp̃0AT,0 = Tp̃0{C = G2}, and

• ∂

∂g2
(p̃0) ∈ Tp̃0AT,0 ∩ Tp̃0Col.

The first assertion comes from the transversality of AT,0 with Col in {C = G2}, the second
one comes from the fact that G2 is a first integral of FKep + Fn,n

′
sec .

The transformation ψ̃3 is the time 1-map of a function Ĥ which satisfies the cohomo-
logical equation:

ν̃g2
∂Ĥ
∂g2

= α(F1,3
sec −

1
2π

∫ 2π

0
F1,3
secdḡ2),

in which ν̃g2 denotes the frequency of g2 in the system Fquad.

Lemma 3.2.2. There exists a small real number ε̃ independent of α, and a non empty
open subset Col0 of Col whose density tends to 1 locally in Col when ε̃ → 1, such that∣∣∣∣∣∂2Ĥ
∂g2

2

∣∣∣
Col0

∣∣∣∣∣ > 2α · ε̃.

Proof. It suffices to show that the function ∂Ĥ
∂g2

∣∣∣
Col

depends non-trivially on g2. Indeed, if

this is the case, then the analytic function 1
α

∂2Ĥ
∂g2

2
is not identically zero on Col, and thus

there exists ε̃ which bounds the absolute value of this function from below on a open set
whose density tends to 1 locally in Col when ε̃→ 0.

To this end, we just have to show that the function F1,3
sec|Col = K.S.∗F 1,3

sec |Col depends
non-trivially on g2. Moreover, since K.S. does not change the orbital elements of the outer
ellipse, we just have to verify that the analytic function F 1,3

sec (Corollary 3.5 confirms that
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it extends analytically to degenerate inner ellipses) restricted to Col depends non-trivially
on g2.

When the elements i1, ḡ1 and ḡ2 are well-defined, we see from [LB10] that,

F 1,3
sec =−X3,1

0 X ′0
−4,1[(−3

2µ+ 15
4 ν

2µ+ 15
8 µ

3) cos(ḡ1 − ḡ2)

+ (−3
2ν + 15

4 µ
2ν + 15

8 ν
3) cos(ḡ1 + ḡ2)]

− 15
8 X

3,3
0 X ′0

−4,1(ν2µ cos(3ḡ1 + ḡ2) + νµ2 cos(3ḡ1 − ḡ2)).

In the above, µ = cos2( i1 − i22 ), ν = sin2( i1 − i22 ), X3,1
0 , X3,3

0 are two Hansen coefficients

depending of e1 (both of them do not vanish at e1 = 1) and X ′0
−4,1 6= 0 is a Hansen

coefficient of e2.
Unfortunately, when the inner ellipse degenerates, i1, ḡ1, ḡ2 are not well-defined. Never-

theless, we observe that if we restrict F 1,3
sec to (direct) coplanar ellipse pairs, then i1−i2 = 0

(and hence µ = 1, ν = 0) and ḡ2− ḡ1 = g2− g1 +π with both angles g1, g2 are well-defined
even the inner ellipse degenerates, and F 1,3

sec is restricted to

F 1,3
sec = 3

8X
3,1
0 X ′0

−4,1 cos(g1 − g2).

This function depends non-trivially on g2 when further restricted to e1 = 1 and C = C̃.
This implies that the analytic function F 1,3

sec restricted to Col depends non-trivially on
g2.

We now determine the transformation φ̃3 more precisely: we ask this transformation
to preserve C. To this end, we only have to ask that Ĥ is invariant under rotations. Notice
that ν̃g2 is invariant under the rotations. From [LB10], we see that on (a dense open subset
of Πreg, and thus on) Πreg where the angle g2 is well-defined, the function F 1,3

sec (g2) is a
linear combination of cos g2 and sin g2, with coefficients independent of g2. Therefore, the
same holds for the function F1,3

sec(g2). We thus set

Ĥ = − α

ν̃g2
F1,3
sec(g2 + π

2 ).

Let Col′0 = (φ̃3)−1(Col0). It is an open subset of Col′ = (φ̃3)−1(Col) ⊂ ΠC̃
reg.

Lemma 3.2.3. For small enough α, any invariant torus of FKep +Fn,n
′

sec intersecting Col′0
is transverse to Col′ in Πreg.

