Institut de Mécanique Céleste et de Calcul d'Éphémérides Observatoire de Paris — IMCCE UMR 8028 du CNRS

CALCUL DES CIRCONSTANCES DE L'ÉCLIPSE PARTIELLE DE SOLEIL

DES 5 et 6 JANVIER 2019

le: 14 octobre 2018

P. ROCHER

TABLE DES MATIÈRES

Avertissement	
Information	3
Précision dans le calcul des prédictions d'éclipses	3
Recommandation	4
Généralités et définitions	
Généralités et définitions	5
Liste des tableaux et cartes contenus dans ce document	6
Calcul des phases d'une éclipse pour un lieu donné	7
Données relatives à l'éclipse	
Éphémérides de la Lune et du Soleil le 5 janvier 2019	10
Éphémérides de la Lune et du Soleil le 6 janvier 2019	11
Paramètres physiques utilisés dans les calculs	12
Éléments de l'éclipse partielle des 5 et 6 janvier 2019	12
Circonstances de l'éclipse générale	12
Éléments de Bessel sous forme polynomiale	13
Éléments de Bessel (notation française)	14
Éléments de Bessel (notation américaine)	15
Exemple de calcul	
Exemple de calcul avec les éléments de Bessel	16
Circonstances locales	
Circonstances locales pour des lieux géographiques donnés	19
Asie	10
Chine	20
Corée du Nord	26
Corée du Sud	28
Japon	30
Taïwan	34
Dessins et cartes	
Figures	38
Carte générale	40

AVERTISSEMENT

Information

La présente note contient les prédictions pour l'éclipse partielle des 5 et 6 janvier 2019.

Précision dans le calcul des prédictions d'éclipses

Les différents organismes nationaux producteurs d'éphémérides publient dans leurs éphémérides et dans des bulletins spécifiques les circonstances générales et locales des éclipses de Lune et de Soleil. Parmi ces organismes figurent entre autres :

- l'U.S. Naval Observatory, qui publie l'Astronomical Almanac,
- la **Division Astronomie du Département d'Hydrographie de Tokyo**, qui publie les Éphémérides Japonaises,
- le **Département de Météorologie Indienne** qui publie les Éphémérides Astronomiques Indiennes,
- l'Institut de Mécanique Céleste qui publie la Connaissance des Temps et les Éphémérides Astronomiques. À cette liste il convient d'ajouter, la NASA qui publie et diffuse régulièrement des bulletins spécifiques aux éclipses de Soleil.

Si on compare les prédictions de ces différentes publications, on constate des écarts, sur les instants des conjonctions en longitudes, sur les limites des bandes de centralité et sur les circonstances locales des éclipses. Ces écarts proviennent des différences entre les paramètres utilisés dans les calculs de prédiction.

Le premier choix porte sur les éphémérides et les théories utilisées dans le calcul des positions apparentes de la Lune et du Soleil. Tous ces organismes cités ci-dessus utilisent pour le calcul des éphémérides de la Lune et du Soleil les résultats de l'intégration numérique américaine du **Jet Propulsion Laboratory**. À l'institut, nous utilisons, pour la Lune et le Soleil les résultats de l'intégration numérique INPOP06 effectuée à l'Institut (A. Fienga et al, 2008). Cette intégration numérique et les éphémérides américaines sont suffisamment proches pour ne pas entraîner des écarts dans les prédictions. Par contre tous les organismes nationaux, à l'exception de la NASA, effectuent une correction empirique en latitude et en longitude dans le calcul des éphémérides des positions apparentes de la Lune. Cette correction a pour but de passer des coordonnées du centre de masse de la Lune aux coordonnées du centre optique de la Lune. Cette correction est de +0,50'' en longitude et de -0,25'' en latitude. L'absence de cette correction dans les bulletins de la NASA, explique les écarts constatés sur les instants de conjonction et une partie des écarts dans la détermination des lignes de centralité (décalage de la ligne de centralité).

Un deuxième paramètre important dans l'explication des écarts constatés entre les différentes prédictions, est la valeur du paramètre k utilisée dans les calculs. k est la valeur du rayon moyen de la Lune exprimé en rayon terrestre. Jusqu'en 1982, on utilisait deux valeurs distinctes de k, une première ($k=0,272\,488\,0$) dans le cas général et une spécifique ($k=0,272\,281$) uniquement pour le calcul des quantités liées à l'ombre dans le cas des éclipses totales. Le fait d'utiliser deux valeurs différentes pour les éclipses centrales posait des problèmes de discontinuité pour les éclipses mixtes. En 1982 l'Union Astronomique Internationale a recommandé d'adopter une valeur unique pour k ($k=0,272\,507\,6$) dans tous les calculs relatifs aux éclipses. Cette recommandation a été suivie par tous les organismes à l'exception de la NASA qui continue à utiliser deux paramètres distincts, en prenant comme première valeur de k la valeur recommande par l'UAI ($k=0,272\,507\,6$) et en étendant l'utilisation de la deuxième valeur de k ($k=0,272\,281$) au cas des éclipses annulaires. Cela produit donc de nouveaux écarts entre les résultats des Bulletins de la NASA et les prédictions des autres organismes, cela se traduit dans les bulletins de la NASA par une ligne de centralité plus large dans le cas des éclipses annulaires et moins large dans le cas des éclipses totales, de même cela affecte les calculs relatifs aux durées des phases centrales.

Ces choix sont la source des écarts observés entre les différentes publications et les bulletins de la NASA. La valeur de l'aplatissement terrestre entre également dans les calculs des coordonnées géographiques des différentes lignes calculées. Mais les écarts produits par les variations possibles de cette valeur sont négligeables.

Par contre, les différences d'estimation de l'écart entre le temps terrestre et le temps universel affectent les résultats publiés. Cela modifie l'instant de la conjonction et les valeurs des instants et des longitudes dans les phases de l'éclipse.

Recommandation

Ces écarts entre diverses publications sont source d'erreurs et de confusions, surtout aux voisinages des limites de la bande de totalité. Il convient donc d'être prudent lors de l'utilisation ou lors des calculs des données relatives aux circonstances locales aux voisinages des limites de cette bande de centralité. En fonction de la publication utilisée, un lieu peut être ou ne pas être dans cette bande. Il faut savoir qu'en ces lieux, une variation de position de quelques kilomètres, peut changer de manière significative l'observation de la centralité. Pour une bonne observation de l'éclipse et pour minimiser les conséquences liées aux incertitudes sur ces calculs, il convient de se rapprocher le plus possible de la ligne de centralité. De plus pour un calcul rigoureux des instants et des positions des contacts intérieurs il est nécessaire de tenir compte de l'aspect réel du profil du limbe lunaire.

Remarque sur les coordonnées des villes

Les coordonnées géographiques des villes des différents pays sont issues d'atlas géographiques ou de bases de données : GEOnet Names Server (GNS), Institut Géographique National (IGN). Ces bases de données et ces atlas géographiques ne sont pas exempts d'erreurs le nombre de villes dépassant plusieurs millions. Si vous devez vous rendre en un lieu précis pour observer une éclipse, il convient de vérifier les coordonnées du lieu afin d'être sûr que les valeurs fournies dans les circonstances locales de l'éclipse sont correctes.

De plus les cartes d'éclipses étant tracées plusieurs années en avance, elles peuvent présenter des erreurs d'ordre géopolitique, mauvais tracé d'une frontière ou ancien nom de ville ou de pays.

GÉNÉRALITÉS ET DÉFINITIONS

Définitions

Les éclipses de Soleil se produisent à la nouvelle Lune, lorsque la Terre passe dans le cône d'ombre ou dans le cône de pénombre de la Lune (Fig. 1). Lorsque la Terre passe uniquement dans la pénombre de la Lune il y a éclipse partielle du Soleil, lorsque la Terre passe dans l'ombre de la Lune il y a éclipse centrale du Soleil. La distance Terre-Lune n'étant pas constante, le diamètre apparent de la Lune est variable, il peut être plus petit ou plus grand que le diamètre apparent du Soleil, il y a donc deux types d'éclipses centrales : les éclipses totales, lorsque le diamètre apparent de la Lune est plus grand que le diamètre apparent du Soleil (le Soleil est complètement éclipsé), et les éclipses annulaires lorsque le diamètre de la Lune est plus petit que le diamètre apparent du Soleil. Il existe un cas limite lorsque le diamètre apparent de la Lune est inférieur au diamètre apparent du Soleil au début de l'éclipse, puis supérieur (autour du maximum) puis de nouveau inférieur au diamètre apparent du Soleil, dans ce cas l'éclipse est appelée éclipse totale-annulaire.

Durant une éclipse, l'ombre et la pénombre se déplacent sur la surface du globe terrestre par suite du mouvement synodique de la Lune et de la rotation terrestre. L'aire balayée par l'ombre, très étroite (quelques dizaines à quelques centaines de kilomètres), s'appelle la bande de centralité, la ligne parcourue par l'axe du cône d'ombre s'appelle la ligne de centralité, c'est sur cette ligne que se situe le maximum de l'éclipse. Un observateur placé dans la bande de centralité voit d'abord une éclipse partielle puis, pendant un court instant (quelques minutes) une éclipse totale ou annulaire, puis de nouveau une éclipse partielle. L'aire balayée par la pénombre, à l'intérieur de laquelle l'éclipse est vue comme partielle, est beaucoup plus large (plusieurs milliers de kilomètres).

Circonstances générales d'une éclipse

Les circonstances générales d'une éclipse correspondent aux différentes phases de l'éclipse, qui sont le commencement et la fin de l'éclipse générale, le commencement et la fin de l'éclipse totale ou annulaire, le commencement et la fin de la centralité, le maximum de l'éclipse et l'éclipse centrale à midi ou minuit vrai. Ces phases sont liées aux mouvements relatifs du Soleil, de la Lune et de la Terre. Elles correspondent chacune à un instant particulier et à un lieu unique sur Terre. Par exemple, le commencement de l'éclipse générale correspond à l'instant où la Terre entre dans le cône de pénombre de la Lune et le lieu est le point de contact de ce cône de pénombre avec la Terre (ce point est un point de la courbe "commencement au lever du Soleil"). Le maximum de l'éclipse correspond à l'instant et au lieu où l'éclipse a une grandeur maximum. Cette valeur maximum de la grandeur de l'éclipse est appelée magnitude de l'éclipse. L'éclipse centrale à midi ou minuit vrai correspond à l'instant et au lieu où l'éclipse est centrale et où le Soleil est au méridien.

Circonstances locales d'une éclipse

Il ne faut pas les confondre avec les circonstances générales décrites dans le chapitre précédent. Les circonstances locales d'une éclipse décrivent, en un lieu donné, les différentes phases de l'éclipse, observables par un observateur situé en ce lieu (Fig. 2 et 3).

Ces phases sont les suivantes :

- le début de l'éclipse partielle, appelé également premier contact (parfois premier contact extérieur),
- le début de l'éclipse totale ou annulaire (si l'observateur est dans la bande de centralité), appelé également deuxième contact (parfois premier contact intérieur),
- le maximum de l'éclipse, instant où la grandeur est maximum en ce lieu,
- la fin de l'éclipse totale ou annulaire (si l'observateur est dans la ligne de centralité), appelée également le troisième contact (parfois deuxième contact intérieur),
- la fin de l'éclipse partielle, appelée également quatrième contact (parfois deuxième contact extérieur).

