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ABSTRACT
The multiplication of the sparse multivariate polynomials
using the recursive representations is revisited to take ad-
vantage on the multicore processors. We take care of the
memory management and load-balancing in order to obtain
linear speedup. The widely used Poisson bracket during the
studies of the dynamical systems had been parallelized on
these computers. Benchmarks are presented, comparing our
implementation to the other computer algebra systems.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Alge-
braic Algorithms

General Terms
Design, Performance
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1. INTRODUCTION
As many applications, such as celestial mechanics, require

to handle large sparse multivariate power series, many spe-
cialized or general computer algebra systems had been devel-
oped to handle these objects at the time when most of com-
puters had only one processor. But despite multiple cores
and multiple processors are now widely available, even in
laptop computers, few existing computer algebra systems,
such as SDMP [16], TRIP [8] and Piranha [3], take advan-
tage of the presence of these processor-elements to reduce the
time of the computation on the multivariate sparse polyno-
mials. The SDMP library performs the multiplication of the
sparse polynomials using a heap and divides the work on the
multiple processors using a static scheduling. This library
stores these objects in a distributed form and could only
work with integer coefficients. The computer algebra system
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TRIP dedicated to celestial mechanics supports several rep-
resentations for the multivariate sparse polynomials in the
computer’s memory, such as recursive forms or distributed
forms optimized for celestial mechanics. TRIP could handle
floating-point numbers (hardware double-precision, multiple
precision), integer or rational numbers. The multiplication
of polynomials using burst-tries was investigated on multi-
ple processors [7] but it suffers from the merge step of the
burst-tries that prevents a good scalability. In the first part,
we present an efficient implementation of the multiplication
of the multivariate sparse polynomials using the recursive
form.

As the operator Poisson bracket on the multivariate sparse
polynomials is widely used during the studies of the dynam-
ical systems, Roldan demonstrated that this operator could
benefit of the distributed architectures using MPI [18]. But a
linear speedup was obtained only on few nodes for the com-
putation on the homogeneous polynomials. In this paper,
we present, for the shared memory architectures, a parallel
implementation of the Poisson bracket on any sparse poly-
nomials.

2. DATA AND PARALLEL COMPUTATIONS

2.1 Polynomials representation
The multivariate polynomials could be represented in the

memory using different data structures to keep them in a
canonical form [22, 6]. Instead of using a distributed form,
the polynomials are stored in a recursive container into the
main memory of the computer. The multivariate polynomial
in n variables is considered as a polynomial in one variable
with coefficients in the polynomial ring in n − 1 variables.
These recursive data structure could be a recursive list or
recursive dense vector, such as the containers implemented
in the computer algebra system TRIP.

Each element of the recursive singly-linked list contains
the exponent and the non-zero coefficients. These coeffi-
cients are in the polynomial ring in n − 1 variables and are
also recursive lists. As most problems need not large expo-
nents, the exponents are encoded using hardware integers,
e.g. signed 32-bit integers in TRIP. Figure 1(a) shows the
representation of a multivariate polynomial as a recursive list
which is used in TRIP. If a variable is not present in a term,
this variable is missing in the representation (e.g., the vari-
able y is not present in the term 8x2z2 as shown in Fig. 1(a)).
The complexity in search/insertion is in O(

Pn
k=1 deg(xk)).

All polynomials could be represented in this structure.
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Figure 1: representation of the polynomial
P (x, y, z) = 3 + 5z + 7z3 + 11y + 9yz + 13xyz + 8x2z2 + 9x4

using generic container with the lexicographic order.
The type information is G for generic container and
N for numerical coefficient.

The elements stored in the containers could be a poly-
nomial or a numerical coefficient. For example in figures
1(a) and 1(b), the coefficient of x0 is a polynomial and the
coefficient of x4 is a numerical value. To handle these dif-
ferent data types, the generic container requires additional
information to determine the type of stored data. So each
coefficient of the list is composed of two fields, type and
value. This type field could be hidden if a polymorphic ap-
proach is used but, in this case, this type information is
still present inside the value of the coefficient. During the
computation, these generic containers require additional pro-
cessing to check the data type of each element and select the
appropriate algorithm. TRIP 1.0 encodes all coefficients in
a generic container, even in the leaf nodes.

