CALCEPH Library

Reference manual
version 1.0.3
4 May 2010

M. Gastineau, J. Laskar, A. Fienga, H. Manche

inpop@imcce.fr

mailto:inpop@imcce.fr

This manual documents how to install and use the CALCEPH Library, version 1.0.3.
Copyright (©) 2008, 2009, 2010

M. Gastineau, J. Laskar, H.Manche, Astronomie et Systemes Dynamiques, IMCCE, CNRS,
Observatoire de Paris

A. Fienga, Observatoire de besangon

inpop@imcce.fr

mailto:inpop@imcce.fr

Table of Contents

1 CALCEPH Library Copying conditions 1

2 Introduction to CALCEPH Library......... 2

3 Installing CALCEPH Library............... 3
3.1 Installation on a Unix-like system (Linux, Mac OS X, BSD,

CYEWIIL, c1) e ettt et e e e e e e e e e 3

3.1.1 Other ‘make’ Targets........... 4

3.2 Installation on Windows system 4

3.2.1 Using the Windows SDK 4

3.2.2 Using the MinGW 6

4 Reportingbugs............. ..., 8

5 CALCEPH Library Interface............... 9

DL G USAZE - oo ettt e e e e 9

5.1.1 Headers and Libraries................. 9

5.1.1.1 Compilation on a Unix-like system................... 9

5.1.1.2 Compilation on a Windows system 9

5.1.2 Constantsovuet e 9

D.1.3 TyDPes. oot 10

5.2 Fortran 2003 Usage. 10

5.2.1 Modules and Libraries 10

5.2.2 Compilation on a Unix-like system 10

5.2.3 Compilation on a Windows system 10

5.24 ConstantSoirii 11

5.3 Fortran 77/90/95 USAZE . .. vvveen e 11

5.3.1 Headers and Libraries............. 11

5.3.2 Compilation on a Unix-like system 11

5.3.3 Compilation on a Windows system 11

5.3.4 ConstantSoiriii 11

5.4 Single file access functions L. 12

5.4.1 Thread notes....... ... 12

D42 USAZE. .ot 12

5.4.3 Functionscouiii 14

5.4.3.1 calceph_sopen.......... 14

5.4.3.2 calceph_scompute 14

5.4.3.3 calceph_sgetconstant 16

5.4.3.4 calceph_sgetconstantcount 17

5.4.3.5 calceph_sgetconstantindex 17

5.4.3.6 calceph_sclose.......... 18

5.5 Multiple file access functions 19

5.5.1 Thread notes............ooiiimin ., 19
D.5.2 USAZE. ..ottt 19
5.5.3 Functions 21
5.5.3.1 calceph_open 21
5.5.3.2 calceph_compute 21
5.5.3.3 calceph_getconstant 23
5.5.3.4 calceph_getconstantcount 24
5.5.3.5 calceph_getconstantindex 25
5.5.3.6 calceph_close......... 26

Appendix A Releasenotes.................. 27

ii

Chapter 1: CALCEPH Library Copying conditions 1

1 CALCEPH Library Copying conditions

Copyright © 2008, 2009, 2010

M. Gastineau, J. Laskar, H.Manche, Astronomie et Systemes Dynamiques, IMCCE, CNRS,
Observatoire de Paris

A. Fienga, Observatoire de besangon

inpop@imcce.fr

This library is governed by the CeCILL-C or CeCILL version 2 license under French law
and abiding by the rules of distribution of free software. You can use, modify and/ or

redistribute the software under the terms of the CeCILL-C or CeCILL version 2 license as
circulated by CEA, CNRS and INRIA at the following URL "http://www.cecill.info".

As a counterpart to the access to the source code and rights to copy, modify and redistribute
granted by the license, users are provided only with a limited warranty and the software’s
author, the holder of the economic rights, and the successive licensors have only limited
liability.

In this respect, the user’s attention is drawn to the risks associated with loading, using,
modifying and/or developing or reproducing the software by the user in light of its specific
status of free software, that may mean that it is complicated to manipulate, and that also
therefore means that it is reserved for developers and experienced professionals having in-
depth computer knowledge. Users are therefore encouraged to load and test the software’s
suitability as regards their requirements in conditions enabling the security of their systems
and/or data to be ensured and, more generally, to use and operate it in the same conditions
as regards security.

The fact that you are presently reading this means that you have had knowledge of the
CeCILL-C or CeCILL version 2 license and that you accept its terms.

mailto:inpop@imcce.fr

Chapter 2: Introduction to CALCEPH Library 2

2 Introduction to CALCEPH Library

This library is designed to access the binary planetary ephemeris files, such INPOPxx and
JPL DExxx ephemeris files.

This library provides a C interface and, optionnally, a Fortran 77 or 2003 interface to be
called by the application.

Two groups of functions enable the access to the ephemeris files :
e Single file access functions

These functions provide access to only one ephemeris file at the same time. They
are provided to make transition easier from the JPL functions, such as PLEPH, to this
library.

e Multiple file access functions

These functions provide access to many ephemeris file at the same time.

This library could access to the following ephemeris

e INPOPO6 or later

e DE200

e DE403

e DE405

e DE406

e DEA411

e DE414

e DFE418

e DE421

e DE423
Although computers have different endianess (order in which integers are stored as bytes
in computer memory), the library could handle the binary ephemeris files with any endi-

aness. This library automatically swaps the bytes when it performs read operations on the
ephemeris file.

The internal format of the binary planetary ephemeris files is described in the
paper : David Hoffman : 1998, A Set of C Utility Programs for Processing JPL
Ephemeris Data, ftp://ssd.jpl.nasa.gov/pub/eph/export/C-versions/hoffman/
EphemUtilVer0O.1.tar

ftp://ssd.jpl.nasa.gov/pub/eph/export/C-versions/hoffman/penalty z@ EphemUtilVer0.1.tar
ftp://ssd.jpl.nasa.gov/pub/eph/export/C-versions/hoffman/penalty z@ EphemUtilVer0.1.tar

Chapter 3: Installing CALCEPH Library 3

3 Installing CALCEPH Library

3.1 Installation on a Unix-like system (Linux, Mac OS X,

BSD, cygwin, ...)