Pour chacun des contacts, en plus des instants du contact, on donne l'angle au pôle P et l'angle au zénith Z.

L'angle au pôle P d'un contact est l'angle de la direction SN (partie boréale du cercle horaire du centre S du Soleil) avec l'arc de grand cercle joignant les centres S et L du Soleil et de la Lune, compté positivement dans le sens nord-est-sud-ouest (Fig. 4).

L'angle au zénith Z d'un contact a une définition analogue à celle de P, en remplaçant le cercle horaire du centre S du Soleil par le vertical du même point (Fig. 5).

Pour le maximum on donne également la grandeur de l'éclipse, le degré d'obscuration, la hauteur h et l'azimut a du Soleil.

À un instant donné la *grandeur g* de l'éclipse est l'inverse du rapport du diamètre du Soleil sur la distance du bord du Soleil le plus rapproché du centre de la Lune au bord de la Lune le plus rapproché du centre du Soleil (Fig. 6).

Le degré d'obscuration est le pourcentage de la surface du disque solaire éclipsé par la Lune (Fig. 7).

La hauteur h du Soleil est l'angle de la direction du Soleil et du plan horizontal, compté en degrés de -90° à $+90^{\circ}$. Dans nos tableaux, on ne tient pas compte de la réfraction atmosphérique.

L'azimut est l'angle formé par la projection de la direction du Soleil dans le plan horizontal avec la direction du Sud, compté en degré dans le sens rétrograde (sud = 0° , ouest = 90° , nord = 180° , est = 270°).

Les circonstances locales d'une éclipse peuvent être calculées à l'aide des éléments de Bessel.

LISTE DES TABLEAUX ET CARTES CONTENUS DANS CE DOCUMENT

Tous les instants publiés sont en **Temps universel**, toutes les longitudes sont comptées à partir du méridien de Greenwich, positivement vers l'ouest et négativement vers l'est.

Pour chaque éclipse de Soleil on publie les renseignements suivants :

- Les éphémérides de la Lune et du Soleil le jour et le lendemain de l'éclipse, ce sont les coordonnées équatoriales géocentriques apparentes calculées à l'aide des éphémérides du Bureau des Longitudes BDL82. On donne également l'écart en ascension droite entre la Lune et le Soleil.
- Les différents paramètres utilisés dans le calcul, notamment la valeur ΔT_e qui est la différence estimée entre le Temps Terrestre et le Temps Universel le jour de l'éclipse.
 - Les circonstances générales de l'éclipse.
 - Les éléments de Bessel sous forme polynômiale et sous forme tabulée (notation française et américaine).
- Les limites de la bande de centralité (limites nord et sud de l'ombre), la ligne de centralité, la durée de l'éclipse sur la ligne de centralité, ainsi que la hauteur (h) du Soleil au moment du maximum.
- Les circonstances locales sur la ligne centrale. Pour un instant donné on fournit : la durée de la phase centrale (totale ou annulaire), L la largeur de l'ombre sur la Terre dans la direction perpendiculaire à son déplacement, le degré d'obscuration (Obs.), la grandeur de l'éclipse (g), la hauteur (h) et l'azimut (a) du Soleil, les coordonnées géographiques du point correspondant. Pour chaque contact on donne : l'instant du contact, l'angle au pôle P et l'angle au zénith Z. Toutes ces données tiennent compte de l'aplatissement du globe terrestre mais ne tiennent pas compte de l'altitude des lieux au-dessus du niveau de la mer.
- Des tableaux de circonstances locales pour différents pays. Pour chaque ville on donne les coordonnées géographiques de la ville (en degré et minute de degré), le nom de la ville, la durée de la phase centrale (si elle existe), l'instant du maximum avec le degré d'obscuration (Obs.), la grandeur de l'éclipse (Mag.), la hauteur (h) et l'azimut (a) du Soleil. Pour chaque contact l'instant du contact ; on donne également : l'angle au pôle P et l'angle au zénith Z. Toutes ces données tiennent compte de l'aplatissement du globe terrestre mais ne tiennent pas compte de l'altitude des lieux au-dessus du niveau de la mer. Dans ce document, on donne uniquement les circonstances locales pour les plus grandes villes des pays. Les circonstances locales pour toutes les villes comprisent dans les bandes de centralit' se trouvent dans des documents spécifiques, ces documents pouvant être très volumineux en fonction de la densité de l'urbanisation.

Remarque : l'utilisation du formulaire et des éléments de Bessel permet des calculs plus précis, tenant compte d'une meilleure précision dans la latitude et longitude du lieu, ainsi que de l'altitude du lieu.

Corrections liées à l'échelle de temps utilisée

Ce sont les corrections à effectuer pour tenir compte d'une meilleure connaissance de l'écart Temps terrestre (TT) - Temps universel (UT).

En effet, tous les calculs sont faits à partir d'une estimation de cet écart ΔT_e . Les prévisions étant parfois faites de nombreuses années à l'avance, il arrive que la valeur réelle de cet écart ΔT_r différe de sa valeur estimée. Dans ce cas on doit corriger les résultats publiés de la manière suivante :

Soit $\delta t = \Delta T_r - \Delta T_e$ la différence entre la valeur réelle et la valeur estimée.

Les instants des phénomènes doivent être corrigés de $-\delta t$, et les longitudes géographiques des phénoménes doivent être corrigées de $\delta \lambda = -1,002\,738 \times \delta t$ (λ et δt étant dans la même unité). Attention, on corrige les longitudes des lieux liés aux différentes phases et courbes et non les longitudes des lieux des villes dans les tableaux de circonstances locales.

Cartes générales et locales

En fin de document on trouvera une carte générale de l'éclipse. Sur cette carte on fait figurer les courbes suivantes : la bande de centralité (lorsqu'elle existe), les limites boréale et australe de l'éclipse, les courbes de commencement, de fin et de maximum aux lever et coucher du Soleil, ainsi que les courbes de commencement et fin pour un instant donné (toutes les heures en général). Sur les cartes locales, lorsqu'elles sont présentes, on donne, en plus, les courbes de commencement, de fin et de maximum à un instant donné (avec un pas plus adapté à la carte), et parfois la projection de l'ombre à des instants donnés.

CALCUL DES PHASES D'UNE ÉCLIPSE POUR UN LIEU DONNÉ

Définition des éléments de Bessel

Pour un lieu donné il y a lieu de déterminer :

Les instants des différents contacts.

L'instant du maximum de l'éclipse et la valeur de ce maximum.

Les angles au pôle et au zénith de chacun des contacts.

Le lieu d'observation est défini par sa longitude λ (positive à l'ouest et négative à l'est du méridien de Greenwich), sa latitude φ et son altitude h au-dessus du niveau de la mer.

On définit à chaque instant un système de coordonnées Oxyz de sens direct, dans lequel :

O est le centre de la Terre.

L'axe Oz est parallèle à l'axe des cônes de pénombre et d'ombre, le sens positif étant celui qui va de la Terre à la Lune.

L'axe Ox est l'intersection du plan fondamental Oxy perpendiculaire à Oz et du plan de l'équateur terrestre, le sens positif étant vers l'est.

L'axe Oy est normal à Ox dans le plan fondamental, le sens positif étant vers le Nord.

En utilisant comme unité de longueur le rayon équatorial terrestre, les éléments de Bessel sont définis de la manière suivante :

x,y,z sont les coordonnées du centre de la Lune.

d et H sont la déclinaison de l'axe Oz et son angle horaire par rapport au méridien de Greenwich.

 f_e et f_i sont les demi-angles au sommet des cônes de pénombre et d'ombre, f_e étant pris par convention positif et f_i négatif.

 u_e et u_i sont les rayons des sections circulaires des cônes de pénombre et d'ombre par le plan fondamental Oxy et s'obtiennent par les formules suivantes :

$$u_e = z \cdot \tan f_e + k \cdot \operatorname{s\acute{e}c} f_e,$$

 $u_i = z \cdot \tan f_i + k \cdot \operatorname{s\acute{e}c} f_i,$

où k est le rayon de la Lune exprimé en rayon équatorial terrestre.

Les coordonnées ξ, η, ζ du lieu d'observation dans le système Oxyz sont :

$$\xi = \rho \cdot \cos \varphi' \cdot \sin(H - \lambda),$$

$$\eta = \rho \cdot \sin \varphi' \cdot \cos d - \rho \cdot \cos \varphi' \cdot \sin d \cdot \cos(H - \lambda),$$

$$\zeta = \rho \cdot \sin \varphi' \cdot \sin d + \rho \cdot \cos \varphi' \cdot \cos d \cdot \cos(H - \lambda),$$

avec:

$$\rho \cdot \cos \varphi' = \cos u + \frac{h}{r_0} \cdot \cos \varphi,$$
$$\rho \cdot \sin \varphi' = (1 - f) \cdot \sin u + \frac{h}{r_0} \cdot \sin \varphi,$$

et

$$\tan u = (1 - f) \cdot \tan \varphi,$$

où h est l'altitude du lieu exprimée en mètres, r_0 est le rayon équatorial terrestre exprimée en mètres et f l'aplatissement de l'ellipsoïde terrestre (f = 1/298, 257 = 0,00335281).

Les variations horaires $\dot{\xi}, \dot{n}, \dot{\zeta}$ de ces coordonnées sont fournies avec une précision de l'ordre de la seconde de temps par les formules suivantes :

 \dot{H} étant exprimé en radians par heure,

$$\begin{split} \dot{\xi} &= \dot{H} \cdot \rho \cdot \cos \varphi' \cdot \cos (H - \lambda), \\ \dot{\eta} &= \dot{H} \cdot \xi \cdot \sin d, \\ \dot{\zeta} &= - \dot{H} \cdot \xi \cdot \cos d. \end{split}$$

Les rayons l_e et l_i des sections circulaires des cônes de pénombre et d'ombre par le plan mené par le lieu d'observation parallèlement au plan fondamental s'obtiennent par les formules suivantes :

$$l_e = u_e - \zeta \cdot \tan f_e,$$

$$l_i = u_i - \zeta \cdot \tan f_i.$$

Calculs des circonstances locales

Chaque élément de Bessel b est représenté sur un intervalle de temps (t_0, t_1) par des coefficients de développements en polynômes du temps, à l'exception des valeurs $\tan f_e$ et $\tan f_i$ qui sont considérées comme constantes sur l'intervalle. Un élément de Bessel se calcule à un instant t par la formule :

$$b = b_0 + b_1 \cdot T + b_2 \cdot T^2 + b_3 \cdot T^3.$$

avec $T = t - t_0$.

T, exprimé en heure, représente le temps écoulé depuis l'instant origine t_0 .

La variation horaire \dot{b} d'un élément de Bessel se calcule par la formule :

$$\dot{b} = b_1 + 2b_2 \cdot T + 3b_3 \cdot T^2.$$

Soient:

$$U = x - \xi, \qquad \dot{U} = \dot{x} - \dot{\xi}, V = y - \eta, \qquad \dot{V} = \dot{y} - \dot{\eta}.$$

— Calcul de la grandeur maximale :

On prend comme valeur de départ t_d l'époque du maximum de l'éclipse, l'instant du maximum t_m se calcule en ajoutant à t_d la valeur τ_m donnée par :

$$\tau_m = -\frac{U\dot{U} + V\dot{V}}{\dot{U}^2 + \dot{V}^2} \ .$$

On doit réitérer le calcul en prenant comme nouvelle valeur de départ la valeur de t_m .