The recursive dense representation is similar to the previ-
ous one. The lists of tuple (degree, coefficient) is replaced
by a vector of coefficients. All coefficients are stored in the
array even the zero coefficients between the minimal and
maximal degree. This minimal and maximal degree are kept
in the header of the vector. Figure 1(b) shows the repre-
sentation of a multivariate polynomial as a recursive vector
which is used in TRIP. The complexity of the search and
insertion algorithm is in O(n) which is very efficient even for
large polynomials. But this representation is not optimized
for high degrees because the memory footprint of the vec-
tor becomes very large in some cases, such as 1 + x1000. In
both representations, each container stores in its header the
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Figure 2: representation of the polynomial
P (x, y, z) = 3 + 5z + 7z3 + 11y + 9yz + 13xyz + 8x2z2 + 9x4

using optimized container with the lexicographic or-
der. The type information is G for generic container,
O for optimized container and N for numerical coef-
ficient.

number of monomials with non-zero number coefficients in
the full expanded form of the polynomial represented at that
node (e.g., root containers of Fig. 1 and 2 store 8 as number
of monomials).

Nevertheless, the leaf nodes contain always only numerical
coefficients. To solve this bottleneck in TRIP 1.1, the leaf
containers store only a single type of objects. So the type
field is removed from the elements of the vector or list in
the leaf nodes. This reduces the memory usage proportion-
ately to the number of terms and reduces time consumption
to check the data type. Figures 2(a) and 2(b) show the
recursive list and vector representations with an optimized
container for the leaf nodes. Afterwards, in the following
examples, the recursive vector, respectively list, represen-
tation with a generic container for the leaf nodes is called
dense generic, respectively sparse generic. The recursive
vector, respectively list, representation with an optimized
container for the leaf nodes is called dense optimized, re-
spectively sparse optimized.

2.2 Memory management
As the polynomials stored into these data structures could

create many small objects in the main memory, the mem-
ory management could become a bottleneck for the scala-
bility on a computer with multiple cores [2]. PARSAC-2
[13] organizes memory in pages but its available pages are



protected by a global lock. To handle these objects, we use
two lock-free memory allocators, for fixed-size or any-size
objects, based on [19] and [7]. The fixed-size objects, such
as elements of the recursive list, do not require a header
before the objects. Each thread has its own heap. They
always allocate from their heap without locks. The “free”
operation is more complex. If the memory was allocated
by the same thread, this one released the memory without
lock. If the memory was allocated by another thread, the ad-
dress is pushed into a LIFO list of the distant heap using the
lock-free techniques. The access from the cores to the main
memory could be non uniform, such as on the Intel Xeon Ne-
halem processors. To hide the latency of the main memory
accesses, the cores of the processors share the cache memory,
which could have several megabytes. On these Non-Uniform
Memory Architectures (NUMA), the allocators take care of
allocating the memory on the same local node.

2.3 Parallel work
Nowadays, desktop computers have between 2 and 8 cores

and server computers could have up to 24 cores or more.
So the computation on the sparse polynomials could benefit
from these multiple cores and could be split between these
cores. A static split between them could not be performed
because the recursive form could be irregular and unbalanced
load occurs. Virtual tasks [20], based on S-threads [12] allow
to parallelize algorithms, such as Karatsuba’s method. The
S-threads is based on the fork-join approach which have a
significant overhead. In TRIP, a task stealing model, similar
to the work stealing model [4], is thus used to balance the
load and minimize the overhead. A pool of threads is cre-
ated at the beginning of the execution of the session. Their
number is equal to the number of available cores. At the
beginning, these threads are in an idle state. Each paral-
lelized task is divided into small tasks which are pushed into
a LIFO queue owned by the thread. If a thread becomes idle,
it looks to the queues of the other threads and steals a task
if it is available. Our task stealing implementation is similar
to the Intel Threading Building Blocks [17] to abstract the
decomposition of loops in several tasks.