You need a C compiler, such as gcc. A fortran compiler, compliant with the ANSI Fortran
77 specifications, is required to compile the fortran-77/90/95 interface of the library. A
fortran compiler, compliant with the Fortran 2003 specifications, is required to compile the
fortran-2003 interface of the library. And you need a standard Unix ‘make’ program, plus
some other standard Unix utility programs.

Here are the steps needed to install the library on Unix systems:

1.
2.
3.

‘tar xzf calceph-1.0.3.tar.gz’

‘cd calceph-1.0.3’

‘./configure’

Running configure might take a while. While running, it prints some messages telling
which features it is checking for.

configure recognizes the following options to control how it operates.

‘-—enable-fortran={yes|no}’
Enable or disable the fortran-77 and fortran-2003 interface. The default is

‘yes’.

‘-—enable-thread={yes|no}’
Enable or disable the thread-safe version of the functions calcephinit and
calceph. The default is ‘no’.

‘~—disable-shared’
Disable shared library.

‘--disable-static’
Disable static library.

‘-=help’
‘~h’ Print a summary of all of the options to configure, and exit.
‘——prefix=dir’
Use dir as the installation prefix. See the command make install for the
installation names.

The default compilers could be changed using the variable CC for C compiler and FC
for the Fortran compiler. The default compilerflags could be changed using the variable
CFLAGS for C compiler and FCFLAGS for the Fortran compiler.

‘make’

This compiles the CALCEPH Library in the working directory.
‘make check’

This will make sure that the CALCEPH Library was built correctly.

If you get error messages, please report them to inpop@imcce.fr (See Chapter 4 [Re-
porting bugs|, page 8, for information on what to include in useful bug reports).

mailto:inpop@imcce.fr

Chapter 3: Installing CALCEPH Library 4

6.

‘make install’

This will copy the file ‘calceph.h’, ‘calceph.mod’ and ‘f90calceph.h’ to the
directory ‘/usr/local/include’, the file ‘libcalceph.a’, ‘libcalceph.so’ to
the directory ‘/usr/local/lib’, and the file ‘calceph.info’ to the directory
‘/usr/local/share/info’ (or if you passed the ‘--prefix’ option to ‘configure’,
using the prefix directory given as argument to ‘--prefix’ instead of ‘/usr/local’).
Note: you need write permissions on these directories.

3.1.1 Other ‘make’ Targets

There are some other useful make targets:

e ‘calceph.info’ or ‘info’

Create an info version of the manual, in ‘calceph.info’.
‘calceph.pdf’ or ‘pdf’

Create a PDF version of the manual, in ‘calceph.pdf’.
‘calceph.dvi’ or ‘dvi’

Create a DVI version of the manual, in ‘calceph.dvi’.
‘calceph.ps’ or ‘ps’

Create a Postscript version of the manual, in ‘calceph.ps’.
‘calceph.html’ or ‘html’

Create an HTML version of the manual, in ‘calceph.html’.
‘clean’

Delete all object files and archive files, but not the configuration files.
‘distclean’

Delete all files not included in the distribution.

‘uninstall’

Delete all files copied by ‘make install’.

3.2 Installation on Windows system

3.2.1 Using the Windows SDK

You need a C compiler, such as cl.exe, and a Windows SDK. A fortran compiler, compli-
ant with the ANSI Fortran 77 specifications, is required to compile the fortran-77/90/95
interface of the library. A fortran compiler, compliant with the Fortran 2003 specifications,
is required to compile the fortran-2003 interface of the library. It has been successfully
compiled with the Windows Server 2003 R2 Platform SDK, the Windows SDK of Vista,
and the Windows Server 2008 Platform SDK.

Here are the steps needed to install the library on Windows systems:

1.
2.

Expand the file ‘calceph-1.0.3.tar.gz’

Execute the command ‘cmd.exe’ from the menu ‘Start’ / ‘Execute...’
This will open a console window

‘cd 'dir‘\calceph-1.0.3’

Go to the directory dir where CALCEPH Library has been expanded.

Chapter 3: Installing CALCEPH Library 5)

4. ‘nmake /f Makefile.vc'’

This compiles CALCEPH Library in the working directory. This command line accepts
several options :

CC=xx specifies the name of the C compiler. The defaut value is ‘cl.exe’

FC=xx specifies the name of the Fortran compiler. The defaut value is
‘gfortran.exe’

F77TFUNC=naming specifies the naming convention of the fortran 77 compiler.
The possible value are: x, X, x##_ , XH#H_.

ENABLEF2003={011} specifies if it must compile the fortran 2003 interface.
ENABLEF77={011} specifies if it must compile the fortran 77/90/95 interface.

5. ‘nmake /f Makefile.vc check’
This will make sure that the CALCEPH Library was built correctly.

If you get error messages, please report them to inpop@imcce.fr (See Chapter 4 [Re-
porting bugs|, page 8, for information on what to include in useful bug reports).

This command line accepts several options :

CC=xx specifies the name of the C compiler. The defaut value is ‘cl.exe’

FC=xx specifies the name of the Fortran compiler. The defaut value is
‘gfortran.exe’

F77TFUNC=naming specifies the naming convention of the fortran 77 compiler.
The possible value are: x, X, x##_ , XH#H_.

ENABLEF2003={011} specifies if it must compile the fortran 2003 interface. The
defaut value is ‘0’.

ENABLEF77={011} specifies if it must compile the fortran 77/90/95 interface.
The defaut value is ‘0’.

6. ‘nmake /f Makefile.vc install DESTDIR=dir’

This will copy the file ‘calceph.h’, ‘calceph.mod’ and ‘f90calceph.h’ to the directory
‘/usr/local/include’, the file ‘libcalceph.1ib’ to the directory dir‘\1ib’, the file
‘calceph.pdf’ to the directory dir‘\doc’. Note: you need write permissions on these
directories.