La grandeur maximale est donnée par :

$$g = \frac{l_e - l_m}{l_e - l_i} ,$$

pour une éclipse annulaire ou totale au lieu considéré, ou :

$$g = \frac{l_e - l_m}{2l_e - 0,5465} \; ,$$

pour une éclipse partielle, avec :

$$l_m = \sqrt{U^2 + V^2} \ .$$

— Calcul des contacts :

On prend comme valeurs de départ t_d du premier et du quatrième contacts (contacts extérieurs) des valeurs approchées déduites de la carte de l'éclipse et l'on prend comme valeurs de départ du second et du troisième contacts (contacts intérieurs), lorsqu'ils existent, la valeur t_m du maximum calculée précédemment.

Pour chaque valeur t_d de départ on calcule les quantités suivantes :

$$\beta = \frac{U\dot{U} + V\dot{V}}{\dot{U}^2 + \dot{V}^2}, \qquad \gamma = \frac{U^2 + V^2 - l^2}{\dot{U}^2 + \dot{V}^2}, \qquad \theta = \pm \sqrt{\beta^2 - \gamma} \ ,$$

avec $l = l_e$ ou $l = l_i$ et θ étant du signe de β .

Les instants du premier et du quatrième contacts se calculent par la formule :

$$t = t_d - \beta + \theta$$

et les instants du second et du troisième contacts se calculent par les formules :

$$t = t_d - \beta - |\theta|$$
 pour le second contact,

et:

$$t = t_d - \beta + |\theta|$$
 pour le troisième contact.

Comme pour le calcul du maximum on doit réitérer les calculs en prenant comme nouvelles valeurs de départ les valeurs t.

— Calcul de l'angle au pôle et de l'angle au zénith :

La valeur de l'angle au pôle P d'un point de contact est donnée par :

$$tg P = \frac{U}{V} ,$$

où $\sin P$ a le signe de U, sauf pour les second et troisième contacts (contacts intérieurs) d'une éclipse totale pour lesquels $\sin P$ est de signe contraire à U.

L'angle au zénith Z d'un point de contact est donné par :

$$Z = P - \Gamma ,$$

en désignant par Γ l'angle parallactique défini d'une façon approchée par :

$$\tan \Gamma = \frac{\xi}{\eta} ,$$

 $\sin \Gamma$ étant du signe de ξ .

ÉPHÉMÉRIDES DE LA LUNE ET DU SOLEIL LE 5 JANVIER 2019

Instants en		ées équatoriales apparentes du Soleil		es équatoriales parentes de la Lune	Écart en ascension droite	
CII	ascension	déclinaison	ascension	déclinaison	ascension dron	
UT.	droite		droite		Lune — Soleil	
h	h m s	0 / //	h m s	o / //	h m s	
0	19 2 15,3180	,	$18 \ 11 \ 4,9826$	$-21\ 14\ 41,2568$	$-\ 0\ 51\ 10{,}3687$	
1	19 2 26,3050	,	18 13 15,6681	$-21\ 16\ 36{,}7304$	-04910,6702	
2	19 2 37,2914	,	$18 \ 15 \ 26{,}3459$	$-21 \ 18 \ 25,8572$	-04710,9787	
3	19 2 48,2769	,	18 17 37,0132	$-21 \ 20 \ 8,6340$	-04511,2969	
4	19 2 59,2618	,	18 19 47,6674	$-21\ 21\ 45,0585$	$-\ 0\ 43\ 11,6276$	
5	19 3 10,2459	,	18 21 58,3057	$-21\ 23\ 15{,}1289$	-04111,9735	
6	19 3 21,2293	,	$18\ 24\ 8,9252$	$-21\ 24\ 38,8441$	-03912,3374	
7	19 3 32,2120	,	18 26 19,5231	$-21\ 25\ 56,2038$	$-\ 0\ 37\ 12,7221$	
8	19 3 43,1939	,	18 28 30,0968	$-21 \ 27 \ 7,2081$	$-\ 0\ 35\ 13{,}1303$	
9	19 3 54,1750		18 30 40,6433	$-21\ 28\ 11,8580$	$-\ 0\ 33\ 13{,}5650$	
10	19 4 5,1554		18 32 51,1598	$-21\ 29\ 10{,}1551$	-03114,0288	
11	19 4 16,135	,	$18 \ 35 \ 1,6437$	$-21 \ 30 \ \ 2,1017$	-02914,5246	
12	19 4 27,1140	$-22\ 36\ 32,0029$	18 37 12,0919	$-21\ 30\ 47{,}7006$	$-\ 0\ 27\ 15{,}0553$	
13	19 4 38,0922		18 39 22,5018	$-21\ 31\ 26,9555$	$-\ 0\ 25\ 15{,}6236$	
14	19 4 49,0696		$18\ 41\ 32,8705$	$-21 \ 31 \ 59,8707$	-02316,2323	
15	19 5 0,0463	,	$18\ 43\ 43,1951$	$-21\ 32\ 26,4510$	$-\ 0\ 21\ 16,8843$	
16	19 5 11,0222	,	$18\ 45\ 53{,}4729$	$-21\ 32\ 46{,}7019$	-01917,5824	
17	19 5 21,997		18 48 3,7011	$-21 \ 33 \ 0.6298$	$-\ 0\ 17\ 18{,}3294$	
18	19 5 32,971	,	18 50 13,8768	$-21 \ 33 \ \ 8,2415$	$-0\ 15\ 19{,}1280$	
19	19 5 43,9453	,	$18 \ 52 \ 23,9972$	$-21 \ 33 \ \ 9,5445$	- 0 13 19,9811	
20	19 5 54,918	,	$18 \ 54 \ 34,0597$	$-21 \ 33 \ 4,5470$	$-\ 0\ 11\ 20,8914$	
21	19 6 5,890	,	18 56 44,0614	$-21\ 32\ 53{,}2578$	-0 921,8618	
22	19 6 16,861	,	$18\ 58\ 53{,}9995$	$-21\ 32\ 35{,}6862$	-0 722,8950	
23	19 6 27,8319	$9 -22 \ 33 \ 23{,}5363$	19 1 3,8713	$-21\ 32\ 11,8425$	-0 5 23,9937	

ÉPHÉMÉRIDES DE LA LUNE ET DU SOLEIL LE 6 JANVIER 2019

Instants en		s équatoriales parentes du Soleil	Coordonnée géocentriques app	Écart en ascension droite	
CII	ascension déclinaison		ascension	déclinaison	ascension drone
UT.	droite	decimaison	droite	decimaison	Lune – Soleil
h	h m s	o / //	h m s	o / //	h m s
0	19 6 38,8017	$-22\ 33\ 6,1239$	19 3 13,6740	$-21\ 31\ 41{,}7374$	$-\ 0\ 3\ 25{,}1606$
1	19 6 49,7706	$-22\ 32\ 48,6652$	19 5 23,4051	$-21 \ 31 \ 5,3821$	-0 1 26,3985
2	19 7 0,7388	$-22\ 32\ 31{,}1600$	19 7 33,0616	$-21\ 30\ 22{,}7886$	$+\ 0\ 0\ 32,2899$
3	19 7 11,7061	$-22\ 32\ 13{,}6084$	19 9 42,6411	$-21\ 29\ 33,9694$	$+\ 0\ 2\ 30,9020$
4	19 7 22,6727	$-22\ 31\ 56{,}0104$	$19\ 11\ 52{,}1407$	$-21\ 28\ 38{,}9379$	$+\ 0\ 4\ 29,4351$
5	19 7 33,6385	$-22\ 31\ 38,3660$	$19 \ 14 \ 1,5579$	$-21\ 27\ 37{,}7077$	$+\ 0\ 6\ 27,8865$
6	19 7 44,6035	$-22\ 31\ 20{,}6753$	19 16 10,8901	$-21\ 26\ 30,2933$	$+\ 0\ 8\ 26,2537$
7	19 7 55,5677	$-22\ 31\ 2,9382$	$19\ 18\ 20{,}1347$	$-21\ 25\ 16{,}7096$	$+\ 0\ 10\ 24{,}5341$
8	19 8 6,5311	$-22\ 30\ 45{,}1548$	$19\ 20\ 29{,}2891$	$-21\ 23\ 56,9722$	$+\ 0\ 12\ 22,7251$
9	19 8 17,4938	$-22\ 30\ 27{,}3251$	$19\ 22\ 38{,}3507$	$-21\ 22\ 31,0972$	$+\ 0\ 14\ 20,8242$
10	$19 \ \ 8 \ \ 28,4556$	$-22\ 30\ 9,4491$	$19\ 24\ 47{,}3172$	$-21\ 20\ 59{,}1014$	$+\ 0\ 16\ 18,8288$
11	19 8 39,4166	$-22\ 29\ 51{,}5268$	$19\ 26\ 56{,}1859$	$-21\ 19\ 21,0021$	$+\ 0\ 18\ 16{,}7366$
12	19 8 50,3768	$-22\ 29\ 33{,}5582$	$19\ 29\ 4,9544$	$-21\ 17\ 36,8172$	$+\ 0\ 20\ 14{,}5450$
13	19 9 1,3362	$-22\ 29\ 15{,}5433$	19 31 13,6204	$-21\ 15\ 46{,}5649$	$+\ 0\ 22\ 12,2516$
14	19 9 12,2947	$-22\ 28\ 57,4823$	$19\ 33\ 22{,}1815$	$-21\ 13\ 50,2644$	$+\ 0\ 24\ 9,8541$
15	19 9 23,2525	$-22\ 28\ 39{,}3750$	$19\ 35\ 30{,}6352$	$-21\ 11\ 47,9351$	$+\ 0\ 26\ 7,3501$
16	19 9 34,2094	$-22\ 28\ 21,2214$	$19\ 37\ 38,9794$	$-21 9 39{,}5970$	$+\ 0\ 28\ 4,7374$
17	19 9 45,1656	$-22\ 28\ 3,0217$	$19\ 39\ 47{,}2116$	-21 7 25,2707	$+\ 0\ 30\ 2,0135$
18	19 9 56,1209	$-22\ 27\ 44,7758$	$19\ 41\ 55{,}3298$	-21 5 4,9772	$+\ 0\ 31\ 59{,}1764$
19	$19\ 10\ 7,0754$	$-22\ 27\ 26,4838$	$19\ 44\ 3{,}3316$	-21 2 38,7383	$+\ 0\ 33\ 56,2237$
20	19 10 18,0290	$-22\ 27\ 8,1455$	$19\ 46\ 11,2149$	-21 0 6,5758	$+\ 0\ 35\ 53{,}1535$
21	19 10 28,9818	$-22\ 26\ 49{,}7612$	$19\ 48\ 18,9777$	$-20\ 57\ 28{,}5125$	$+\ 0\ 37\ 49,9634$
22	19 10 39,9338	$-22\ 26\ 31{,}3307$	$19\ 50\ 26{,}6177$	$-20\ 54\ 44{,}5714$	$+\ 0\ 39\ 46,6515$
23	$19\ 10\ 50,8850$	$-22\ 26\ 12,8542$	$19\ 52\ 34{,}1330$	$-20\ 51\ 54{,}7761$	$+\ 0\ 41\ 43,2157$
24	19 11 1,8353	$-22\ 25\ 54{,}3315$	19 54 41,5217	$-20\ 48\ 59{,}1504$	$+\ 0\ 43\ 39{,}6540$

PARAMÈTRES PHYSIQUES UTILISÉS DANS CES CALCULS

- la parallaxe horizontale du Soleil à une unité astronomique : $\pi_0 = 8,794143''$.
- le demi-diamètre solaire : $s_0 = 15'$ 59,63".
- le rapport du rayon lunaire sur le rayon équatorial terrestre : $k = 0,272\,507\,6$.
- le rayon équatorial terrestre : $r_0 = 6378136,60 \,\mathrm{m}$
- le carré de l'ellipticité de l'ellipsoïde terrestre : $e^2 = 0,00669440$.
- la différence estimée entre le Temps terrestre (TT) et le Temps universel (UT) : $\Delta T_e = 69,184\,\mathrm{s}$

Remarque : les instants sont donnés en Temps universel et les longitudes sont comptées à partir du méridien de Greenwich, positivement vers l'ouest et négativement vers l'est.