Proof. Any p̃ ∈ Col′0 can be written as p̃ = (φ̃3)−1(p̃0) for some p̃0 ∈ Col0. Let Ã be the
invariant torus which intersects Col′0 at p̃. We decompose Tp̃ΠC̃

reg as

Tp̃0ΠC̃
reg = (φ̃3)−1

∗ E9 ⊕ E′G2,g2 ,

in which E′G2,g2
is the 2-dimensional space generated by ∂

∂G2
(p̃) and ∂

∂g2
(p̃). We choose

a basis (e1, · · · , e9) of (φ̃3)−1
∗ E9, each of which is O(α)-close to a vector in Tp̃Col′ +

Tp̃Ã. In the basis
( ∂
∂g2

(p̃), ∂

∂G2
(p̃), e1, · · · , e9

)
of Tp̃ΠC̃

reg, we may write ∂

∂g2
(p̃) ∈ Tp̃Ã as

(1, 0, · · · , 0).
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By Lemma 3.2.2, for α small enough,
∣∣∣∣∣∂2Ĥ
∂ḡ2

2

∣∣∣∣∣ > α · ε̃ in an O(α)-neighborhood of p̃0

containing p̃. Hence we may write (φ̃3)−1
∗

∂

∂g2
(p̃) ∈ Tp̃Col′ as (1+O(α), α̃, O(α), · · · , O(α)),

in which |α̃| > α · ε̃.
In such a way, we have obtained 11 vectors in Tp̃Col′ + Tp̃Ã, which, written as row

vectors, form a matrix of the form 1 0 ~09
1 +O(α) α̃ O(α)9
O(α)T9 O(α)T9 Id9,9 +O(α)9,9

 ,
in which ~09 is the 1× 9 zero matrix, O(α)9 (resp. O(α)9,9) is a 1× 9 (resp. 9× 9) matrix
with only O(α) entries, and Id9,9 is the 9× 9 identity matrix.

The determinant of this matrix is α̃ + O(α2), which is non-zero provided α is small
enough. This implies Tp̃Col′ + Tp̃Ã = Tp̃ΠC̃

reg, i.e. Col′ is transverse to Ã at p̃ in ΠC̃
reg.

The vector ∂

∂G2
= (0, 1,~09) is tangent to Col, thus Tp̃Col′ contains a vector of the

form (O(α), 1 + O(α), O(α)9). Since ∂

∂G2
is transverse to ΠC̃

reg, any vector of the form

(O(α), 1+O(α), O(α)9) is transverse to ΠC̃
reg. Thus Ã is transverse to Col′ at p̃ in Πreg.

The action variables L1 and L2 are first integrals of the system FKep+Fn,n
′

sec ; moreover,
they are invariant under (φ̃3)−1. Therefore, the analysis in this subsection remains valid
for any fixed L1 and L2 (with α small enough), and in particular for those invariant tori
for which L1 and L2 satisfies FKep(L1, L2) = 0, thus FKep +Fn,n

′
sec = O(α3). Since (φ̃3)−1

preserves L1 and L2, it may only change the energy at order O(α3). We may then make
proper O(α3)-modifications of L1 to obtain an open set of invariant tori on the zero-energy
hypersurface of this system intersecting the set Col′ transversely.

Therefore, according to what we have said at the beginning of this subsection, after
applying the equivariant iso-energetic KAM theorem (Subsection 3.2.8), a set of posi-
tive measure of invariant Lagrangian tori on the zero-energy surface of F intersects Col
transversely.

3.2.10 Intersections of the Collision Set with Ergodic Tori

The transversality of a 6-dimensional Lagrangian torus of F with Col entails that all
of its 4-dimensional or 5-dimensional ergodic tori must intersect Col. Indeed, in each
6-dimensional torus, any two of its lower dimensional ergodic tori can be transformed
by a transformation in the group of symmetry T2 (conservations of C and Cz) of the
system F . The set Col is also invariant under the action of T2 on Πreg. Therefore if
Col does not intersect some ergodic torus, then it cannot intersect any, and consequently
it cannot intersect this 6-dimensional torus. Note that Col has codimension 3 in ΠC̃

reg,
hence the intersection of the collision set with the 6-dimensional Lagrangian tori of F is
a 3-dimensional manifold.