This command line accepts several options :

CC=xx specifies the name of the C compiler. The defaut value is ‘cl.exe’

FC=xx specifies the name of the Fortran compiler. The defaut value is
‘gfortran.exe’

F77TFUNC=naming specifies the naming convention of the fortran 77 compiler.
The possible value are: x, X, x##_ , XH#HH#_.

ENABLEF2003={011} specifies if it must compile the fortran 2003 interface. The
defaut value is ‘0’.

ENABLEF77={011} specifies if it must compile the fortran 77/90/95 interface.
The defaut value is ‘0’.

mailto:inpop@imcce.fr

Chapter 3: Installing CALCEPH Library 6

3.2.2 Using the MinGW

You need a C compiler, such as gcc.exe. A fortran compiler, compliant with the ANSI
Fortran 77 specifications, is required to compile the fortran-77/90/95 interface of the library.
A fortran compiler, such as gfortran.exe, compliant with the Fortran 2003 specifications, is
required to compile the fortran-2003 interface of the library.

Here are the steps needed to install the library on MinGW

1.
2.

Expand the file ‘calceph-1.0.3.tar.gz’

Execute the command ‘cmd.exe’ from the menu ‘Start’ / ‘Execute. ..’
This will open a console window

‘cd ’dir‘\calceph-1.0.3’

Go to the directory dir where CALCEPH Library has been expanded.
‘make -f Makefile.mingw ’

This compiles CALCEPH Library in the working directory. This command line accepts
several options :

e (CC=xx specifies the name of the C compiler. The defaut value is ‘gcc.exe’

o FC=xx specifies the name of the Fortran compiler. The defaut value is
‘gfortran.exe’

e ENABLEF2003={01|1} specifies if it must compile the fortran 2003 interface. The
defaut value is ‘0.

e ENABLEF77={011} specifies if it must compile the fortran 77/90/95 interface.
The defaut value is ‘0’

‘make -f Makefile.mingw check’
This will make sure that the CALCEPH Library was built correctly.

If you get error messages, please report them to inpop@imcce.fr (See Chapter 4 [Re-
porting bugs|, page 8, for information on what to include in useful bug reports).

This command line accepts several options :
e (CC=xx specifies the name of the C compiler. The defaut value is ‘gcc.exe’

e FC=xx specifies the name of the Fortran compiler. The defaut value is
‘gfortran.exe’

e ENABLEF2003={0]1} specifies if it must compile the fortran 2003 interface. The
defaut value is ‘0.

e ENABLEF77={0]1} specifies if it must compile the fortran 77/90/95 interface.
The defaut value is ‘0’.

‘make -f Makefile.mingw install DESTDIR=dir’

This will copy the file ‘calceph.h’, ‘calceph.mod’ and ‘f90calceph.h’ to the directory
dir, the file ‘libcalceph.lib’ to the directory dir‘\1ib’, the file ‘calceph.pdf’ to the
directory dir‘\doc’. Note: you need write permissions on these directories.

This command line accepts several options :
e (CC=xx specifies the name of the C compiler. The defaut value is ‘gcc.exe’

o FC=xx specifies the name of the Fortran compiler. The defaut value is
‘gfortran.exe’

mailto:inpop@imcce.fr

Chapter 3: Installing CALCEPH Library 7

e ENABLEF2003={0]1} specifies if it must compile the fortran 2003 interface. The
defaut value is ‘0’.

e ENABLEF77={0]1} specifies if it must compile the fortran 77/90/95 interface.
The defaut value is ‘0’.

Chapter 4: Reporting bugs 8

4 Reporting bugs

If you think you have found a bug in the CALCEPH Library, first have a look on the
CALCEPH Library web page http://www.imcce.fr/inpop, in which case you may find
there a workaround for it. Otherwise, please investigate and report it. We have made this
library available to you, and it seems very important for us, to ask you to report the bugs
that you find.

There are a few things you should think about when you put your bug report together.
You have to send us a test case that makes it possible for us to reproduce the bug. Include
instructions on the way to run the test case.

You also have to explain what is wrong; if you get a crash, or if the results printed are
incorrect and in that case, in what way.

Please include compiler version information in your bug report. This can be extracted using
‘cc =V’ on some machines, or, if you're using gec, ‘gcc -v’. Also, include the output from
‘uname -a’ and the CALCEPH version.

Send your bug report to: inpop@imcce.fr. If you think something in this manual is unclear,
or downright incorrect, or if the language needs to be improved, please send a note to the
same address.

http://www.imcce.fr/inpop
mailto:inpop@imcce.fr

Chapter 5: CALCEPH Library Interface 9

5 CALCEPH Library Interface

5.1 C Usage

5.1.1 Headers and Libraries

All declarations needed to use CALCEPH Library are collected in the include file
‘calceph.h’. It is designed to work with both C and C++ compilers.

You should include that file in any program using the CALCEPH library:
#include <calceph.h>

5.1.1.1 Compilation on a Unix-like system

All programs using CALCEPH must link against the ‘libcalceph’ library. On Unix-like
system this can be done with ‘~1calceph’, for example

gcc myprogram.c —o myprogram -lcalceph

If CALCEPH Library has been installed to a non-standard location then it may be necessary
to use ‘-I’ and ‘-L’ compiler options to point to the right directories, and some sort of run-
time path for a shared library.

5.1.1.2 Compilation on a Windows system

Using the Windows SDK

All programs using CALCEPH must link against the ‘libcalceph.lib’. On Windows
system this can be done with ‘libcalceph.1ib’, for example

cl.exe /out:myprogram myprogram.c libcalceph.lib

If CALCEPH Library has been installed to a non-standard location then it may be necessary
to use /I’ and ‘/LIBPATH:’ compiler options to point to the right directories.

Using the MinGW

All programs using CALCEPH must link against the ‘1ibcalceph’ library. On the MinGW
system, this can be done with ‘-1calceph’, for example

gcc.exe myprogram.c -0 myprogram -lcalceph

If CALCEPH Library has been installed to a non-standard location then it may be necessary
to use ‘-I’ and ‘-L’ compiler options to point to the right directories, and some sort of run-
time path for a shared library.