Pour tenir compte des écarts entre le centre optique et le centre de masse de la Lune les positions de la Lune ont été corrigées de 0,50'' en longitude et de -0,24'' en latitude.

Les éphémérides utilisées pour le calcul des positions du Soleil et de la Terre sont les éphémérides INPOP06 (A. Fienga et al., 2008) élaborées à l'IMCCE. Pour ce calcul la valeur du TE-TU a été exceptionnellement forcée. Pour le calcul des positions apparentes nous avons utilisé les théories suivantes : La théorie de la précession UAI 2000, la théorie de la nutation 2000A (2003) et la formule du calcul du temps sidéral UAI 2000.

ÉLÉMENTS DE L'ÉCLIPSE PARTIELLE DU 5 JANVIER 2019

Instant de la conjonction géocentrique en ascension droite le 6 janvier 2019 à 1h 43m 40,372s UT.

Ascension droite du Soleil	:	19h	$6 \mathrm{m}$	57,751s.
Déclinaison du Soleil	:	-22°	32'	35,93''.
Ascension droite de la Lune	:	19h	$6 \mathrm{m}$	57,751s.
Déclinaison de la Lune	:	-21°	30'	35,01''.
Parallaxe équatoriale du Soleil	:	8,94'	' .	
Parallaxe équatoriale de la Lune	:	$54' \ 27$	7,60	".
Demi-diamètre vrai du Soleil	:	16' 15	5,92'	".
Demi-diamètre vrai de la Lune		14′ 50	0.36'	''

CIRCONSTANCES DE L'ÉCLIPSE GÉNÉRALE

magnitude: 0,7149

		UT	Longitude	Latitude
Commencement de l'éclipse générale	: le	$5 \ \text{à} \ 23\text{h} \ 34,1\text{m}$	$-119^{\circ}\ 24.8'$	$+41^{\circ} 30,4'$
Maximum de l'éclipse	: le	6 à 1h 41,5m	$-153^{\circ} 34,4'$	$+67^{\circ}\ 26,1'$
Fin de l'éclipse générale	: le	6 à 3h 48,8m	$+168^{\circ} 40.9'$	$+43^{\circ}$ 7,2'

ÉLÉMENTS DE BESSEL SOUS FORME POLYNOMIALE

(notation française)

Les séries suivantes représentent un ajustement polynomial par la méthode des moindres carrés des éléments de Bessel de la page suivante. Pour calculer la valeur de ces coefficients pour un instant T, prendre $t=(T-23\mathrm{h})+\delta T/3600$, T est exprimé en heures et fraction d'heure. Ces équations ne sont valides que sur l'intervalle $23\mathrm{h} < T < 28\mathrm{h}$, ne pas les utiliser pour des valeurs extérieures à cet intervalle. δT représente la différence entre ΔT_r et ΔT_e , ΔT_e représente la différence estimée de $\mathrm{TT}\mathrm{-UT}$ et ΔT_r la différence réelle de $\mathrm{TT}\mathrm{-UT}$.

Remarque : H est donné en degré par rapport au méridien de Greenwich.

Dans ces expressions $\delta T, \Delta T_r$ et ΔT_e sont exprimées en secondes de temps.

ÉLÉMENTS DE BESSEL (notation française)

Instant	Coordonnées le plan for			irection de l'a u cône d'omb			
UT	\overline{x}	y	$\sin d$	$\cos d$	H	u_e	u_i
h m					0		
23 0	-1,386404	$1,\!119777$	-0,383640	0,923483	$163,\!62427$	$0,\!572461$	-0,025945
$23 \ 10$	-1,301706	$1,\!121081$	$-0,\!383627$	0,923488	166,12372	$0,\!572480$	-0,025964
$23 \ 20$	$-1,\!217007$	$1,\!122391$	$-0,\!383614$	0,923494	$168,\!62318$	$0,\!572499$	-0,025983
$23 \ 30$	-1,132306	1,123706	-0,383601	0,923499	171,12263	0,572517	-0,026001
$23 \ 40$	-1,047603	$1,\!125027$	-0,383588	0,923504	173,62209	0,572535	-0,026019
$23 \ 50$	-0,962899	$1,\!126354$	-0,383575	0,923510	176,12154	0,572552	-0,026036
0 0	-0,878194	$1,\!127687$	-0,383562	0,923515	178,62100	0,572568	-0,026052
0 10	-0,793487	1,129025	-0,383549	0,923520	181,12045	0,572584	-0,026068
0 20	-0,708780	1,130 370	-0,383536	0,923526	183,61991	0,572600	-0,026083
0 30	-0,624073	1,131720	-0.383523	0,923531	186,11936	0,572614	-0,026098
0 40	-0,539364	1,133 075	-0,383510	0,923537	188,618 82	0,572629	-0,026112
0 50	-0,454655	1,134437	-0.383497	0,923542	$191,\!11827$	0,572642	-0,026126
1 0	-0,369947	1,135 804	-0.383484	0,923547	193,61773	0,572656	-0.026139
1 10	-0,285238	1,137 177	-0.383471	0,923553	196,11719	0,572668	-0.026151
1 20	-0,200529	1,138 556	-0.383458	0,923558	198,61664	0,572680	-0,026163
1 30	-0,115820	1,139 940	-0,383445	0,923564	201,11610	0,572692	-0,026175
1 40	-0.031112	1,141 330	-0.383432	0,923569	203,61555	0,572703	-0,026186
1 50	0,053595	1,142726	-0.383419	0,923574	206,11501	0,572713	-0.026196
2 0	$0,\!138302$	1,144 128	-0,383406	0,923 580	208,61447	0,572723	-0,026206
2 10	0,223 008	1,145535	-0,383393	0,923585	211,11392	0,572732	-0,026215
2 20	0,307713	1,146 949	-0.383380	0,923591	213,61338	0,572741	-0,026223
2 30	0,392416	1,148 368	-0,383367	0,923 596	216,11283	0,572749	-0,026232
2 40	0,477119	1,149 792	-0.383354	0,923 601	218,612 29	0,572756	-0,026239
2 50	0,561 819	1,151 223	-0,383341	0,923 607	221,11175	0,572763	-0,026246
3 0	0,646518	1,152659	-0,383328	0,923612	223,611 20	0,572770	-0,026252
3 10	0,731215	1,154 101	-0,383315	0,923618	226,11066	0,572776	-0,026258
3 20	0,815 910	1,155549	-0,383302	0,923623	228,61012	0,572781	-0,026264
3 30	0,900603	1,157002	-0,383289	0,923629	231,10958	0,572786	-0,026268
3 40	0,985293	1,158 461	-0,383276	0,923 634	233,609 03	0,572790	-0,026272
3 50	1,069 981	1,159926	-0,383263	0,923 639	236,10849	0,572793	-0,026276
4 0	1,154666	1,161397	-0.383250	0,923 645	$238,\!60795$	$0,\!572797$	-0,026279

 $\tan f_e = +0,004\,756\,22$

 $\tan f_i = -0,00473252$

 $H' = +0,261\,742\,44\,\mathrm{rd/h}$

 $d' = +0,000\,084\,57\,\mathrm{rd/h}$

ÉLÉMENTS DE BESSEL (notation américaine)

Instant	stant Coordonnées de l'axe dans le plan fondamental			Direction de l'axe du cône d'ombre			Rayons des ombres dans le plan fondamental		
UT	\overline{x}	y	$\sin d$	$\cos d$	μ	l_e	$\overline{l_i}$		
h m					0				
23 0	-1,386404	$1,\!119777$	-0,383640	0,923483	$163,\!62427$	$0,\!572461$	$0,\!025945$		
$23 \ 10$	-1,301706	$1,\!121081$	-0,383627	0,923488	166,12372	$0,\!572480$	0,025964		
$23 \ 20$	-1,217007	1,122391	-0,383614	0,923494	$168,\!62318$	$0,\!572499$	0,025983		
$23 \ 30$	-1,132306	1,123706	-0,383601	0,923499	171,12263	0,572517	$0,\!026001$		
$23 \ 40$	-1,047603	$1,\!125027$	-0,383588	0,923504	173,62209	0,572535	$0,\!026019$		
$23 \ 50$	-0,962899	$1,\!126354$	-0,383575	0,923510	176,12154	0,572552	0,026036		
0 0	-0,878194	$1,\!127687$	-0,383562	0,923515	178,62100	0,572568	$0,\!026052$		
0 10	-0,793487	1,129025	-0,383549	0,923520	181,12045	0,572584	0,026068		
0 20	-0,708780	1,130 370	-0,383536	0,923526	183,61991	0,572600	0,026083		
0 30	-0,624073	1,131720	-0,383523	0,923531	186,11936	0,572614	0,026098		
0 40	-0,539364	1,133075	-0,383510	0,923537	188,61882	0,572629	0,026112		
0 50	-0,454655	1,134437	-0,383497	0,923542	$191,\!11827$	0,572642	0,026 126		
1 0	-0.369947	1,135 804	-0.383484	0,923547	193,61773	0,572656	0,026 139		
1 10	-0,285238	1,137 177	-0,383471	0,923553	196,11719	0,572668	0,026 151		
1 20	-0,200529	1,138 556	-0.383458	0,923558	198,61664	0,572680	0,026 163		
1 30	-0,115820	1,139 940	-0,383445	0,923564	201,116 10	0,572692	0,026175		
1 40	-0,031112	1,141 330	-0.383432	0,923569	203,61555	0,572703	0,026 186		
1 50	0,053595	1,142726	-0.383419	0,923574	206,11501	0,572713	0,026 196		
2 0	0,138 302	1,144 128	-0,383406	0,923580	208,61447	0,572723	0,026 206		
2 10	0,223 008	1,145535	-0,383393	0,923585	211,11392	0,572732	0,026 215		
2 20	0,307713	1,146 949	-0,383380	0,923591	213,61338	0,572741	0,026 223		
2 30	0,392416	1,148 368	-0,383367	0,923596	216,11283	0,572749	0,026 232		
2 40	0,477119	1,149 792	-0,383354	0,923 601	218,61229	0,572756	0,026 239		
2 50	0,561819	1,151 223	-0,383341	0,923 607	$221,\!11175$	0,572763	0,026 246		
3 0	0,646518	1,152659	-0,383328	0,923612	223,611 20	0,572770	0,026 252		
3 10	0,731215	1,154 101	-0.383315	0,923 618	226,11066	0,572776	0,026 258		
3 20	0,815 910	1,155 549	-0,383302	0,923623	228,61012	0,572781	0,026 264		
3 30	0,900603	1,157002	-0,383289	0,923 629	231,109 58	0,572786	0,026 268		
3 40	0,985293	1,158 461	-0,383276	0,923 634	233,609 03	$0,\!572790$	$0,\!026272$		
3 50	1,069 981	1,159926	-0,383263	0,923 639	236,10849	0,572793	0,026 276		
4 0	1,154666	1,161397	-0.383250	0,923 645	238,60795	0,572797	0,026 279		

 $\tan f_1 = +0,004\,756\,22$

 $\tan f_2 = +0,00473252$

 $\mu' = +0,261\,742\,44\,\mathrm{rd/h}$ $d' = +0,000\,084\,57\,\mathrm{rd/h}$

Exemple de calcul avec les développements en séries des éléments de Bessel

Calculer à Kyoto (Japon), les époques des contacts extérieurs et du maximum de l'éclipse.