Every such 6-dimensional Lagrangian torus is foliated by 5-dimensional invariant subtori
each of which can be obtained from any other by a rotation around the direction of ~C.
The intersection of Col with any such subtorus is therefore the intersection of Col with
the 6-dimensional Lagrangian torus reduced by the free SO(2)-action conjugate to Cz,
which is a 2-dimensional submanifold of the 5-dimensional subtorus. If this 5-dimensional
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torus is not ergodic, then it is foliated by 4-dimensional ergodic subtori, each of which
can be obtained from any other by a rotation around ~C. This gives a free SO(2)-action
on the intersection of Col with the 5-dimensional tori, hence the intersection of Col with
each 4-dimensional ergodic torus is a 1-dimensional manifold, which has codimension 3 in
the ergodic torus. Therefore, the intersections of Col with any 4 or 5-dimensional ergodic
subtorus has codimension 3 in the ergodic torus.

By a measure argument, we have the following lemma:

Lemma 3.2.4. Let Tn be an n-dimensional torus and K be a submanifold of Tn whose
codimension is at least 2. Let θ̃ = (θ̃1, · · · , θ̃n) be the angular coordinates on Tn; then
almost all the orbits of the linear flow d

dt
θ̃ = ṽ, ṽ ∈ Rn do not intersect K.

Proof. By Hypothesis, the set K×R ⊂ Tn×R has Hausdorff dimension at most n−1. The
set K′ formed by orbits intersecting K is the image of K×R under the smooth mapping

Tn × R→ Tn (θ̃(0), t) 7→ θ̃(t),

which has thus Hausdorff dimension at most n − 1. Therefore K′ has zero measure in
Tn.

3.2.11 Conclusion

We have thus proved the following theorem:

Theorem 3.2. There exists a set of positive measure of quasi-periodic almost-collision
orbits on each negative energy surface of the spatial three-body problem, which give rise to
a set of positive measure of quasi-periodic almost-collision orbits in the phase space. Along
such an orbit, the inner pair gets arbitrarily close to each other infinitely many times, but
the motion remains collisionless.

Figure 3.1: Motion of a fictitious inner body in an almost-collision orbit
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A Estimates of the Perturbing Functions
In this appendix, we present some estimates of the perturbing functions.

We first recall some hypothesis and notations from the beginning of Section 2.1:

• the masses m0,m1,m2 are fixed arbitrarily;

• Let e∨1 < e∧1 , e
∨
2 < e∧2 be positive numbers. We assume that

0 < e∨1 < e1 < e∧1 < 1, 0 < e∨2 < e2 < e∧2 < 1;

The assumption that e1 is bounded away from 1 will be dropped once we considers
the regularized system.

• Let a∨1 < a∧1 be two positive real numbers. We assume that

a∨1 < a1 < a∧1 ;

• α = a1
a2

< α∧ := min{1− e∧2
80 ,

1− e∧2
2σ0

,
1− e∧2

2σ1
};

By the relations
ai(1− ei) ≤ ‖Qi‖ ≤ ai(1 + ei) ≤ 2ai,

we obtain in particular that ‖Q1‖
‖Q2‖

≤ 1
σ̂
, for σ̂ = max{σ0, σ1}.

Lemma A.1. (Lemma 1.1 in [Féj02]) The expansion

Fpert = −µ1m2
∑
n≥2

σnPn(cos ζ) ‖Q1‖n

‖Q2‖n+1

is convergent in ‖Q1‖
‖Q2‖

≤ 1
σ̂
, (and therefore when α < α∧) where Pn is the n-th Legendre

polynomial, ζ is the angle between the two vectors Q1 and Q2, σ̂ = max{σ0, σ1} and
σn = σn−1

0 + (−1)nσn−1
1 .

As in [Féj02], we have:

Lemma A.2.
|Fpert| ≤ Cstα3,

|Fpert| ≤ Cst′ α3,

for some constant Cst only depending onm0,m1,m2, e
∨
1 , e
∧
1 , e
∨
2 , e
∧
2 and Cst′ only depending

on m0,m1,m2, e
∧
1 , e
∨
2 , e
∧
2 .
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Proof. Since ([Kel58], P. 129)

|Pn(cos ζ)| ≤ (
√

2 + 1)n ≤ 3n,

and

|σn| = |σn−1
0 + (−1)nσn−1

1 |
≤ |σn−1

0 |+ |σn−1
1 |

= mn−1
0

(m0 +m1)n−1 + mn−1
1

(m0 +m1)n−1 < 1,

we obtain

|Fpert| = µ1m2

∣∣∣∣∣∣
∑
n≥2

σnPn(cos ζ) ‖Q1‖n

‖Q2‖n+1

∣∣∣∣∣∣
≤ µ1m2

∑
n≥2

3n ‖Q1‖n

‖Q2‖n+1

≤ µ1m2

a∨1 3(1− e∨1 )
∑
n≥2

3n+1αn+1

(1− e∧2 )n+1

≤ µ1m2

a∨1 3(1− e∨1 )
33α3

(1− e∧2 )2
1

1− e∧2 − 3α.