5.1.2 Constants

CALCEPH_VERSION_MAJOR

This integer constant defines the major revision of this library. It can be used to distinguish
different releases of this library.

CALCEPH_VERSION_MINOR

This integer constant defines the minor revision of this library. It can be used to distinguish
different releases of this library.

Chapter 5: CALCEPH Library Interface 10

CALCEPH_VERSION_PATCH

This integer constant defines the patch level revision of this library. It can be used to
distinguish different releases of this library.

#if (CALCEPH_VERSION_MAJOR>=2)
|| (CALCEPH_VERSION_MAJOR>=1 && CALCEPH_VERSION_MINOR>=1)

#endif

CALCEPH_MAX_CONSTANTNAME

This integer defines the maximum number of characters, including the trailing ’\0’, that
the name of a constant, available from the ephemeris file, could contain.

5.1.3 Types

t_calcephbin [Data type]
This type contains all information to access a binary ephemeris file.

5.2 Fortran 2003 Usage

5.2.1 Modules and Libraries

All declarations needed to use CALCEPH Library are collected in the module files
‘calceph.mod’. The library is designed to work with Fortran compilers compliant with the
Fortran 2003 standard. All declarations use the standard ‘IS0_C_BINDING’ module.

You should include that module in any program using the CALCEPH library:
use calceph

When a fortran string is given as a parameter to a function of this library, you should
append this string with ‘//C_NULL_CHAR’ because the C library works only with C string.

5.2.2 Compilation on a Unix-like system

All programs using CALCEPH must link against the ‘libcalceph’ library. On Unix-like
system this can be done with ‘~1calceph’, for example

gfortran myprogram.f -o myprogram -lcalceph

If CALCEPH Library has been installed to a non-standard location then it may be necessary
to use ‘-I’ and ‘-L’ compiler options to point to the right directories, and some sort of run-
time path for a shared library.

5.2.3 Compilation on a Windows system

All programs using CALCEPH must link against the ‘libcalceph.lib’. On Windows
system this can be done with ‘libcalceph.1ib’, for example

gfortran.exe /out:myprogram.exe myprogram.f libcalceph.lib

If CALCEPH Library has been installed to a non-standard location then it may be necessary
to use /I’ and ‘/LIBPATH:’ compiler options to point to the right directories.

Chapter 5: CALCEPH Library Interface 11

5.2.4 Constants
The following constants are defined in the module ‘calceph.mod’.
CALCEPH_MAX_CONSTANTNAME

This integer defines the maximum number of characters, including the trailing ’\0’, that
the name of a constant, available from the ephemeris file, could contain.

5.3 Fortran 77/90/95 Usage

5.3.1 Headers and Libraries

It is designed to work with Fortran compilers compliant with the Fortran 77, 90 or 95
standard with wrappers. All declarations are implicit, so you should take care about the
types of the arguments. All functions are prefixed by ‘£90°. This interface is only provided
as compatibility layer and have a small overhead due to the wrappers. So if you have a
fortran compiler compliant with 2003 standard, you should use the fortran 2003 interface
of this library.

All declarations needed to use CALCEPH Library are collected in the header file
‘f90calceph.h’. It is designed to work with Fortran compilers compliant with the Fortran
77 , 90 or 95 standard.

You should include that file in every subroutine or function in any program using the
CALCEPH library:

include ’f90calceph.h’

5.3.2 Compilation on a Unix-like system

All programs using CALCEPH must link against the ‘libcalceph’ library. On Unix-like
system this can be done with ‘~1calceph’, for example

gfortran myprogram.f -o myprogram -lcalceph

If CALCEPH Library has been installed to a non-standard location then it may be necessary
to use ‘-I’ and ‘-L’ compiler options to point to the right directories, and some sort of run-
time path for a shared library.

5.3.3 Compilation on a Windows system

All programs using CALCEPH must link against the ‘libcalceph.lib’. On Windows
system this can be done with ‘libcalceph.1ib’, for example

gfortran.exe /out:myprogram.exe myprogram.f libcalceph.lib

If CALCEPH Library has been installed to a non-standard location then it may be necessary
to use /I’ and ‘/LIBPATH:’ compiler options to point to the right directories.

5.3.4 Constants
The following constants are defined in the file ‘f90calceph.h’.
CALCEPH_MAX_CONSTANTNAME

This integer defines the maximum number of characters, including the trailing ’\0’, that
the name of a constant, available from the ephemeris file, could contain.

Chapter 5: CALCEPH Library Interface 12

5.4 Single file access functions

This group of functions works on a single binary ephemeris file at a given instant. They use
an internal global variable to store information about the current opened ephemeris file.

They are provided to have a similar interface of the fortran PLEPH function, supplied with
the JPL ephemeris files. So the following call to PLEPH

PLEPH(46550D0, 3, 12, PV)
could be replaced by

calceph_sopen("ephemerisfile.dat")
calceph_scompute(46550D0, 0, 3, 12, PV)
calceph_sclose()

While the function PLEPH could access only one file in a program, these functions could
access on multiple files in a program but not at same time. To access multiple files at a
same time, the functions listed in the section ‘Multiple file access functions’ must be
used.

5.4.1 Thread notes

If the standard I/O functions such as fread are not reentrant then the CALCEPH I/O
functions using them will not be reentrant either.

If the library was configured with the option ‘--enable-thread=yes’, these functions use
an internal global variable per thread. Each thread could access to different ephemeris
file and compute ephemeris data at same time. But each thread must call the function
calceph_sopen to open ephemeris file even if all threads work on the same file.

If the library was configured with the default option ‘--enable-thread=no’, these functions
use an internal global variable per process and are not thread-safe. If multiple threads are
used in the process and call the function calceph_scompute at the same time, the caller
thread must surround the call to this function with locking primitives, such as pthread_
lock/pthread_unlock if POSIX Pthreads are used.