3. MULTIPLICATION
Some symmetries are present in celestial mechanics, such

as d’Alembert relations in the planetary motion [14], and im-
plies that sparse series are manipulated. The degree of these
series are low during some computations, such as the com-
putation of the Hamiltonian in the Restricted Three Body
Problem [11]. Due to these sparse series and low degrees,
the naive (term by term) algorithm of the multiplication is
used instead of the fast methods, such as FFT or evalua-
tion/interpolation.

3.1 Recursive dense
The product of 2 recursive dense multivariate polynomials

A and B could be done in the same way as for the univariate
case.

A(x1, ..., xn) =
X

i

ai(x2, ..., xn).xi
1

B(x1, ..., xn) =
X

j

bj(x2, ..., xn).xj
1

C = A×B =
X

k

ck(x2, ..., xn).xk
1

Algorithm 1: FMA(A,B,C). Compute the fused
multiplication-addition C ← C + A × B. A, B and
C are multivariate polynomials represented using a re-
cursive sparse or dense structure.

Input: A =
P

aix
i
a

Input: B =
P

bjx
j
b

Input: C =
P

ckxk
c

Output: C =
P

c′kx′
k
c

// compare order of variables

if xa < xb then FMAcst (A,B,C)
else if xa > xb then FMAcst (B,A,C)
else FMAsame (A,B,C)

Algorithm 2: FMAcst(A,B,C). Compute the fused
multiplication-addition C ← C + A × B for the re-
cursive dense representations. Assume xa < xb or A is a
numerical value.

Input: A =
Pdamax

i=damin
aix

i
a or A is a numerical value

Input: B =
Pdbmax

j=dbmin
bjx

j
b

nb = number of monomials in the expanded form of B
Input: C =

Pdcmax
k=dcmin

ckxk
c

Output: C =
Pdc′

max

k=dc′
min

c′kxk
c′

Data: Thres thresold integer to perform loop in
parallel

// Adds a polynomial
Pdbmax

j=dbmin
0× xj

b inside C

1 D ← FindorInsertContainer (C, xb, dbmin, dbmax)

2 for j ← dbmin to dbmax

do in parallel if (Thres < nb)
3 FMA (a, bj , dj)

4 end
5 parallel barrier
6 Put C in canonical form if D = 0

where

ck =
X

i+j=k

aibj (1)

If the naive algorithm for the univariate case is applied
directly to the multivariate case, many data structures will
be briefly created in the main memory. Indeed, if the com-
putation of Eq. 1 is performed in two steps : d ← ai × bj

and ck ← ck + d, then each computation aibj generates a
recursive polynomial d in x2, ..., xn and, just after, its con-
tent is merged with the current content of ck. To avoid these
unnecessarily data structures, we use a Fused-Multiply-Add
algorithm for the multiplication of two polynomials.

The main algorithm 1 (FMA) checks the order of the most
factorized variable of A and B and selects the appropriate
algorithm. If A and B depend on the same main variable,
then the algorithm 3 (FMAsame dense) is used. In the other
cases, the algorithm 2 (FMAcst dense) is executed. The first
step of this two procedures prepares the addition through
the function FindorInsertContainer. This function finds or
inserts a container which receives a polynomial depending
on xb by taking care of the order of the variables. If xb is
not present in the recursive structure C, this function inserts
a vector depending on the variable xb. On the other hand, if
xb is present, the corresponding container is resized if neces-



Algorithm 3: FMAsame(A,B,C). dense. Compute the
fused multiplication-addition C ← C + A × B for the
recursive dense representations. Assume xa = xb.