Les coordonnées de Kyoto sont les suivantes :

$$\varphi = 35^{\circ} \quad 2' \quad 0,0'' \text{ N} \qquad \lambda = 9 \text{ h} \quad 3 \text{ m} \quad 0,0 \text{ s} \text{ E} \qquad h = 0,0 \text{ m},$$

ce qui donne $\rho \sin \varphi' = 0,570\,84$ et $\rho \cos \varphi' = 0,819\,72$.

Voici les résultats des deux premières approximations, les calculs intermédiaires sont fournis avec cinq chiffres décimaux. À la fin de la deuxième approximation on peut estimer que la précision est de l'ordre de quelques secondes de temps.

Première approximation :

	1 ^{er} contact		2 ^e contact
	extérieur	Maximum	extérieur
t (UT.)	$23\mathrm{h}30\mathrm{m}$	$25\mathrm{h}$ 0 m	$26\mathrm{h}30\mathrm{m}$
H	$171{,}12263^{\circ}$	$193{,}61773^{\circ}$	$216{,}11283^{\circ}$
$\sin d \dots \dots$	-0,38360	-0,38348	-0,38337
$\cos d \dots \dots$	0,92350	0,92355	0,92360
$x \dots \dots \dots$	$-1,\!13231$	-0,36995	$0,\!39242$
ξ	-0,65575	$-0,\!41767$	$-0,\!11603$
$U = x - \xi \dots \dots$	$-0,\!47655$	0,04772	$0,\!50844$
$y \dots \dots$	$1{,}12371$	$1,\!13580$	$1{,}14837$
η	0,71585	0,79768	0,83832
$V = y - \eta \dots$	$0,\!40786$	$0,\!33812$	$0,\!31005$
$\dot{U} = \dot{x} - \dot{\xi} \dots \dots$	$0,\!37947$	$0,\!32364$	$0,\!29582$
$\dot{V} = \dot{y} - \dot{\eta} \dots \dots$	-0,05793	-0,03370	-0,00311
l_e	$0,\!57140$	$0,\!57060$	$0,\!57022$
β	-1,38758	$0,\!03825$	1,70754
γ	$0,\!45436$		$0,\!33694$
$ heta=\pm\sqrt{eta^2-\gamma}\ldots$	$-1,\!21285$		1,60585
au = -eta + heta	$0{,}17473\mathrm{h}$		$-0,10169 \mathrm{h}$
$\tau_m = -\beta \ldots \ldots$		$-0.03825\mathrm{h}$	
$t+\tau$	$23 \mathrm{h} \ 40 \mathrm{m} \ 29,\!0 \mathrm{s}$		$26\mathrm{h}\ 23\mathrm{m}\ 53,9\mathrm{s}$
$t+\tau_m$		$24\mathrm{h}\ 57\mathrm{m}\ 42{,}3\mathrm{s}$	

$Deuxi\`eme\ approximation:$

	1 ^{er} contact		2 ^e contact
	extérieur	Maximum	extérieur
t (UT.)	23 h 40 m 29,0 s	24 h 57 m 42,3 s	$26 \mathrm{h}\ 23 \mathrm{m}\ 53.9 \mathrm{s}$
H \dots	$173{,}74294^{\circ}$	$193{,}04414^{\circ}$	$214,58779^{\circ}$
$\sin d \dots \dots$	-0,38359	-0,38349	-0,38338
$\cos d \dots \dots$	0,92350	0,92355	0,92359
x	-1,04351	-0,38939	$0,\!34073$
ξ	-0,63258	$-0,\!42471$	-0,13758
$U = x - \xi \dots \dots$	$-0,\!41092$	0,03532	$0,\!47832$
$y \dots \dots y$	$1{,}12509$	1,13549	$1{,}14750$
η	0,72715	0,79607	0,83703
$V = y - \eta \dots$	$0,\!39794$	$0,\!33942$	$0,\!31047$
$\dot{U} = \dot{x} - \dot{\xi} \dots \dots$	$0,\!37177$	$0,\!32474$	0,29671
$\dot{V} = \dot{y} - \dot{\eta} \ldots \ldots$	-0,05557	-0,03442	-0,00530
l_e	$0,\!57129$	$0,\!57061$	$0,\!57023$
β	$-1,\!23767$	-0,00198	$1,\!59289$
γ	$0,\!00601$		$0,\!00015$
$ \begin{array}{ll} \gamma & \dots & \dots \\ \theta = \pm \sqrt{\beta^2 - \gamma} & \dots & \dots \end{array} $	$-1,\!23524$		$1,\!59284$
$\tau = -\beta + \theta \dots$	$0{,}00243\mathrm{h}$		$-0,00005\mathrm{h}$
$\tau_m = -\beta \ldots \ldots$		$0,00198\mathrm{h}$	
$t+\tau$	$23 \mathrm{h} \ 40 \mathrm{m} \ 37.8 \mathrm{s}$		$26 \mathrm{h}\ 23 \mathrm{m}\ 53.7 \mathrm{s}$
$t+ au_m$		$24 \mathrm{h}\ 57 \mathrm{m}\ 49,4 \mathrm{s}$	
$g \dots \dots \dots \dots$		0,3857	
P	$314,1^{\circ}$		57,0°
Γ	319,0°		350,7°
$Z = P - \Gamma \dots$	355,1°		66,3°

Le $1^{\rm er}$ contact a lieu le 5 janvier à $23\,\mathrm{h}$ $40\,\mathrm{m}$ $37,8\,\mathrm{s}$, le maximum a lieu le 6 janvier à $0\,\mathrm{h}$ $57\,\mathrm{m}$ $49,4\,\mathrm{s}$ et le $2^{\rm e}$ contact a lieu le 6 janvier à $0\,\mathrm{h}$ $23\,\mathrm{m}$ $53,7\,\mathrm{s}$ en UTC. Attention, pour avoir l'heure légale du Japon on doit ajouter $9\,\mathrm{h}$ à ces valeurs ce qui ramène tous les instants au 6 janvier.

19

	Ро	sition	N 1 1:	Durée	1				
\mathbf{n}°	Latitude	Longitude	Nom du lieu	de la phase centrale	UT	Obs.	g	h	a
	o /	0 /		m s	h m s	%		0	(
1	$+46 \ 37$	$-124\ 59$	${\rm Anda} \ldots \ldots$		$0 \ 51 \ 0.2$	37,3	0,493	10	320
2	+41 5	$-122\ 58$	Anshan		$0\ 42\ 47,3$	26,9	0,392	12	316
3	+36 4	$-114\ 20$	Anyang		$0\ 29\ 2,6$	11,8	0,221	9	306
4	$+45 \ 37$	$-122\ 48$	Baicheng		$0\ 47\ 19,0$	34,2	$0,\!463$	10	317
5	+34 23	-107 16	Baoji		$0\ 22\ 20,3$	4,6	0,117	4	301
6	+40 38	-109 59	Baotou		$0\ 29\ 58,0$	15,9	0,272	3	304
7	+21 29	$-109 \ 10$	Beihai			• • •	• • •		
8	+39 55	$-116\ 26$	Beijing		$0\ 34\ 33,3$	19,8	0,316	8	309
9	+38 19	-116 54	Cangzhou		0 33 28,0	17,4	$0,\!290$	10	309
10	+23 8	-113 20	Canton			• • •	• • •	• •	
11	+43 50	$-125\ 20$	Changchun.		$0\ 48\ 29,1$	33,3	$0,\!455$	12	319
12	$+28 \ 10$	-113 0	Changsha		$0\ 22\ 16,2$	0,8	0,035	11	303
13	+36 5	-113 12	Changzhi		$0\ 28\ 4,7$	11,0	0,211	8	305
14	$+30 \ 37$	-104 6	Chengdu			• • •	• • •	• •	
15	$+42 \ 17$	-118 56	Chifeng \dots		$0\ 39\ 28,1$	25,7	$0,\!380$	9	312
16	$+29 \ 30$	$-106 \ 35$	Chongqing.			• • •	• • •	• •	
17	+40 12	-113 12	Datong		$0\ 31\ 58,1$	17,7	0,293	6	306
18	+26 9	-119 17	Fuzhou		$0\ 27\ 38,2$	1,5	0,055	18	307
19	$+25\ 52$	-114 51	$Ganzhou\dots$		$0\ 22\ 48,0$	0,0	0,001	14	304
20	$+23\ 25$	-103 5	Gejiu			• • •	• • •	• •	
21	$+26\ 35$	$-106 \ 40$	Guiyang \dots			• • •	• • •	• •	
22	+20 5	$-110\ 25$	Haikou			• • •	• • •	• •	
23	$+36 \ 37$	$-114\ 25$	$\operatorname{Handan}\ldots$		$0\ 29\ 35,9$	12,7	0,233	8	306
24	+30 18	-120 7	Hangzhou		$0\ 30\ 46,5$	7,1	$0,\!156$	16	309
25	$+45 \ 45$	$-126 \ 41$	Harbin		$0\ 52\ 12,4$	37,2	0,493	12	321
26	+31 55	-117 18	Hefei		$0\ 28\ 41,3$	7,5	0,163	13	307
27	$+47 \ 36$	$-130 \ 30$	$Hegang \dots$		$0\ 59\ 15,3$	42,5	$0,\!541$	13	326
28	$+26\ 58$	$-112 \ 31$	Hengyang		$0\ 21\ 13,2$	0,0	0,001	11	303
29	+34 0	-116 48	Huaibei		$0\ 29\ 41,5$	10,3	0,202	12	308
30	$+40 \ 49$	$-111\ 37$	Huhehuote.		$0\ 31\ 21,2$	17,5	$0,\!290$	4	305
31	+23 8	$-114\ 28$	Huizhou			• • •	• • •	• •	
32	+46 59	$-130\ 29$	Jiamusi	• • • • • • •	0 58 36,9	41,6	0,533	13	326
33	$+22\ 40$	-113 5	$ \text{Jiangmen} \dots $			• • •	• • •	• •	
34	+35 14	$-113 \ 13$	Jiaozuo		$0\ 27\ 22,1$	9,6	0,193	8	305
35	$+36 \ 41$	-117 0	$Jinan \dots$		$0\ 32\ 5,6$	14,8	$0,\!259$	10	309
36	$+34\ 47$	-114 20	Kaifeng	• • • • • •	$0\ 27\ 58,2$	9,7	0,194	9	306
37	$+39\ 29$	- 76 2	Kashi	• • • • • •	•• •• •••	• • •	• • •	• •	• • •
38	+25 4	$-102 \ 41$	Kunming					• •	
39	+36 1	$-103 \ 45$	Lanzhou	• • • • • •	0 21 48,3	4,7	0,119	0	298
40	$+29 \ 41$	- 91 10	Lhassa	• • • • • •		• • •	• • •	• •	• • •
41	$+41 \ 16$	-123 12	Liaoyang	• • • • • •	$0\ 43\ 15,1$	27,4	0,397	13	316
42	+24 17	-109 15	Liuzhou			• • •	• • •	• •	