5.4.2 Usage

The following examples, that can be founded in the directory ‘examples’ of the library
sources, show the typical usage of this group of functions. The example in C language is
‘csingle.c’. The example in Fortran 2003 language is ‘£2003single.f’. The example in
Fortran 77/90/95 language is ‘f77single.f’.

Chapter 5: CALCEPH Library Interface

13

-~
#include <stdio.h>
#include "calceph.h"

int main()
{
int res;

double AU, EMRAT, GM_Mer;
double jd0=2451624;
double dt=0.5E0;

double PV[6];

/* open the ephemeris file */

res = calceph_sopen("examplel.dat");

if (res)

{
printf ("The ephemeris is already opened\n");
/* print the values of AU, EMRAT and GM_Mer */
if (calceph_sgetconstant("AU", &AU))

printf ("AU=%23.16E\n", AU);

if (calceph_sgetconstant ("EMRAT", &EMRAT))
printf ("EMRAT=Y%23.16E\n", EMRAT);

if (calceph_sgetconstant("GM_Mer", &GM_Mer))
printf ("GM_Mer=%23.16E\n", GM_Mer);

/* compute and print the coordinates */

/* the geocentric moon coordinates */
calceph_scompute(jd0O, dt, 10, 3, PV);
printcoord(PV,"geocentric coordinates of the Moon");

/* the value TT-TDB */
calceph_scompute(jdO, dt, 16, 0, PV);
printf ("TT-TDB = %23.16E\n", PV[0]);

/* the heliocentric coordinates of Mars */
calceph_scompute(jdo, dt, 4, 11, PV);
printcoord(PV,"heliocentric coordinates of Mars");

/* close the ephemeris file */

calceph_sclose();

printf ("The ephemeris is already closed\n");
}

else

{

printf ("The ephemeris can’t be opened\n");

}

return res;

3
N

Chapter 5: CALCEPH Library Interface 14

5.4.3 Functions

5.4.3.1 calceph_sopen

int calceph_sopen (const char *filename) [C]

function calceph_sopen (filename) BIND(C) [Fortran 2003]
CHARACTER(len=1,kind=C_CHAR), intent(in) :: filename
INTEGER(C_INT) :: calceph_sopen

function f90calceph_sopen (filename) [Fortran 77/90/95]
CHARACTER(len=%*), intent(in) :: filename
INTEGER :: f90calceph_sopen

This function opens the file whose pathname is the string pointed to by filename, reads the
two header blocks of this file and associates an ephemeris descriptor to an internal variable.
This file must be a binary ephemeris file.

The function calceph_sclose must be called to free allocated memory by this function.

On exit, it returns 0 if an error occurs, otherwise the return value is a non-zero value.

-
The following example opens the ephemeris file examplel.dat

int res;
res = calceph_sopen("examplel.dat");
if (res)
{
/*
computation ...
*/
/* close the file */
calceph_sclose();

5.4.3.2 calceph_scompute

int calceph_scompute (double JDO, double time, int target, int center, [C]
double PV[6])

function calceph_scompute (JDO, time, target, center, PV) [Fortran 2003]
BIND(C)

REAL(C_DOUBLE), VALUE, intent(in) :: JDO
REAL(C_DOUBLE), VALUE, intent(in) :: time
INTEGER(C_INT), VALUE, intent(in) :: target
INTEGER(C_INT), VALUE, intent(in) :: center
REAL(C_DOUBLE), intent(out) :: PV(6)
INTEGER(C_INT) :: calceph_scompute

Chapter 5: CALCEPH Library Interface 15

function f90calceph_scompute (JDO, time, target, [Fortran 77/90/95]
center, PV)
REAL(S), intent(in) :: JDO
REAL(S), intent(in) :: time

INTEGER, intent(in) :: target
INTEGER, intent(in) :: center
REAL(S), intent(out) :: PV(6)
INTEGER :: f90calceph_scompute

This function reads, if needed, and interpolates a single object, usually the position and
velocity of one body (target) relative to another (center), from the binary ephemeris file,
previously opened with the function calceph_sopen, for the time JDO+time and stores the
results to PV.

On exit, it returns 0 if an error occurs, otherwise the return value is a non-zero value.

The arguments are :

JDO Integer part of the Julian Date.

time Fraction part of the Julian Date.

target The body or reference point whose coordinates are required (see the list, below).
center The origin of the coordinate system (see the list, below). If target is 15 or 16

(libration or TT-TDB), center must be ‘0.

PV An array to receive the cartesian position (x,y,z) and the velocity (xdot, ydot,
zdot).

The position is expressed in Astronomical Unit (au) and the velocity is ex-
pressed in Astronomical Unit per day (au/day).

If the target is T'T-TDB, only the first element of this array will get the result.

To get the best precision for the interpolation, the time is splitted in two floating-point
numbers. The argument JDO should be an integer and time should be a fraction of the day.
But you may call this function with time=0 and JD0, the desired time, if you don’t take
care about precision.

The possible values for target and center are :

value meaning
Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
Pluto

0 Moon

= O 00 3O Uik W=

Chapter 5: CALCEPH Library Interface 16

11 Sun

12 Solar Sytem barycenter
13 Earth-moon barycenter
15 Librations

16 TT-TDB

These accepted values by this function are the same as the value for the JPL function PLEPH,
except for the value TT-TDB.

(N
The following example prints the heliocentric coordinates of Mars at time=2451624.5 and
at 2451624.9

int res;

int j;

double jd0=2451624;
double dt1=0.5EQ;
double dt2=0.9EOQ;

double PV[6];

/* open the ephemeris file */

res = calceph_sopen("examplel.dat");

if (res)

{
/* the heliocentric coordinates of Mars */
calceph_scompute(jd0o, dtil, 4, 11, PV);
for(j=0; j<6; j++) printf("%23.16E\n", PV[j1);

calceph_scompute(jd0O, dt2, 4, 11, PV);
for(j=0; j<6; j++) printf("’%23.16E\n", PV[jl);

/* close the ephemeris file */
calceph_sclose();

5.4.3.3 calceph_sgetconstant

int calceph_sgetconstant (const char* name, double *value) [C]

function calceph_sgetconstant (name, value) BIND(C) [Fortran 2003]
CHARACTER (len=1,kind=C_CHAR), intent(in) :: name
REAL(C_DOUBLE), intent(out) :: value
INTEGER(C_INT) :: calceph_sgetconstant

function f90calceph_sgetconstant (name, value) [Fortran 77/90/95]
CHARACTER (len=%*), intent(in) :: name
REAL(S), intent(out) :: value
INTEGER :: f90calceph_sgetconstant

Chapter 5: CALCEPH Library Interface 17

This function returns the value associated to the constant name in the header of the binary
ephemeris file.