Input: A =
Pdamax

i=damin
aix

i
a

na = number of monomials in the expanded form of A
Input: B =

Pdbmax
j=dbmin

bjx
j
b

nb = number of monomials in the expanded form of B
Input/Output: C polynomial
Data: Thres thresold integer to perform loop in

parallel

// Adds a polynomial
Pdabmax

j=dabmin
0× xj

b inside C

1 dabmin ← damin + dbmin

2 dabmax ← damax + dbmax

3 D ← FindorInsertContainer (C, xb, dabmin, dabmax)
// Computation

4 for k ← dabmin to dabmax

do in parallel if (Thres < na × nb)
5 for j ∈ [damin, damax] and k − j ∈ [dbmin, dbmax]

do
6 FMA (aj , bk−j , dk)

7 end

8 end
9 parallel barrier

10 Put C in canonical form if D = 0

sary. For example, if we need to insert a polynomial
P12

j=9 xj

inside P (Figure 2(b)), the root container will be resized to
the dimension (0,12) and the function returns a reference to
this container. Second example, we need to insert

P5
j=1 yj

at the location x4 inside P , the processing moves the nu-
merical value 9 from location x4 to the location 0 of a new
container for y with a dimension (0,5), references this new
container at the location of x4 in the root container and re-
turns the reference to new container. The worst case for this
type of algorithm occurs when they are many cancelations,
such as in (1 + x + y)(1− x− y).

The second step of both procedures performs the compu-
tation of the dk term by term. As the dk could be computed
independently [21], the outer loops of FMAsame (line 4) and
FMAcst (line 2) could be easily parallelized. Only a syn-
chronization barrier is required after the loop between the
threads which process the body loop. This parallelization is
done using the task-stealing model. Each different value of
the counter loop k corresponds to a task. If the computation
of the dk is shared at each recursive step, the granularity is
too fine and the cost of the stealing dominates largely the
coefficients’ arithmetic and the memory management. To
avoid this problem, the coefficients are computed in paral-
lel only if A and B have enough terms. This threshold is
based on the product of their number of terms, which is the
number of monomials in the full expanded form of the poly-
nomial represented at that node. That is the reason why the
number of monomials inside the children vectors is stored at
each level of the recursive data structure. If this threshold
is too small, performance degradation happens as shown in
Fig. 3.

3.2 Recursive sparse
A similar Fused-Multiply-Add algorithm is used to reduce

the memory management of the list. The recursive sparse

Algorithm 4: FMAsamelarge(A,B,C). sparse. Compute
the fused multiplication-addition C ← C + A × B for
the recursive sparse representations. Assume xa = xb

and sa × sb is large.

Input: A =
P

i aix
i
a , sa = number of elements(A),

na = number of monomials in the expanded form of A
Input: B =

P
j bjx

j
b , sb = number of elements(B),

nb = number of monomials in the expanded form of B
Input/Output: C polynomial
Data: Thres thresold integer to perform loop in

parallel

// Adds a polynomial
P

j 0× xj
b inside C

1 D ← FindorInsertContainer (C, xb)

// Computation

2 foreach element {δa, aδa} in A do
3 foreach element {δb, bδb} in B do
4 δd ← δa + δb

5 dδd ← Find/insert an element of degree δd in D
6 do in parallel if (Thres < na × nb)
7 FMA (aδa , bδb , dδd)
8 end

9 end
10 parallel barrier

11 end
12 Put C in canonical form if D = 0
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Figure 3: Speedup to compute and expand f × g
with f = (1 + x + y + z + t)30 and g = f + 1 using the
recursive dense representation for several threshold
to stop the work stealing.

representation uses the same algorithms 1 (FMA) and 2
(FMAcst) as the dense case. As the singly-linked lists are
used to store the coefficients, the computation inside the pro-
cedure FMAsame cannot be done in the same way as for the
dense case, except if the number of elements in the list of



Algorithm 5: FMAsamesmall(A,B,C). sparse. Com-
pute the fused multiplication-addition C ← C + A×B
for the recursive sparse representations. Assume xa = xb

and sa × sb is small.

Input: A =
P

i aix
i
a , sa = number of elements(A),

na = number of monomials in the expanded form of A
Input: B =

P
j bjx

j
b , sb = number of elements(B),

nb = number of monomials in the expanded form of B
Input/Output: C polynomial
Data: Thres thresold integer to perform loop in

parallel

// Adds a polynomial
P

j 0× xj
b inside C

1 D ← FindorInsertContainer (C, xb)

2 Copy references of root elements of A in a vector Va

3 Copy references of root elements of B in a vector Vb

4 Draw up the list of computed degree from VA and Vb

inside a vector E (maximal size sa × sb).