1^{er} contact			1^{er} contact 2^{e} contact			3^e contact			4^e contact			
\mathbf{n}°	UT	P	\overline{Z}	$\overline{\mathrm{UT}}$	P	\overline{Z}	UT	P	\overline{Z}	$\overline{\text{UT}}$	P	\overline{Z}
	h m s	0	0	h m s	0	0	h m s	0	0	h m s	0	(
1	$23\ 36\ 54,9$	306	343							$2\ 13\ 16,4$	66	82
2	$23\ 34\ 24,7$	314	357							15923,4	60	83
3	$23\ 37\ 47,2$	329	20							$1\ 25\ 29,5$	48	85
4	$23\ 35\ 40,9$	308	347		• • •					2 7 4,7	64	84
5					• • •					1 1 29,3	38	84
6										$1\ 29\ 7,7$	52	88
7												
8										$1\ 41\ 17,2$	55	86
9	$23 \ 35 \ 9,9$	323	11							$1\ 38\ 18,7$	53	86
10												
11	$23\ 35\ 36,6$	309	349							2 9 50,6	63	8.
12	0 0 19,2	354	50							$0\ 44\ 56,6$	25	7!
13										$1\ 22\ 42,5$	47	80
14												
15										15223,2	59	8
16												
17										1 34 44,9	54	8
18	23 58 29,9	350	45							0 58 18,8	29	7
19	0 19 8,9	8	62							0 26 8,2	12	6
20												
21												
22												
23	23 37 11,5	328	18							1 27 24,3	49	8
24	23 43 53,9	336	29							1 22 8,2	42	8
25	23 37 2,7	306	343							2 15 44,0	65	8
26	23 42 18,3	335	28							1 19 26,1	43	8
27	23 40 14,3	302	336							2 26 16,1	68	7
28	0 16 26,1	7	62							0 25 43,4	13	6
29	23 39 10,2	331	23							1 25 20,9	46	8
30										1 33 0,6	54	8
31												
32	23 39 46,1	302	337							2 25 35,0	67	7
33												
34	23 39 22,4	332	24							1 19 55,4	46	8
35	23 36 13,1	326	15							1 34 6,2	51	8
36	23 39 21,2	332	23							1 21 17,7	46	8
37												
38												
39										1 0 2,2	38	8
40												
	23 34 27,7	314	357									
41										2 0 18,6	60	8
$\bf 42$	• • • • • • • • • • • • • • • • • • • •	• • •			• • •	• • •		• • •	• • •		• • •	• •

	Ро	sition	N J. 1:	Durée	Max	Maximum de l'éclipse				
\mathbf{n}°	Latitude	Longitude	Nom du lieu	de la phase centrale	UT	Obs.	g	h	\overline{a}	
	0 /	0 /		m s	h m s	%		0	0	
1	+38 53	$-121 \ 37$	Luda		$0\ 39\ 5,6$	22,2	0,342	13	313	
2	$+33 \ 33$	-114 0	Luohe		$0\ 26\ 42,0$	7,7	0,165	9	305	
3	$+34 \ 47$	$-112\ 26$	Luoyang		0 26 20,8	8,4	$0,\!176$	8	304	
4	+28 55	$-105 \ 25$	Luzhou			• • •	• • •	• •	• • •	
5	$+49 \ 36$	-117 28	Manzhouli		0 46 36,8	36,2	$0,\!483$	4	313	
6	$+28 \ 42$	-115 55	Nanchang		$0\ 25\ 16,6$	2,5	0,078	13	305	
7	+30 54	-106 6	Nanchong		$0\ 19\ 2,0$	0,5	0,026	4	299	
8	+32 3	$-118 ext{ } 47$	Nankin		$0\ 30\ 22,3$	8,7	0,180	14	309	
9	$+22\ 50$	-108 19	Nanning			• • •	• • •	• •	• • •	
10	+33 6	$-112 \ 31$	Nanyang		$0\ 25\ 5,4$	6,0	0,141	8	304	
11	+22 6	-106 44	Pingxiang			• • •	• • •	• •	• • •	
12	$+27 \ 35$	$-113 \ 46$	Pingxiang		$0\ 22\ 37,9$	0,6	0,029	12	304	
13	$+35 \ 32$	-117 1	Qifu		0 31 8,0	12,9	0,236	11	308	
14	$+33 \ 35$	-119 2	Qingjiang		$0\ 31\ 44,2$	11,3	0,215	14	309	
15	+39 55	$-119 \ 37$	Qinhuangdao		$0\ 37\ 48,0$	22,3	0,344	11	312	
16	+24 53	$-118 \ 36$	Quanzhou		$0\ 26\ 19,3$	0,3	0,018	18	306	
17	$+31 \ 13$	$-121\ 25$	Shanghai		$0\ 32\ 54.8$	9,3	0,189	17	311	
18	+34 27	-115 7	Shangqui		$0\ 28\ 24,9$	9,8	0,195	10	306	
19	$+23 \ 23$	-116 39	Shantou			• • •	• • •	• •	• • •	
20	+24 54	$-113 \ 33$	Shaoguan			• • •	• • •	• •	• • •	
21	+27 10	$-111\ 25$	Shaoyang	•• •••	• • • • • • • • • • • • • • • • • • • •	• • •	• • •	• •	• • •	
22	$+30 \ 16$	$-112\ 20$	Shashi		$0\ 22\ 57,7$	2,4	0,076	9	303	
23	+41 50	-123 26	Shenyang	•• •••	$0\ 44\ 5,6$	28,6	0,408	12	316	
24	+38 4	$-114\ 28$	Shijiazhuang	•• •••	$0\ 30\ 57,7$	15,1	0,263	8	307	
25	$+43 \ 15$	$-124\ 25$	Siping	•• •••	$0\ 46\ 44,0$	31,6	0,439	12	318	
26	$+44\ 25$	-131 6	Suifenhe		$0\ 57\ 2,6$	38,3	0,503	15	326	
27	$+31 \ 21$	$-120 \ 40$	Suzhou	•• •••	$0 \ 32 \ 4,9$	9,0	0,184	16	310	
28	+37 50	$-112\ 30$	Taiyuan	•• •••	$0\ 29\ 4.8$	13,2	0,240	6	305	
29	$+32\ 27$	-119 56	Taizhou	•• •••	$0\ 31\ 56,9$	10,2	0,200	15	310	
30	+39 8	-117 12	$Tianjin \dots$		$0\ 34\ 32,1$	19,0	0,308	9	309	
31	$+43 \ 37$	$-122 \ 15$	Tongliao		0 44 30,8	30,6	$0,\!428$	11	316	
32	$+43 \ 43$	- 87 38	Urumqi			• • •	• • •	• •	• • •	
33	+30 48	-108 17	Wan Xian		0 20 18,6	1,2	0,046	6	301	
34	+36 44	-119 10	Weifang		0 34 24,0	16,6	0,280	12	311	
35	+37 30	-122 4	Weihai		0 38 24,2	20,2	0,320	14	313	
36	+39 40	-106 40	Wuda		0 26 50,2	11,9	0,223	1	301	
37	$+30 \ 35$	-114 19	Wuhan		0 24 53,4	3,8	0,103	11	305	
38	+31 23	-118 25	Wuhu		0 29 31,3	7,5	0,162	14	308	
39	$+31 \ 35$	-120 19	Wuxi		0 31 48,9	9,1	$0,\!186$	16	310	
40	$+23 \ 30$	-111 21	Wuzhou			•••				
41	+24 28	-118 5	Xiamen		0 25 34,7	0,0	0,003	17	306	
42	+34 16	-108 54	Xi'An	• • • • • • • • • • • • • • • • • • • •	$0\ 23\ 17,7$	5,4	0,130	5	302	

	1^{er} co	ontact		2^e co	ntact		3^e co	ontact		4^e con	ntact	
\mathbf{n}°	UT	P	\overline{z}	UT	P	\overline{Z}	UT	P	\overline{Z}	UT	P	\overline{Z}
	h m s	0	0	h m s	0	0	h m s	0	0	h m s	0	
1	$23\ 34\ 30,5$	318	4		• • •					$1\ 51\ 26,3$	57	83
2	$23\ 41\ 28,4$	335	28		• • •					$1\ 16\ 0.6$	43	84
3	$23\ 40\ 30,6$	334	26							$1\ 16\ 19,9$	44	85
4		• • •	• • •		• • •			• • •	• • •		• • •	
5		• • •	• • •		• • •			• • •	• • •	2 3 17,0	66	8
6	$23\ 52\ 19,8$	347	41		• • •				• • •	1 0 17,6	33	79
7	0 1 3,2	356	52		• • •				• • •	$0\ 37\ 23,3$	23	7!
8	$23\ 41\ 13,9$	334	26		• • •				• • •	$1\ 24\ 25,4$	44	82
9		• • •	• • •		• • •	• • •		• • •	• • •		• • •	• • •
10	$23\ 43\ 27,5$	338	31			• • •		• • •	• • •	$1\ 10\ 8,5$	40	83
11		• • •	• • •		• • •			• • •	• • •		• • •	• • •
12	0 2 13,1	356	51			• • •		• • •	• • •	$0\ 43\ 37,4$	24	7!
13	$23\ 37\ 15,4$	328	18					• • •		$1\ 30\ 47,0$	49	84
14	$23\ 38\ 48,3$	330	21							$1\ 30\ 19,4$	47	8
15	$23\ 34\ 16,3$	318	4							1 48 48,6	57	8.
16	0 9 5,8	359	54							$0\ 43\ 50,5$	21	7
17	$23\ 41\ 30,2$	333	24							$1\ 29\ 42,3$	45	8
18	$23\ 39\ 23,3$	332	23							$1\ 22\ 15,1$	46	8
19												
20												
21												
22	$23\ 51\ 29,7$	347	42							0 56 16,1	32	80
23	$23\ 34\ 34,1$	313	355							2 1 56,4	61	8
24										$1\ 31\ 47,1$	51	8
25	$23\ 35\ 7,7$	310	351							2 6 46,0	63	8
26	23 38 31,8	305	341							$2\ 24\ 6,5$	65	7
27	23 41 34,6	333	25							1 27 47,3	45	8
28										1 26 29,5	50	8
29	$23\ 40\ 4,4$	332	23							1 29 17,2	46	8:
30	23 34 44,0	321	8							1 41 8,0	55	8
31	23 34 44,6	311	352							$2 \ 2 \ 26,6$	62	8
32												
33	$23\ 56\ 15,2$	352	47							0 45 17,4	27	78
34	23 35 40,7	324	12							1 39 51,2	53	8
35	$23\ 35\ 0,1$	320	7							1 49 25,9	55	8
36										1 19 32,6	48	88
37	23 47 57,6	343	37							1 4 29,3	36	8
38	23 42 39,8	336	28							1 20 50,9	43	85
39	23 41 19,3	333	25							1 27 30,4	45	8
40												
41	0 18 22,3	6	60							0 32 32,3	15	6
42										$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	39	84
-14										1 0 12,2	99	0.