The conclusion thus follows when α < 1− e∧2
6 . In particular, the constant Cst is uniform

in the region of the phase space given by the hypothesis in the beginning of this appendix.
The estimation on Fpert = K.S.∗(‖Q1‖Fpert) is analogous. Note that the angle ζ is

well-defined only on a dense open subset of the region. By continuity, the estimation
extends even to the subset of the region where the angle is not well-defined.

In the following lemma, we regard Fpert as a function of Delaunay variables

(L1, l1, L2, l2, G1, g1, G2, g2, H1, h1, H2, h2) ∈ P∗ ⊂ T6 × R6,

in which P∗ is defined, with the hypothesis of this appendix, by further asking that all
the Delaunay variables are well defined; we regard Fpert as a function of

(P0, θ0,P1, θ1,P2, θ2,P3, θ3, L2, l2, G2, g2, H2, h2) ∈ P ′∗ ⊂ T7 × R7.

in which P ′∗ is defined by dropping the condition that e1 is bounded from 1 in the hypoth-
esis of this appendix, and further asking that all these variables are well defined. In the
following lemma, all variables are considered as complex, thus P∗ (resp. P ′∗) is a subset
of TC = C6/Z6 × C6 (resp. C7/Z7 × C7). The modulus of a complex number is denoted
by | · | .

Lemma A.3. There exists a positive number s > 0, such that |Fpert| ≤ Cst |α|3 (|Fpert| ≤
Cst′ |α|3) in the s-neighborhood TP∗,s(resp. TP ′∗,s) of P∗ (resp. P ′∗) for some constant
Cst independent of α.

Proof. By continuity, there exists a positive number s, such that in TP∗,s, we have uni-
formly

| cos ζ| ≤ 2;
∣∣∣∣ 1
‖Q1‖

∣∣∣∣ ≤ 2
a∨1 (1− e∨) ;

∣∣∣∣‖Q1‖
‖Q2‖

∣∣∣∣ ≤ 4|α|
1− e∧2

.
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in which cos ζ, ‖Q1‖ and ‖Q2‖ are considered as the corresponding analytically extensions
of the original functions.

Using Bonnet’s recursion formula of Legendre polynomials

(n+ 1)Pn+1(cos ζ) = (2n+ 1) cos ζ Pn(cos ζ)− nPn−1(cos ζ),

by induction on n, we obtain |Pn(cos ζ)| ≤ 5n.
Thus

|Fpert| = µ1m2

∣∣∣∣∣∣
∑
n≥2

σnPn(cos ζ) ‖Q1‖n

‖Q2‖n+1

∣∣∣∣∣∣
≤ µ1m2

∣∣∣∣ 1
‖Q1‖

∣∣∣∣∑
n≥2

5n
∣∣∣∣ ‖Q1‖
‖Q2‖

∣∣∣∣n+1

≤ µ1m2
a∨1 5(1− e∨1 )

∑
n≥2

5n+14n+1|α|n+1

(1− e∧2 )n+1

≤ µ1m2
a∨1 5(1− e∨1 )

203|α|3

(1− e∧2 )2
1

1− e∧2 − 20|α| .

It is then sufficient to impose α ≤ α∧ and s small enough to ensure that |α| ≤ 1− e∧2
40 .

The estimate of Fpert = K.S.∗(‖Q1‖Fpert) is obtained analogously, except for that we

do not need to estimate
∣∣∣∣ 1
‖Q1‖

∣∣∣∣. Again, the angle ζ is well-defined only on a dense open
subset of the region. By continuity, the estimation extends even to the subset of the region
where the angle is not well-defined.

B Analyticity of Fquad near Degenerate Inner Ellipses

In this appendix, we show by direct calculation that Fquad extends to an analytic function
in the neighborhoods of degenerate inner ellipses. This fact is confirmed by Corollary 3.5.
Nevertheless, an explicit formula is yet helpful to clarify the whole strategy.

The space of (inner) spatial Keplerian ellipse is homeomorphic to S2 × S2, which is
a symplectic manifold once equipped with half of the difference of the area forms of the
two S2-components. The Pauli-Souriau coordinates for the inner spatial Keplerian ellipse
(A1, A2, A3, B1, B2, B3) satisfying A2

1+A2
2+A2

3 = B2
1 +B2

2 +B2
3 = L1 are just the Descartes

coordinates for two points on S2
L1
⊂ R3(we set the radius of the sphere S2

L1
to be

√
L1).