// Computation

5 foreach element of degree k in E do
6 dk ← Find/insert an element of degree k in D
7 do in parallel if (Thres < na × nb)
8 forall the i + j = k do
9 FMA (ai, bj , dk)

10 end

11 end

12 end
13 parallel barrier
14 Put C in canonical form if D = 0

A and B are small. The algorithm FMAsame for the sparse
case just selects the appropriate algorithm 5 (FMAsames-
mall) or 4 (FMAsameslarge) depending on the number of
terms in A and B.

If the number of elements in the list of A and B are large,
the loop (line 5) of FMAsame (dense) cannot be done with
singly-linked lists. Indeed, this requires many traversals of
the polynomial B to get the coefficient bk−j . Therefore, the
coefficients dk are computed using a double loop over the
list of A and B in the algorithm 4 (FMAsamelarge). In
order to find or insert dk into the list D, the traversal from
the beginning of D is not performed at each computation of
aibj . Instead, as the result of aibj is stored after aibj−1, the
last position in D is kept for the next search or insertion.

The outer loop (line 2) of the algorithm 4 could not be
parallelized because dk could be accessed at the same time
by different iterations, e.g. aibj and ai+1bj−1 access to the
same location di+j . However, as the di + aib0, di+1 + ajb1,
di+2+ajb2, . . . could be computed independently and writes
to a different location in D, the inner FMA statement (line 7)
is parallelized. A synchronization barrier is added before the
next iteration (i+1) of the outer loop. As for the dense case,
the splitting of the work in several parallel tasks is stopped
if A and B have not enough terms (number of monomials in
the distributed representation). A similar value, as the dense
thresold, has been found for the sparse representation.

If the number of elements in the list of A and B are small,
which is the case in most of the series used in the perturba-
tion theories, the usage of barrier could be reduced. The fol-
lowing optimization is done in the algorithm 5 (FMAsames-
mall). Using the stack frame to avoid memory allocation, the

Intel Xeon computer
Processor 2 Intel Xeon X5570 quad-core
Total number of cores 8
Total number of threads 16 (hyper-threading)
L3 Cache Size 8 Mbytes by processor
Memory 32 Gbytes
Operating System Linux kernel 2.6 - glibc 2.5
Compiler Intel C++ 10.1 64 bits
Library GMP 4.2.4

Intel Itanium2 computer
Processor 4 Intel Itanium2 9040 dual-core
Total number of cores 8
L3 Cache Size 18 Mbytes by processor
Memory 16 Gbytes
Operating System Linux kernel 2.6 - glibc 2.3
Compiler Intel C++ 10.1 64 bits
Library GMP 4.2.4

Table 1: Description of the computers used in the
benchmarks

example 1 example 2
representation time memory time memory
Maple 13 1943.70 473 2310.23 10152
Singular 3.1.1 720.18 68.55 398.86 3935
SDMP 58.35 40.20 13.27 1291
TRIP 1.0
vector 71.09 41.75 35.95 2041
list 72.88 52.55 22.68 2321
TRIP 1.1
generic dense 55.02 41.25 22.47 2023
generic sparse 63.20 52.05 19.64 2304
optimized dense 22.54 31.13 19.63 1477
optimized sparse 29.53 41.92 16.54 1850

Table 2: Sequential execution timing expressed
in seconds and memory consumption expressed in
Mbytes. The numerical coefficients are integers
numbers (GMP or hardware integers). The compu-
tations are performed on the Intel Xeon computer.

references of the elements of list A and B are thus copied
into small vectors. It switches to a similar algorithm as the
dense case to compute independently the coefficient dk. The
threshold limit for the size of the list, that is the product of
the number of elements of A and B, is fixed to 2000 in order
to use not too much stack memory.