The function calceph_sopen must be previously called before. On exit, it returns 0 if an
error occurs, otherwise the return value is a non-zero value.

a N
The following example prints the value of the astronomical unit stored in the ephemeris file

int res;

double UA;

calceph_sopen("examplel.dat");

res = calceph_sgetconstant ("UA",&UA);

if (res)

{
printf ("astronomical unit=%23.16E\n", UA);

b
. J

5.4.3.4 calceph_sgetconstantcount

int calceph_sgetconstantcount () [C]

function calceph_sgetconstantcount () BIND(C) [Fortran 2003]
INTEGER(C_INT) :: calceph_sgetconstantcount

function f90calceph_sgetconstantcount () [Fortran 77/90/95]
INTEGER :: f90calceph_sgetconstantcount

This function returns the number of constants available in the header of the binary
ephemeris file.

The function calceph_sopen must be previously called before. On exit, it returns 0 if an
error occurs, otherwise the return value is a non-zero value.

(N
The following example prints the number of available constants stored in the ephemeris file

int res, count;
calceph_sopen("examplel.dat");
count = calceph_sgetconstantcount();

printf ("number of constants : %d\n", count);
N J

5.4.3.5 calceph_sgetconstantindex

int calceph_sgetconstantindex (int index, char [C]
name [CALCEPH_MAX_CONSTANTNAME], double *value)

function calceph_sgetconstantindex (index, name, value) [Fortran 2003]
BIND(C)

INTEGER(C_INT), VALUE, intent(in) :: index

Chapter 5: CALCEPH Library Interface 18

CHARACTER(len=1,kind=C_CHAR),
dimension(CALCEPH_MAX_CONSTANTNAME), intent(out) :: name
REAL(C_DOUBLE), intent(out) :: value

INTEGER(C_INT) :: calceph_sgetconstantindex

function f90calceph_sgetconstantindex (index, name, [Fortran 77/90/95]
value)
INTEGER(INT), intent(in) :: index
CHARACTER(len=CALCEPH_MAX_CONSTANTNAME), intent(out)
name
REAL(8), intent(out) :: value
INTEGER :: f90calceph_sgetconstantindex

This function returns the name and its value of the constant available at the specified index
in the header of the binary ephemeris file. The value of index must be between 1 and
calceph_sgetconstantcount ().

The function calceph_sopen must be previously called before. On exit, it returns 0 if an
error occurs, otherwise the return value is a non-zero value.

(N
The following example displays the name of the constants, stored in the ephemeris file, and

their values

integer res

integer j

real(8) valueconstant

character (1en=CALCEPH_MAX_CONSTANTNAME) nameconstant

I open the ephemeris file
res = calceph_sopen("examplel.dat"//C_NULL_CHAR)
if (res.eq.l) then

! print the list of the constants
do j=1, calceph_sgetconstantcount()

res = calceph_sgetconstantindex(j,nameconstant, &
& valueconstant)
write (*,*) nameconstant,"=",valueconstant
enddo

! close the ephemeris file
call calceph_sclose

5.4.3.6 calceph_sclose

void calceph_sclose () [C]

Chapter 5: CALCEPH Library Interface 19

subroutine calceph_sclose () [Fortran 2003]

subroutine f90calceph_sclose () [Fortran 77/90/95]

This function closes the ephemeris data file and frees allocated memory by the function
calceph_sopen.

5.5 Multiple file access functions

The following group of functions should be the preferred method to access to the library.
They allow to access to multiple ephemeris files at the same time, even by multiple threads.

5.5.1 Thread notes

If the standard I/O functions such as fread are not reentrant then the CALCEPH I/O
functions using them will not be reentrant either.

It’s not safe for two threads to call the functions with same object of type t_calcephbin.
But it’s safe for two threads to access simultaneously to the same binary ephemeris file with
two different objects of type t_calcephbin. In this case, each thread must open the same
file.

5.5.2 Usage

The following examples, that can be founded in the directory ‘examples’ of the library
sources, show the typical usage of this group of functions. The example in C language is
‘cmultiple.c’. The example in Fortran 2003 language is ‘£2003multiple.f’. The example
in Fortran 77/90/95 language is ‘f77multiple.f’.

Chapter 5: CALCEPH Library Interface

20

~
program £2003multiple
USE, INTRINSIC :: ISO_C_BINDING
use calceph
implicit none
integer res
real(8) AU, EMRAT, GM_Mer
real(8) jdo
real(8) dt
real(8) PV(6)
TYPE(C_PTR) :: peph

jdo = 2451624
dt = 0.5E0
! open the ephemeris file
peph = calceph_open("examplel.dat"//C_NULL_CHAR)
if (C_ASSOCIATED(peph)) then
write (*,*) "The ephemeris is already opened"
! print the values of AU, EMRAT and GM_Mer
if (calceph_getconstant(peph, "AU"//C_NULL_CHAR, &
& AU) .eq.1) then
write (*,x) "AU=", AU
endif
if (calceph_getconstant (peph,"EMRAT"//C_NULL_CHAR, &
& EMRAT) .eq.1) then
write (*,*) "EMRAT=", EMRAT
endif
if (calceph_getconstant(peph,"GM_Mer"//C_NULL_CHAR, &
& GM_Mer) .eq.1) then
write (*,*) "GM_Mer=", GM_Mer
endif