The angular momentum of the inner ellipse is then ~C1 = (A1−B1
2 , A2−B2

2 , A3−B3
3 ), the

direction of the inner pericentre is the direction of (−A1+B1
2 ,−A2+B2

2 ,−A3+B3
3 ), and the

direction of the inner ascending node is the direction of (B2−A2
2 , A1−B1

2 , 0).
Following Lemma A.1, we expand Fpert as

Fpert = µ1m2
2
‖Q1‖2

‖Q2‖3
(3 cos2 ζ − 1) + 1

‖Q2‖
O(‖Q1‖3

‖Q2‖3
).

A calculation leads to

Fquad = µ1m2
2α3

∫
T2

‖Q1‖2

‖Q2‖3
(3 cos2 ζ − 1)dl1d2.



96 Appendices

We take the Laplace plane to be the reference plane for simplicity. In terms of
(e1, g1, i1, e2, i2) (for which let us restrict ii to the interval [0, π)), this function takes
the form

Fquad = − µ1m2

8a1(1− e2
2) 3

2
[3(1− e2

1)(1 + cos2(i1 − i2)) + 15(cos2 g1 + cos2(i1 − i2) sin2 g1)− 6e2
1 − 4]

= − µ1m2

8a1(1− e2
2) 3

2
[−(3(1− e2

1) + 15 sin2 g1) sin2(i1 − i2) + 12(1− e2
1) + 5].

We see from this expression that the analyticity of (the extension of) Fquad near de-
generate inner ellipses directly follows from the analyticity of (the extensions of) the ex-
pressions (1 − e2

1) sin2(i1 − i2) and sin2 g1 sin2(i1 − i2) near degenerate inner ellipses. In
Pauli-Souriau coordinates and in terms of the normal vector of the outer ellipse ~N2 =
(N1, N2, N3), these expressions can be written in the following form:

(1− e2
1) sin2(i1 − i2) = 1

4L2
1

(A1 −B1)2 + (A2 −B2)2 + (A3 −B3)2

−
(

(A1 −B1)N1 + (A2 −B2)N2 + (A3 −B3)N3

)2
,

sin2 g1 sin2(i1 − i2) = ((A1 +B1)N1 + (A2 +B2)N2 + (A3 +B3)N3)2

(A1 +B1)2 + (A2 +B2)2 + (A3 +B3)2 .

Therefore they can be extended analytically to the set determined by the relation
(A1, A2, A3) = (B1, B2, B3), corresponding to degenerate inner ellipses. This shows that
Fquad can be extended analytically to degenerate inner ellipses.

We provide a geometrical way to calculate the expression sin2 g1 sin2(i1− i2). Take any
vector ~p in the direction of the inner pericentre and its projection ~p1 in the outer orbital
plane. Let ~p2 be the projection of ~p to the direction of node. Then it is direct to verify

that the direction of the node is perpendicular to ~p1 − ~p2. We have sin2 g1 = ‖~p− ~p2‖2

‖~p‖2

and sin2(i1 − i2) = ‖~p− ~p1‖2

‖~p− ~p2‖2
, therefore sin2 g1 sin2(i1 − i2) = ‖~p− ~p1‖2

‖~p‖2
, a quantity only

depend on the direction of the inner pericentre and the normal direction of the outer
orbital plane, while both directions are well defined up to degenerate inner ellipses.

C Singularities in the Quadrupolar System
In this appendix, we show that, for a dense open set of values of parameters (G2, C, L1, L2),
the singularities A,B,A′, E of Fquad(G1, ḡ1;G2, C, L1, L2) are of Morse type in the (G1, ḡ1)-
space.

In coordinates9 (G1, ḡ1), the circle {G1 = G1,min} corresponds to coplanar motions,
and is therefore invariant under any system Fn,n

′
sec . There are no other singularities near

{G1 = G1,min}. Therefore, locally near the singularity {G1 = G1,min} in the 2-dimensional
reduced secular space, the flow of Fn,n

′
sec is orbitally conjugate to Fquad. We do not need to

verify if this singularity is Morse or not.
Following [LZ76], we define the normalized variables10

� = C

L1
, � = G2

L1
, � = G1

L1
,� = ḡ1.