3.3 Benchmarks
The following benchmarks have been selected to test our

implementation of the multiplication. These benchmarks are
due to Fateman in [6] and Monagan and Pearce in [16].

• Example 1 : f × g with f = (1 + x + y + z + t)30

and g = f + 1. f ang g have 46376 terms. The result
contains 635376 terms. This example is very dense.

• Example 2 : f×g with f = (1+x+y+2z2+3t3+5u5)16

and g = (1 + u + t + 2z2 + 3y3 + 5x5)16. f and g
has 20349 terms. The result contains 28398035 terms.
This example is very sparse. As shown in [16], a linear
speedup is quite difficult to obtain on this example.
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Figure 4: Speedup to compute the examples on the
Intel Xeon computer.

Table 1 describes the computer and software used to per-
form the benchmarks. In the sequential case, our algorithms
are implemented in TRIP 1.1 and are compared to the com-
puter algebra systems (Maple and Singular [10]) and to the
existing software (SDMP library and TRIP 1.0) optimized
for the sparse polynomials on shared memory computers.
Table 2 shows the sequential execution timing and mem-
ory usage on the previous examples. The SDMP library
stores the polynomials in a distributed form with packed ex-
ponents. The SDMP package performs the multiplication
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Figure 5: Speedup to compute the examples on the
Intel Itanium2 computer.

using a binary heap to sort the terms. TRIP 1.0 uses al-
most the same algorithm as the version 1.1 but splits the
work only on the most factorized variable and does not take
in account the number of terms in the children containers.
This limitation could produce unbalanced-load if the data
structure is very irregular. TRIP 1.0 uses the GNU MP
Bignum Library (GMP)[9] to handle the integer or rational
numbers. However, SDMP handles integers using hardware
registers when these integers are small and comes back to
the GNU MP library only when they grow [15]. TRIP 1.1



implements the same improvement for the integers smaller
than 263−1 on 64-bit computers. This optimization for small
integers reduces the computation timing by a factor up to
2 on example 1 but it has less impact on example 2. The
specialized container for the leaf nodes of the recursive form
strongly improves the computation timings. The SDMP li-
brary has better timings and uses less memory on example
2 because it uses hardware integers up to 192 bits for the
accumulation during the intermediate computations.

As shown in Fig. 4(a), the SDMP library has a super lin-
ear speedup due to its threads work on their binary heaps
which fits in the cache memory. The optimized container
in TRIP has a linear speedup up to 8 threads, except for
the list container of the version 1.0. The presence of the
hyper-threading improves the speedup up to 17% for SDMP
and for the optimized containers in TRIP if we increase the
number of threads to 16. The figure 5(a) shows the same
computation on the computer Itanium with 8 cores with-
out SDMP as this library is not available on the Itanium2
computer.

The SDMP library has only a speedup of 2 with 5 threads
on the Xeon processor when it computes example 2, as shown
in Fig. 4(b). With more threads, the speedup of SDMP de-
creases. TRIP 1.0 has the same difficulty to scale on this
computer and on the Itanium computer, confirming the re-
sults founded in [16]. With the improvement of the job dis-
patching, the vector and list container of TRIP 1.1 have a
speedup of about 6.7 with 8 threads. But it does not bene-
fit of the hyper-threading with more threads, as this exam-
ple requires more memory management. Indeed, this sparse
example implies many memory operations with the recur-
sive representations. Figure 5(b) shows that TRIP 1.1 has
a linear speedup up to 8 cores on the Itanium2 and takes
advantage of the larger cache.

The memory allocator could have a large impact on the
execution time and on the memory foot print. Indeed, the
speedup of example 2, which requires many memory allo-
cations with the recursive form, drops to only 5.44 and the
memory footprint is about bigger by half on 8 cores if the op-
erating system allocator is used, as shown in Table 3. Even if
the vector representation is used, similar impacts on the ex-
ecution timings occur due to the resizing step (reallocation)
of the vectors.

allocator threads time memory
8 8.5 (8.11x) 1851

TRIP 4 15.9 (4.33x) 1851
1 68.7 (1x) 1841
8 15.3 (5.44x) 3448

Operating System 4 22.1 (3.77x) 3536
1 83.3 (1x) 2724

Table 3: Execution timing and memory usage on the
example 2 for different memory allocators on the Ita-
nium2 computer using the optimized sparse represen-
tation. Timings are expressed in seconds and mem-
ory consumption expressed in Mbytes.