	Po	sition	Nom du lieu	Durée de la phase	Max	kimum (de l'éclip	ose	
\mathbf{n}°	Latitude	Longitude	Nom du neu	centrale	UT	Obs.	g	h	a
	o /	0 /		m s	h m s	%		0	C
1	+32 5	-112 3	Xiangfan		0 23 57,7	4,4	0,114	8	303
2	$+44\ 35$	$-127 \ 30$	Xiangyang.		$0\ 52\ 5,3$	36,1	0,481	13	322
3	+37 8	$-114\ 29$	Xingtai		$0\ 30\ 7,1$	13,6	0,244	8	307
4	$+36 \ 35$	-101 55	Xining						
5	$+32 \ 10$	-114 5	Xinyang		$0\ 25\ 45,2$	5,8	0,136	10	305
6	+34 17	-117 18	$Xuzhou \dots$		$0\ 30\ 25,1$	11,1	0,213	12	308
7	$+32\ 22$	-119 22	Yangzhou		0 31 14,5	9,6	0,193	15	309
8	+42 52	$-129 \ 32$	Yanji		0 53 17,6	34,9	0,470	16	323
9	$+38 \ 30$	-106 19	Yinchuan		0 25 28,2	9,9	0,196	1	301
10	$+40 \ 40$	$-122\ 17$	Yingkou		$0\ 41\ 33,7$	25,7	$0,\!379$	12	315
11	+43 50	-8128	Yining						
12	+28 39	$-112 \ 10$	Yiyang		0 21 50,4	0,8	0,037	10	303
13	+39 54	-9743	Yumen						
14	$+24 \ 31$	$-117 \ 40$	Zhangzhou.						
15	$+21 \ 10$	$-110\ 20$	Zhanjiang						
16	$+34 \ 45$	$-113\ 38$	Zhengzhou.		0 27 19,6	9,2	0,187	9	305

	1^{er} co	ontact		2^e co	ontact		3^e co	ontact		4^e con	ntact	
\mathbf{n}°	$\overline{\mathrm{UT}}$	P	\overline{Z}	$\overline{\text{UT}}$	\sim P	\overline{Z}	UT	\sim P	\overline{Z}	UT	P	\overline{Z}
	h m s	0	0	h m s	0	0	h m s	0	0	h m s	0	C
1	23 46 14,6	341	35							1 4 26,8	37	82
2	23 36 45,8	307	345							$2\ 15\ 57,1$	65	80
3										$1\ 29\ 7,3$	50	86
4										0 58 21,2	37	84
5	$23 \ 44 \ 8,3$	338	32							1 10 48,9	40	83
6	$23\ 38\ 34,5$	330	21							1 27 39,8	47	84
7	$23\ 40\ 26,1$	332	24							1 27 17,6	45	82
8	23 36 58,3	308	346							$2\ 18\ 23,4$	64	77
9										1 15 1,6	46	87
10	23 34 18,7	315	359							1 56 53,8	59	83
11												
12	23 59 22,3	354	50							$0\ 45\ 4.7$	26	76
13										1 3 35,6	40	86
14												
15												
16	23 39 48,1	333	24							1 19 20,4	45	85

	Po	sition	Nom du lieu	Durée	Max	ximum o	de l'éclip	ose	
\mathbf{n}°	Latitude	Longitude	Nom du neu	de la phase centrale	UT	Obs.	g	h	\overline{a}
	o /	0 /		m s	h m s	%		0	0
1	$+39 \ 36$	$-125\ 42$	$Anju \dots$		$0\ 44\ 54.8$	26,6	0,389	15	318
2	+38 51	$-125 \ 10$	Chinnamp'O		$0\ 43\ 32,1$	24,9	0,371	15	317
3	+41 50	-129 55	Ch'Ongjin		$0\ 52\ 55,6$	33,5	0,457	17	323
4	+38 4	$-125\ 40$	Haeju		$0\ 43\ 32,5$	24,0	$0,\!361$	16	317
5	+39 54	$-127\ 35$	Hamhung		$0\ 47\ 48,1$	28,6	0,409	16	320
6	$+39 \ 49$	$-127 \ 40$	Hungnam		$0\ 47\ 50,9$	28,5	0,408	16	320
7	+37 59	$-126 \ 30$	Kaesong		$0\ 44\ 37,9$	24,5	0,367	17	318
8	+40 55	-129 21	Kilchu		$0\ 51\ 16,3$	31,6	$0,\!438$	17	322
9	$+42 \ 10$	$-130\ 20$	Najin		$0\ 53\ 51,0$	34,3	$0,\!465$	17	324
10	+41 44	$-129 \ 40$	Nanam		$0\ 52\ 27,8$	33,2	$0,\!453$	16	323
11	+39 0	$-125\ 47$	Pyongyang.		$0\ 44\ 29,9$	25,7	$0,\!379$	16	318
12	$+38 \ 30$	$-125\ 45$	Sariwon		$0\ 44\ 1,4$	24,8	$0,\!370$	16	318
13	+40 0	$-128 \ 13$	$Sinp'O \dots$		$0\ 48\ 48,2$	29,2	$0,\!415$	17	321
14	+40 4	$-124\ 25$	Sinuiju		$0\ 43\ 38,4$	26,4	$0,\!386$	14	317
15	+40 50	-129 5	Songjin		$0\ 50\ 48,2$	31,3	$0,\!435$	17	322
16	+42 19	-130 24	$Unggi \dots$		$0\ 54\ 5,0$	34,6	$0,\!468$	16	324
17	+39 7	$-127\ 26$	Wonsan \dots		$0\ 46\ 54,7$	27,2	$0,\!394$	17	320
18	$+39 \ 31$	$-127\ 18$	Yonghung		$0\ 47\ 3,8$	27,7	$0,\!400$	16	320

	1^{er} co	ontact		2^e co	ontact		3^e co	ontact		$4^e \operatorname{cor}$	ıtact	
\mathbf{n}°	$\overline{\mathrm{UT}}$	P	\overline{Z}	UT	\sim P	\overline{Z}	UT	\sim P	\overline{Z}	UT	P	\overline{Z}
	h m s	0	0	h m s	0	0	h m s	0	0	h m s	0	0
1	23 34 58,0	314	358							2 3 25,6	59	80
2	$23\ 34\ 55,5$	316	360							2 0 34,5	58	80
3	$23\ 36\ 49,8$	309	348							$2\ 17\ 53,9$	63	77
4	$23\ 35\ 11,1$	317	1							2 0 20,0	58	80
5	$23\ 35\ 31,7$	313	355							2 8 52,7	60	78
6	$23\ 35\ 33,3$	313	355							2 8 57,2	60	78
7	$23\ 35\ 23,5$	316	0							2 2 25,9	58	79
8	23 36 21,0	310	350							$2\ 15\ 6,7$	62	77
9	$23 \ 37 \ 8,7$	308	347							$2\ 19\ 24,3$	63	76
10	23 36 40,8	309	348							$2\ 17\ 7,6$	63	77
11	$23 \ 35 \ 2,4$	315	359							$2 \ 2 \ 29,9$	59	80
12	$23\ 35\ 6,5$	316	360							2 1 25,8	58	80
13	$23\ 35\ 45,9$	312	354							$2\ 10\ 42,4$	61	78
14	23 34 39,6	314	358							2 1 1,3	59	81
15	23 36 12,9	310	351							$2\ 14\ 17,9$	62	77
16	23 37 13,7	308	346							$2\ 19\ 46,5$	63	76
17	$23\ 35\ 29,5$	314	357							2 7 5,9	59	78
18	23 35 25,9	313	356							2 7 27,7	60	79

	Po	sition	Nom du lieu	Durée	Maximum de l'éclipse					
\mathbf{n}°	Latitude	Longitude	Nom du lieu	de la phase centrale	UT	Obs.	g	h	a	
	0 /	0 /		m s	h m s	%		0		
1	$+36 \ 37$	-128 44	${\rm Andong}\ldots$		$0\ 46\ 50,6$	23,9	0,361	19	320	
2	$+35 \ 10$	-128 6	$Chinju \dots$		$0\ 44\ 49,0$	21,0	0,329	20	319	
3	+35 50	-127 5	Chonju		0 43 46,8	21,3	0,333	19	318	
4	+37 56	$-127 \ 40$	Ch'Unch'On		$0\ 46\ 16,1$	25,3	$0,\!375$	18	319	
5	+36 59	-127 53	$Ch'Ungju\dots$		$0\ 45\ 50,2$	23,9	$0,\!360$	18	319	
6	$+37 \ 30$	-126 38	$Inch'On\ldots$		$0\ 44\ 25,5$	23,8	$0,\!359$	17	318	
7	+35 57	$-126\ 42$	$Kunsan \dots$		0 43 18,6	21,2	0,332	18	318	
8	+35 7	-126 52	Kwangju		$0\ 42\ 56,2$	19,9	0,317	19	317	
9	$+32 \ 10$	$-128 \ 35$	Masan		0 43 36,6	16,2	0,276	22	318	
10	+34 50	$-126\ 25$	Mokpo		$0\ 42\ 4,7$	19,1	0,308	19	317	
11	+35 5	-129 2	Pusan		$0\ 46\ 12,1$	21,5	0,335	21	320	
12	$+36\ 25$	-128 8	Sangju		0 45 46,8	23,1	0,352	19	319	
13	+37 32	-127 0	Seoul		0 44 58,6	24,1	0,363	18	319	
14	+37 16	-126 59	Suwon		0 44 44,4	23,7	0,358	18	318	
15	+35 52	$-128\ 36$	Taegu		$0\ 46\ 5,1$	22,5	0,346	20	320	
16	+36 20	$-127\ 26$	Taejon		0 44 40,3	22,4	0,345	19	319	
17	$+35 \ 32$	-129 21	Ulsan		$0\ 47\ 0.9$	22,6	0,346	21	320	