9Remind that these coordinates blows up the point {G1 = G1,min} in the 2-dimensional reduced secular
space into a circle

10in [LZ76], it is �2 (denoted by ε) which is taken as part of the coordinates.
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From section 2.2, we deduce

Fquad = − k

�3 (W + 5
3),

in which

W(�,�; �, �) = −2�2 + (�2 − �2 − �2)2

4�2 + 5(1− �2) sin2(�)((�2 − �2 − �2)2

4�2�2 − 1).

The coefficient k is independent of � and � and �, �. This allows us working now with W.
Lemma C.1. For a dense open set of values of the parameters (�, �), all the singularities
of the 1-degree of freedom HamiltonianW (seen as a function of (�,�)) are of Morse type.
When � = � (i.e. C = G2), and W is considered as defined on the branched double cover
of the reduced critical quadrupolar space, all its elliptic singularities are of Morse type.
Proof. A singularity is of Morse type if, by definition, the Hessian of W at this point is
non-degenerate. By evaluating the determinant of the Hessian of W with respect to �,�
at the corresponding singularity, we get an analytic function of �, �, hence we only need to
show that this function is not identically zero. The following results were obtained using
Maple 16.

Singularity A: The Determinant of the Hessian of W at this point is
20(�2 + 3�2 − 1)(�2 − �2)

�2 < 0.

Singularities B and A′: The squares �2
B of the ordinates �B of B and A′ are both

determined by the same cubic equation

x3 − (�
2

2 + �2 + 5
8)x2 + 5

8(�2 − �2)2 = 0. (1)

In order to make the analysis simple, we set the ordinate of B to
√

2
2 and the ordinate of

A′ to
√

3
2 . This leads to

� =

√
13
60 −

√
2

10 , � =

√
13
60 +

√
2

10 ,

which are in the allowable range of values (see condition (3) P. 52).
The determinants of the Hessian of W at B : (� =

√
2/2,� = π/2) and A′ : (� =

√
3/2,� = π/2) are respectively − 51(30

√
2−5)

8(13+12
√

2)2 and −7(49560
√

2−61343)
512(13+12

√
2)2 .

Singularity E(�+ � ≤ 1): at � = �, the determinant of the Hessian of W at this point

is −10(2�− 1)2(2�− 3)
�2 .

Singularity E(� + � > 1): the determinant of the Hessian of W at this point is

−2(3�2 − �2 − 1)(5�4 + 5�4 − 10�2�2 − 8�2 − 4�2 + 3)
�4 .

In the case � = � (C = G2), the Hamiltonian W is now of the form

W ′ = −2�2 + �4

4�2 + 5(1− �2) sin2(�)( �2

4�2 − 1).

We find that at (� = 0,� = 0), the determinant of the Hessian of W ′ is 40; at

(� = 0,� = π/2), it is 5(12�2 + 5)
�2 .
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D Non-degeneracy of the Quadrupolar Frequency Maps
In this appendix, we verify the non-degeneracy of the frequency maps for the quadrupolar
system Fquad(G1, ḡ1, G2;C,L1, L2) reduced by the SO(3)-symmetry, but not by the SO(2)-
symmetry associated to the angle ḡ2. The calculations is assisted by Maple 16.

We still work in the normalized coordinates of [LZ76], described at the beginning of
Appendix C, i.e. � = C

L1
, � = G2

L1
, � = G1

L1
, � = ḡ1. In these coordinates, we have

Fquad = k

�3 (W + 5
3), and

W = −2�2 + (�2 − �2 − �2)2

4�2 + 5(1− �2) sin2 �

(
(�2 − �2 − �2)2

4�2�2 − 1
)
.

Let W(�,�, �;�) =
W + 5

3
�3 . This function is now considered as a two degrees of free-

dom Hamiltonian defined on the four-dimensional phase space, whose coordinates are
(�,�, �, ḡ2), depending on the parameter �. We shall formulate our results in terms of W,
from which the corresponding results for Fquad follow directly.

The main idea in the forthcoming proofs is to deduce the existence of torsion of W
from a local approximation system W ′(�,�, �; �) whose flow, for fixed �, is linear in the
(�,�)-plane. By analyticity, the torsion of W is then non-zero almost everywhere in the
corresponding region of the phase space foliated by the continuous family of the Lagrangian
tori.