! compute and print the coordinates
! the geocentric moon coordinates
res = calceph_compute(peph,jd0, dt, 10, 3, PV)
call printcoord(PV,"geocentric coordinates of the Moon")
! the value TT-TDB
if (calceph_compute(peph,jd0, dt, 16, 0, PV).eq.1) then
write (*,x) "TT-TDB = ", PV(1)
endif
! the heliocentric coordinates of Mars
res = calceph_compute(peph,jdo, dt, 4, 11, PV)
call printcoord(PV,"heliocentric coordinates of Mars")

I close the ephemeris file
call calceph_close(peph)
write (*,*) "The ephemeris is already closed"
else
write (*,*) "The ephemeris can’t be opened"
endif
stop
end

Chapter 5: CALCEPH Library Interface 21

5.5.3 Functions

5.5.3.1 calceph_open

t_calcephbin* calceph_open (const char *filename) [C]

function calceph_open (filename) BIND(C) [Fortran 2003]
CHARACTER (len=1,kind=C_CHAR), intent(in) :: filename
TYPE(C_PTR) :: calceph_open

function f90calceph_open (eph, filename) [Fortran 77/90/95]
CHARACTER (len="*), intent(in) :: filename
INTEGER(8), intent(out) :: eph
INTEGER :: f90calceph_open

This function opens the file whose pathname is the string pointed to by filename, reads the
two header blocks of this file and returns an ephemeris descriptor associated to it. This file
must be a binary ephemeris file.

The function calceph_close must be called to free allocated memory by this function.

On exit, it returns NULL (O for the fortran 77/90/95 interface) if an error occurs, otherwise
the return value is a non-NULL value.

(N
The following example opens the ephemeris file examplel.dat and example2.dat

t_calcephbin *pephl;
t_calcephbin *peph2;
pephl = calceph_open("examplel.dat");
peph2 = calceph_open("example2.dat");
if (pephl && peph2)
{

/*

computation ...
*/
}
/* close the files */
if (pephl) calceph_close(pephl);
if (peph2) calceph_close(peph2);
N J

5.5.3.2 calceph_compute

int calceph_compute (t-calcephbin* eph, double JDO, double time, int [C]
target, int center, double PV[6])

function calceph_compute (eph, JDO, time, target, center, PV [Fortran 2003]
) BIND(C)
TYPE(C_PTR), VALUE, intent(in) :: eph
REAL(C_DOUBLE), VALUE, intent(in) :: JDO

Chapter 5: CALCEPH Library Interface 22

REAL(C_DOUBLE), VALUE, intent(in) :: time
INTEGER(C_INT), VALUE, intent(in) :: target
INTEGER(C_INT), VALUE, intent(in) :: center
REAL(C_DOUBLE), intent(out) :: PV(6)
INTEGER(C_INT) :: calceph_compute

function f90calceph_compute (eph, JDO, time, target, [Fortran 77/90/95]

center, PV)

INTEGER(8), intent(in) :: eph
REAL(S), intent(in) :: JDO
REAL(S), intent(in) :: time
INTEGER, intent(in) :: target
INTEGER, intent(in) :: center
REAL(8), intent(out) :: PV(6)
INTEGER :: f90calceph_compute

This function reads, if needed, in the ephemeris file associated to eph and interpolates a
single object, usually the position and velocity of one body (target) relative to another
(center), from the binary ephemeris file, previously opened with the function calceph_
sopen, for the time JDO+time and stores the results to PV.

On exit, it returns 0 if an error occurs, otherwise the return value is a non-zero value.

The arguments are :

JDO
time
target

center

PV

Integer part of the Julian Date.
Fraction part of the Julian Date.
The body or reference point whose coordinates are required (see the list, below).

The origin of the coordinate system (see the list, below). If target is 15 or 16
(libration or TT-TDB), center must be ‘0.

An array to receive the cartesian position (x,y,z) and the velocity (xdot, ydot,
zdot).

The position is expressed in Astronomical Unit (au) and the velocity is ex-
pressed in Astronomical Unit per day (au/day).

If the target is T'I-TDB, only the first element of this array will get the result.

To get the best precision for the interpolation, the time is splitted in two floating-point
numbers. The argument JDO should be an integer and time should be a fraction of the day.
But you may call this function with time=0 and JDO, the desired time, if you don’t take
care about precision.

The possible values for target and center are :

value
1
2
3

meaning
Mercury
Venus
Farth

Chapter 5: CALCEPH Library Interface 23

4 Mars

5 Jupiter

6 Saturn

7 Uranus

8 Neptune

9 Pluto

10 Moon

11 Sun

12 Solar Sytem barycenter
13 Earth-moon barycenter
15 Librations

16 TT-TDB

These accepted values by this function are the same as the value for the JPL function PLEPH,
except for the value TT-TDB.

()
The following example prints the heliocentric coordinates of Mars at time=2451624.5 and
at 2451624.9

int res;

int j;

double jd0=2451624;
double dt1=0.5E0Q;
double dt2=0.9EOQ;
t_calcephbin *peph;
double PV[6];

/* open the ephemeris file */

peph = calceph_open("examplel.dat");

if (peph)

{
/* the heliocentric coordinates of Mars */
calceph_compute(peph, jdO, dtl, 4, 11, PV);
for(j=0; j<6; j++) printf("%23.16E\n", PV[j1);

calceph_compute(peph, jdO0, dt2, 4, 11, PV);
for(j=0; j<6; j++) printf("’%23.16E\n", PV[jl);

/* close the ephemeris file */
calceph_close(peph);

5.5.3.3 calceph_getconstant

int calceph_getconstant (t_calcephbin® eph, const char* name, double [C]
*value)

Chapter 5: CALCEPH Library Interface 24

function calceph_getconstant (eph, name, value) BIND(C) [Fortran 2003]
TYPE(C_PTR), VALUE, intent(in) :: eph
CHARACTER(len=1,kind=C_CHAR), intent(in) :: name
REAL(C_DOUBLE), intent(out) :: value
INTEGER(C_INT) :: calceph_getconstant

function f90calceph_getconstant (eph, name, value) [Fortran 77/90/95]
INTEGER(8), intent(in) :: eph
CHARACTER (len=%*), intent(in) :: name
REAL(8), intent(out) :: value
INTEGER :: f90calceph_getconstant

This function returns the value associated to the constant name in the header of the binary
ephemeris file associated to the descriptor eph.
On exit, it returns 0 if an error occurs, otherwise the return value is a non-zero value.