4. POISSON BRACKET
The equations describing a dynamical system are often ex-

pressed using the Hamiltonian formulation [1]. The Hamilto-
nian form H(p, q), where p are the conjugate momenta of q,
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Figure 6: Tasks involved in the parallelization of the
Poisson bracket.

is a function that verifies the following differential equations

ṗ = −∂H

∂q

q̇ =
∂H

∂p

The Poisson bracket of the two functions f(p, q) and g(p, q)
is defined as

{f, g} =
X

k

„
∂f

∂qk

∂g

∂pk
− ∂f

∂pk

∂g

∂qk

«
(2)

This Poisson bracket is an important operator to compute
the canonical transformations [5]. Indeed, this operator is
intensively used for the computation of the normal forms
and for the Lie series.

The summation in the Poisson bracket could be viewed
as a summation reduction operation of the computing task“

∂f
∂qk

∂g
∂pk
− ∂f

∂pk

∂g
∂qk

”
. The four derivations of this task could

be computed independantly followed by the two products.
Even if the addition of the two series has a low complexity
against the multiplication complexity, the addition becomes
a bottleneck in the scalability. So the addition of the poly-
nomials is parallelized. Figure 6 shows the tasks involved in
the parallelization of the Poisson bracket.

To test the scalability of the implementation of these al-
gorithms, we select the two following examples. The first
example, called example 3, is the computation of the pois-
son bracket of two almost dense polynomials in 6 variables,
f(p1..3, q1..3) and g(p1..3, q1..3) where

f = (1 + p1 + q1 + p2 + q2 + p3 + q3)
12

g = (1 + p2
1 + q2

1 + p2
2 + q2

2 + p2
3 + q2

3)12

The second example, called example 4, is the computation
of the Poisson bracket of two almost sparse polynomials in
6 variables, H14(p1..3, q1..3) and G14(p1..3, q1..3) where H14

and G14 are the homogeneous polynomials of the degree 14.
Instead of taking all coefficients in the monomial sets of the
degree 14 (11628 monomials) for these homogeneous polyno-
mials, we set some terms to 0 in order to have a sparse poly-
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Figure 7: Speedup to compute the Poisson bracket
of the example 3 on the Intel Itanium2 computer.

nomial1. So, H14 has 7722 terms and G14 has 5832 terms.
The Poisson bracket of H14 and G14 has 142050 terms. Fig-
ures 7 and 8 show the speedup of the Poisson bracket on
the Intel Itanium2 computer. The speedups of the recursive
vector representations are almost linear on the two exam-
ples. On the example 4, the recursive list representations
have the same behavior but their speedups are only about
5 with 8 threads on the example 3. This smaller speedup
is due to many cancellations that occur during the addition
step which requires more memory management for the ele-
ments of the lists. Similar behaviors have been obtained on
the Intel Xeon computer.

5. CONCLUSION
The parallelization of the Poisson bracket benefits from

the multiple threads but the recursive list representations
do not have a linear speedup if many cancellations occur
during the addition step. Recursive representations could
exploit efficiently the multicore processors and obtain linear
speedups for the multiplication of sparse polynomials if a
dynamic scheduling, such as work stealing, is used to perform
the load-balancing between the cores, even on the NUMA
computers.

1The coefficients of the monomials qd1
1 pd̄1

1 qd2
2 pd̄2

2 qd3
3 pd̄3

3 are
set to 0 if such that
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!
mod 3 = 0 for H14 

3X
j=1

dj − d̄j

!
mod 4 = 0 for G14
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Figure 8: Speedup to compute the Poisson bracket
of the example 4 on the Intel Itanium2 computer.
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