To obtain the approximating system W ′, we consider the reduced system W̃ of W by
fixing � and reduced by the SO(2)-action conjugate to �. We either develop W̃ into Taylor
series of (�,�) at an elliptic singularity and truncate at the second order, or develop W̃
into Taylor series of � at � = Cst and truncate at the first order. In both cases, the torsion
of the truncated system amounts to the non-trivial dependence of a certain function of
the coefficients of the truncation with respect to �.
Lemma D.1. For a dense open set of values of �, the frequency mapping of the Lagrangian
tori of W is non-degenerate on a dense open subset of the phase space of W. Moreover,
the torsion does not vanish when �min = �− �→ 0.
Proof. By analyticity of the system, we just have to verify the non-degeneracy in small
neighborhoods of the singularity B and {� = �min} or {� = �max = max{1, �+�}} for the
system W̃.

In a small neighborhood of B (whose �-coordinate is denoted by �B), let �1 = �− �B,
�1 = �− π

2 . We develop W̃ into Taylor series of �1 and �1:

W̃ = Φ(�, �) + Ξ(�, �) �2
1 + Υ(�, �)�2

1 +O
(
(|�1|2 + |�1|2)

3
2
)
.

In which

Ξ(�, �) = 4�2�4
B − 24�6

B + 8�4
B�

2 + 5�4
B + 15�4 − 30�2�2 + 15�4

4�5�4
B

;

Υ(�, �) = −5(�2
B − 1)((� + �)2 − �2

B)((�− �)2 − �2
B)

4�5�4
B

.

From Equation 1, we see that Υ(�, �) 6≡ 0. To show that Ξ(�, �) 6≡ 0, we just need to
use the identity (deduced from Equation 1)

15(�2 − �2)2 = 24
(�2

2 + �2 + 5
8
)
�4
B − 24�6

B
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to write Ξ(�, �) into the form

Ξ(�, �) =
4(�2 + 2�2 + 5

4 − �2
B)

�5 .

Since the singularity B is elliptic, we have Ξ(�, �)Υ(�, �) > 0 for a dense open set of
(�, �). For f close to Φ(�, �) when Ξ > 0 (resp. Ξ < 0), the equation f = Φ(�, �) +
Ξ(�, �)�2 + Υ(�, �)�2 defines an ellipse in the (�,�)-plane which bounds an area πh− Φ√

ΞΥ
,

thus we may set I1 = f − Φ
2
√

ΞΥ
, which is an action variable11 for the truncating system of

W̃ up to second order of �1 and �1. Therefore W ′ = Φ + 2
√

ΞΥ I1 +O(I
3
2
1 ), where O(I

3
2
1 )

is a certain function of �, � and I1, which goes to zero not slower than I
3
2
1 → 0.

We denote by |Det|H (F) the torsion of F i.e. the absolute value of the determinant
of the Hessian matrix of a function F(I1, �), i.e.

|Det|H (F) ,
∣∣∣∣∣∂2F

∂I2
1

∂2F

∂�2 −
( ∂2F

∂I1∂�

)2
∣∣∣∣∣ .

It is direct to verify that

|Det|H (O(I
3
2
1 )) = O(I1),

which is of at least the same order of smallness comparing to the quantity f − Φ, which
can be made arbitrarily small when restricted to small enough neighborhood of B, and

|Det|H (2
√

ΞΥ I1) = 4(∂
√

ΞΥ
∂�

)2.

This is exactly the torsion of the system 2
√

ΞΥ I1 considered as a system of two degrees
of freedom with coordinates (�,�, �, ḡ2).

Therefore in order to prove the statement, it is enough to show that ∂(
√

ΞΥ)
∂�

6= 0 for
some � and �.

Suppose on the contrary that the function
√

ΞΥ is independent of �, then the function
ΞΥ is also independent of �. In view of the expressions of Ξ and Υ, this can happen only
if one of the following expressions is a non-zero multiple of �č for č ≥ 1:

�2
B − 1, �2 + 2�2 + 5

4 − �2
B,

1
�4
B

, (� + �)2 − �2
B, (�− �)2 − �2

B

Since �2
B solves Equation 1, we substitute the particular form of �2

B obtained in each case
in Equation 1, thus exclude the first two by comparing the constant term, exclude the
third by comparing the lowest order term of �, and exclude the last two by comparing the
term only depend on �.

Therefore ∂(
√

ΞΥ)
∂�

is non-zero for a dense open set of values of (α, β).

We now consider the torsion of the tori near the lower boundary {� = �min = |�−�| >
0}.