(N
The following example prints the value of the astronomical unit stored in the ephemeris file

double AU;
t_calcephbin *peph;

/* open the ephemeris file */
peph = calceph_open("examplel.dat");
if (peph)
{
/* print the values of AU x/
if (calceph_getconstant(peph, "AU", &AU)) printf("AU=%23.16E\n", AU);

/* close the ephemeris file */
calceph_close(peph);

5.5.3.4 calceph_getconstantcount

int calceph_getconstantcount (t_calcephbin® eph) [C]

function calceph_getconstantcount (eph) BIND(C) [Fortran 2003]
TYPE(C_PTR), VALUE, intent(in) :: eph
INTEGER(C_INT) :: calceph_getconstantcount

function f90calceph_getconstantcount (eph) [Fortran 77/90/95]
INTEGER(8), intent(in) :: eph
INTEGER :: f90calceph_getconstantcount

This function returns the number of constants available in the header of the binary
ephemeris file associated to the descriptor eph.

Chapter 5: CALCEPH Library Interface 25

On exit, it returns 0 if an error occurs, otherwise the return value is a non-zero value.
()
The following example prints the number of available constants stored in the ephemeris file

int count;
t_calcephbin *peph;

/* open the ephemeris file */

peph = calceph_open("examplel.dat");

if (peph)

{
/* print the number of constants */
count = calceph_getconstantcount (peph) ;
printf ("number of constants : %d\n", count);

/* close the ephemeris file */
calceph_close(peph);

5.5.3.5 calceph_getconstantindex

int calceph_getconstantindex (t_calcephbin® eph, int index, char [C]
name [CALCEPH_MAX_CONSTANTNAME], double *value)

function calceph_getconstantindex (eph, index, name, [Fortran 2003]
value) BIND(C)

TYPE(C_PTR), VALUE, intent(in) :: eph
INTEGER(C_INT), VALUE, intent(in) :: index
CHARACTER(len=1,kind=C_CHAR),
dimension(CALCEPH_MAX_CONSTANTNAME), intent(out) :: name
REAL(C_DOUBLE), intent(out) :: value
INTEGER(C_INT) :: calceph_getconstantindex

function f90calceph_getconstantindex (eph, index, [Fortran 77/90/95]
name, value)
INTEGER(8), intent(in) :: eph
INTEGER(INT), intent(in) :: index
CHARACTER (len=CALCEPH_MAX_CONSTANTNAME), intent(out)
name
REAL(S), intent(out) :: value
INTEGER :: f90calceph_getconstantindex

This function returns the name and its value of the constant available at the specified index
in the header of the binary ephemeris file associated to the descriptor eph. The value of
index must be between 1 and calceph_getconstantcount (eph).

On exit, it returns 0 if an error occurs, otherwise the return value is a non-zero value.

Chapter 5: CALCEPH Library Interface 26

~
The following example displays the name of the constants, stored in the ephemeris file, and

their values
USE, INTRINSIC :: ISO_C_BINDING
use calceph
implicit none
integer res
integer j
real(8) valueconstant

character (1en=CALCEPH_MAX_CONSTANTNAME) nameconstant
TYPE(C_PTR) :: peph

! open the ephemeris file

peph = calceph_open("examplel.dat"//C_NULL_CHAR)
if (C_ASSOCIATED(peph)) then

! print the list of constants
do j=1, calceph_getconstantcount (peph)

res = calceph_getconstantindex(peph, j,nameconstant, &
& valueconstant)
write (*,*) nameconstant,"=",valueconstant
enddo

! close the ephemeris file

call calceph_close(peph)
endif

5.5.3.6 calceph_close

void calceph_close (t_calcephbin® eph) [C]

function calceph_close (eph) BIND(C) [Fortran 2003]
TYPE(C_PTR), VALUE, intent(in) :: eph

subroutine f90calceph_close (eph) [Fortran 77/90/95]
INTEGER(8), intent(in) :: eph

This function closes the access associated to the ephemeris descriptor eph and frees allocated
memory for it.

Appendix A: Release notes

Appendix A Release notes

e Version 1.0.0
Initial release.

e Version 1.0.1
Supports the large binary ephemeris files (>2GB) on 32-bit operating systems.
Fixes the documentation of the function f90calceph_sopen.
Fixes an invalid open mode on Windows operating systems.
Reports accurately the I/O errors.

e Version 1.0.2
Fixes memory leaks in the fortran-90 interface.

e Version 1.0.3
Supports the JPL ephemeris file DE423.

27

	CALCEPH Library Copying conditions
	Introduction to CALCEPH Library
	Installing CALCEPH Library
	Installation on a Unix-like system (Linux, Mac OS X, BSD, cygwin, ...)
	Other `make' Targets

	Installation on Windows system
	Using the Windows SDK
	Using the MinGW

	Reporting bugs
	CALCEPH Library Interface
	C Usage
	Headers and Libraries
	Compilation on a Unix-like system
	Compilation on a Windows system

	Constants
	Types

	Fortran 2003 Usage
	Modules and Libraries
	Compilation on a Unix-like system
	Compilation on a Windows system
	Constants

	Fortran 77/90/95 Usage
	Headers and Libraries
	Compilation on a Unix-like system
	Compilation on a Windows system
	Constants

	Single file access functions
	Thread notes
	Usage
	Functions
	calceph_sopen
	calceph_scompute
	calceph_sgetconstant
	calceph_sgetconstantcount
	calceph_sgetconstantindex
	calceph_sclose

	Multiple file access functions
	Thread notes
	Usage
	Functions
	calceph_open
	calceph_compute
	calceph_getconstant
	calceph_getconstantcount
	calceph_getconstantindex
	calceph_close

	Release notes