11See [Arn89] for the method of building action-angle coordinates that we use here.
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Recall that {� = �min} corresponds to coplanar ellipse pairs, that is to a point after full
reduction (Figure 2.5). Nevertheless, it appears as a regular invariant curve of the system
W̃ in coordinates �,� ( Figure 2.2) after full reduction of the SO(3)×SO(2) symmetries of
some blow-up of the secular space (See Subsection 1.2.5), and both W̃ and the coordinates
�,� extend analytically to {0 < � < �min}. We may then develop W̃ into Taylor series
with respect to � at � = �min: set �1 = �− �min, we obtain

W̃ = Φ̄(�, �) + Ξ̄(�, �,�) �1 +O(�2
1),

in which

Ξ̄(�, �,�) = −2
(
(9�2�− 6��2 + �3 − 4�3 + 5�) + (−5� + 5�3 − 10�2� + 5��2) cos2 ω

)
�4|�− �|

.

We eliminate the dependence of � in the linearized Hamiltonian Φ̄(�, �) + Ξ̄(�, �,�) �1
by computing action-angle coordinates. The value of the action variable I1 on the level
curve Ef : Φ̄(�, �) + Ξ̄(�, �,�) �1 = f is computed from the area between this curve and
�1 = 0, that is

I1 = 1
2π

∫
Ef

�1d� = f − Φ̄(�, �)
2π

∫ 2π

0

1
Ξ̄(�, �,�)

d� = I1.

We have then

W̃ = Φ̄(�, �) + 2π
(∫ 2π

0

1
Ξ̄(�, �,�)

d�

)−1

I1 +O(I2
1)

As in the proof of Lemma D.1, for I1 small enough, the torsion of W̃ is dominated by
the torsion of the term linear in I1, which is2π d

d�

(∫ 2π

0

1
Ξ̄(�, �,�)

d�

)−1
2

Using the formula ∫ 2π

0

d�

a+ b cos� = 2π√
a2 − b2

we obtain

2π
(∫ 2π

0

1
Ξ̄(�, �,�)

d�

)−1

= −2
√
� + �

√
9�2�− 6��2 + �3 − 4�3 + 5�

�4 ,

which depends non-trivially on �. Therefore the torsion of the system

2π
(∫ 2π

0

1
Ξ̄(�, �,�)

d�

)−1

I1

which is considered as a function of �, I1, is not identically zero.
Moreover, at the limit � = �, the limiting torsion of this system is 1125

2�8 . By con-

tinuity12, this proves the non-vanishing of the torsion in the critical quadrupolar space
12This is allowed because the secular space reduced by the SO(3)-symmetry or even the SO(3)× SO(2)

is smooth (as well as the reduced Hamiltonian) outside its singularities. See P. 53.
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reduced by the SO(3)-symmetry around (� = 0,� = 0) in � = �. In doing so, we avoid
choosing coordinates near the reduced critical quadrupolar space.

In the case �max(= min{1, � + �}) = � + �, since W is an odd function of �, we may
simply replace � by −� in the formula for tori near � = �min presented above. The required
non-degeneracy follows directly.

In the case �max(= min{1, � + �}) = 1, by the same method, we only have to notice
that the function(

�
5
∫ 2π

0

dω

(5�4 − 10�2�2 − 10�2 + 5− 10�2 + 5�4) cos2 � + (4�2 + 8�2 − 3− 5�4 + 10�2�2 − 5�4)

)−1

=
√

(6�2 − 3�2 − 2 + 5�4)(�2 + 8�2 − 3− 5�4 + 10�2�2)
�5

depends non-trivially on �.

Lemma D.2. The frequency map of the elliptic isotropic tori corresponding to the secular
singularity B is non-degenerate for a dense open set of values of (�, �).

Proof. Following from the previous proof, we only need to note in addition that the secular
frequency map of the elliptic isotopic tori corresponding to the secular singularity B is
the limit of the secular frequency map of the Lagrangian tori around B: At the limit,
the frequency of these tori with respect to I1 becomes the normal frequency of the lower
dimensional secular tori corresponds to B, and the frequency with respect to G2 becomes
the tangential frequency of the lower dimensional tori. We see that the frequency of the
approximating Hamiltonian 2

√
ΞΥ I1 is independent of I1, hence its frequency map for

Lagrangian tori near the lower dimensional tori is the same the frequency map for the
lower dimensional tori. Therefore by the same reasoning and calculations as in the proof
of Lemma D.1, the non-degeneracy condition of the secular frequency holds for a dense
open set in the (�, �)-space.
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