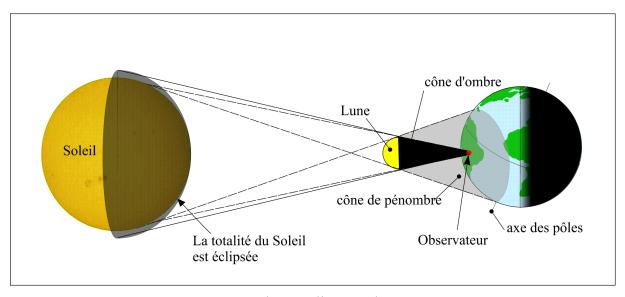
	1^{er} co	ontact		2^e co	ntact		3^e co	ontact		4^e cor	ntact	
\mathbf{n}°	UT	P	\overline{Z}	UT	P	\overline{Z}	UT	P	\overline{Z}	UT	P	\overline{Z}
	h m s	0	0	h m s	0	0	h m s	0	0	h m s	0	0
1	$23\ 36\ 25,7$	317	1							2 5 59,7	57	76
2	23 36 54,8	319	5							2 1 9,1	55	76
3	23 36 19,0	319	5							1 59 36,8	56	78
4	$23\ 35\ 43,6$	315	359							2 5 32,2	58	78
5	$23\ 36\ 2,5$	317	1							2 4 17,7	57	77
6	$23\ 35\ 33,1$	317	1							2 1 49,9	57	79
7	23 36 10,8	319	5							$1\ 58\ 45,5$	56	78
8	$23\ 36\ 40,9$	320	7							$1\ 57\ 23,1$	54	78
9	23 39 26,6	324	12							1 55 34,3	51	75
10	23 36 47,9	321	8							$1\ 55\ 23,7$	54	78
11	$23\ 37\ 12,9$	319	4							2 3 45,4	55	75
12	23 36 19,1	317	2							2 3 52,4	57	77
13	23 35 38,0	316	1							$2 \ 2 \ 54.8$	58	78
14	$23\ 35\ 42,4$	317	1							2 2 20,0	57	78
15	23 36 41,3	318	3							2 4 6,3	56	76
16	23 36 9,8	318	3							2 1 41,4	56	78
17	23 37 4,9	318	2		• • •	• • •		• • •	• • •	2 5 37,9	56	75

	Po	sition	Nom du lieu	Durée	Max	ximum o	de l'éclip	ose	
\mathbf{n}°	Latitude	Longitude	Nom du neu	de la phase centrale	UT	Obs.	g	h	\overline{a}
	0 /	0 /		m s	h m s	%		0	0
1	+39 44	-140 5	Akita	• • • • • •	1 8 59,2	36,7	$0,\!487$	24	336
2	$+43 \ 46$	$-142\ 23$	Asahikawa	• • • • • • • • • • • • • • • • • • • •	$1\ 15\ 50,6$	43,7	$0,\!552$	21	340
3	$+35 \ 23$	$-138 \ 42$	Fuji San	• • • • • • •	1 3 46,3	28,8	0,411	27	332
4	+36 4	-136 12	Fukui	• • • • • • •	$0\ 59\ 16,3$	28,4	$0,\!406$	25	329
5	$+40 \ 16$	-141 20	Fukuoka		$1\ 11\ 46,2$	38,2	0,501	24	338
6	+37 44	-140 28	Fukushima .	• • • • • • • • • • • • • • • • • • • •	1 8 37,0	33,7	$0,\!459$	26	336
7	+35 27	$-136\ 46$	Gifu	• • • • • •	$0\ 59\ 59,5$	27,7	$0,\!400$	26	330
8	$+40 \ 30$	-141 30	Hachinohe	• • • • • • • • • • • • • • • • • • • •	$1\ 12\ 14,0$	38,6	0,505	24	338
9	$+41 \ 46$	-140 44	Hakodate	• • • • • • • • • • • • • • • • • • • •	$1\ 11\ 28,7$	40,1	0,519	22	337
10	$+34 \ 42$	$-137 \ 42$	Hamamatsu	• • • • • • • • • • • • • • • • • • • •	1 1 24,4	27,1	0,393	27	331
11	+34 50	$-134\ 40$	Himeji	• • • • • • • • • • • • • • • • • • • •	$0\ 55\ 40,0$	25,3	$0,\!375$	25	327
12	+40 34	-140 28	Hirosaki	• • • • • • • • • • • • • • • • • • • •	$1\ 10\ 14,1$	38,2	0,501	23	337
13	+34 23	$-132\ 27$	Hiroshima	• • • • • • • • • • • • • • • • • • • •	$0\ 51\ 24,6$	22,9	$0,\!350$	24	324
14	$+31 \ 37$	$-130 \ 32$	Kagoshima .		$0\ 46\ 29,4$	16,8	0,282	24	320
15	+39 18	-141 52	Kamaishi	• • • • • • • • • • • • • • • • • • • •	1 12 18,8	36,9	$0,\!489$	25	338
16	$+36 \ 35$	-136 38	Kanazawa	• • • • •	1 0 24,3	29,6	0,418	25	330
17	$+31\ 22$	-130 50	Kanoya	• • • • •	$0\ 46\ 51,9$	16,6	$0,\!279$	24	320
18	$+35 \ 32$	$-139 \ 41$	Kawasaki	• • • • • •	1 5 51,2	29,7	0,419	27	334
19	$+36\ 26$	-139 18	Kiryu	• • • • •	1 5 32,8	30,9	0,432	26	333
20	+33 52	$-130\ 49$	Kita Kyushu	• • • • •	$0\ 48\ 17,6$	20,8	0,327	23	321
21	$+34 \ 40$	-135 12	Kobe	• • • • •	$0\ 56\ 33,6$	25,4	$0,\!375$	25	327
22	$+33 \ 33$	$-133 \ 32$	Kochi	• • • • •	$0\ 52\ 50,5$	22,3	0,343	25	325
23	+37 23	-140 22	Koriyama	• • • • • • • • • • • • • • • • • • • •	1 8 13,4	33,1	0,453	26	335
24	$+32\ 50$	$-130 \ 42$	$\mathbf{Kumamoto}$.	• • • • • •	$0\ 47\ 28,0$	19,0	0,307	23	321
25	$+33\ 20$	$-130\ 29$	Kurume	• • • • • •	$0\ 47\ 24,3$	19,6	0,314	23	321
26	+42 58	-144 24	Kushiro	• • • • • • • • • • • • • • • • • • • •	1 19 20,8	43,4	0,549	23	343
27	+35 2	$-135 \ 45$	Kyoto	• • • • • • • • • • • • • • • • • • • •	$0\ 57\ 48,5$	26,4	$0,\!386$	25	328
28	$+35 \ 30$	$-135\ 20$	Maizuru	• • • • • •	$0\ 57\ 18,1$	26,9	0,391	25	328
29	$+35\ 29$	-133 4	Matsue	• • • • • • • • • • • • • • • • • • • •	0 53 11,1	25,2	$0,\!374$	23	325
30	+36 18	-137 58	Matsumoto.	• • • • • • • • • • • • • • • • • • • •	1 2 49,0	29,9	0,422	26	332
31	+33 50	$-132\ 47$	Matsuyama.	• • • • • • • • • • • • • • • • • • • •	0 51 39,7	22,2	0,342	24	324
32	+36 22	-140 29	Mito	• • • • • • • • • • • • • • • • • • • •	1 7 55,8	31,5	0,437	27	335
33	+39 38	-141 59	Miyako	• • • • • • • • • • • • • • • • • • • •	1 12 43,7	37,5	0,495	25	338
34	+31 56	-131 27	Miyasaki	• • • • • • • • • • • • • • • • • • • •	0 48 14,1	18,0	0,296	25	321
35	+39 43	-141 8	Morioka	• • • • • •	1 11 3,6	37,2	0,492	24	337
36	+42 21	-140 59	Muroran		1 12 18,9	41,1	0,528	22	338
37	+36 39	-138 10	Nagano	• • • • • •	1 3 24,6	30,6	0,429	25	332
38	+37 27	-138 50	Nagaoka	• • • • • •	1 5 11,1	32,4	0,445	25	333
39	+32 45	-129 52	Nagasaki	•• •••	0 46 1,9	18,2	0,298	23	320
40	+35 8	-136 53	Nagoya		1 0 2,3	27,3	0,395	26	330
41	+26 10	$-127 ext{ } 40$	Naha	•• •••	0 39 13,8	6,1	0,142	25	315
42	+37 58	-139 2	Niigata	• • • • • • • • • • • • • • • • • • • •	1 5 52,7	33,3	0,455	25	334

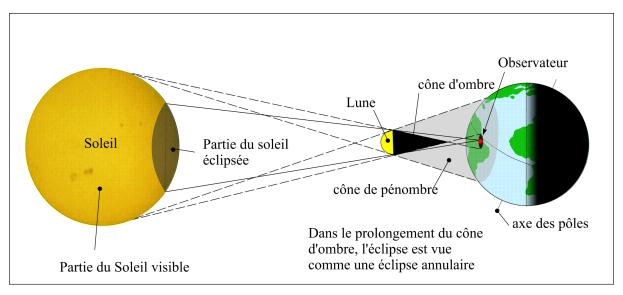
	1^{er} co	ontact		2^e co	ontact		3^e co	ontact		4^e con	ntact	
\mathbf{n}°	UT	P	\overline{Z}	$\overline{\mathrm{UT}}$	P	\overline{Z}	UT	P	\overline{Z}	UT	P	\overline{Z}
	h m s	0	0	h m s	0	0	h m s	0	0	h m s	0	C
1	$23 \ 44 \ 3,9$	305	340							$2\ 41\ 48,2$	62	63
2	$23\ 48\ 1,9$	300	330							$2\ 50\ 8,4$	65	62
3	$23\ 42\ 55,0$	312	350							$2\ 33\ 10,0$	58	62
4	$23\ 40\ 37,9$	312	352							$2\ 26\ 48,8$	58	66
5	$23\ 45\ 31,3$	304	337							$2\ 45\ 27,3$	62	61
6	$23\ 44\ 18,0$	308	343		• • •			• • •	• • •	$2\ 40\ 56,0$	60	61
7	$23\ 41\ 14,8$	313	353		• • •			• • •	• • •	$2\ 27\ 34,2$	58	65
8	$23\ 45\ 45,9$	304	337			• • •			• • •	$2\ 46\ 3,1$	63	61
9	$23\ 45\ 18,4$	303	335							$2\ 45\ 2.8$	64	63
10	$23\ 42\ 16,6$	313	353							$2\ 29\ 13,8$	57	63
11	$23\ 39\ 58,6$	315	357							$2\ 20\ 17,8$	57	68
12	$23\ 44\ 39,1$	304	338							$2\ 43\ 29,2$	63	63
13	$23\ 38\ 56,9$	317	1							$2\ 12\ 42,8$	56	71
14	$23\ 40\ 27,0$	324	10							2 0 32,9	51	72
15	$23\ 45\ 56,6$	305	338							$2\ 46\ 4,1$	62	60
16	$23\ 40\ 51,4$	311	351							2 28 48,3	59	66
17	$23\ 40\ 48,3$	324	10							2 0 55,1	51	72
18	$23\ 43\ 48,5$	311	349							2 36 13,3	58	60
19	23 43 14,3	310	347							2 36 14,6	59	62
20	23 38 34,0	319	4							2 6 37,2	54	73
21	$23\ 40\ 24,1$	315	357							$2\ 21\ 37,9$	57	67
22	$23\ 40\ 0,4$	318	1							2 14 27,6	55	69
23	23 44 12,4	308	344							2 40 17,8	60	61
24	23 39 19,3	321	7							2 3 58,8	53	72
25	$23\ 38\ 50,5$	321	6							2 4 25,1	54	73
26	$23\ 50\ 7,0$	300	329							25425,4	64	59
27	23 40 37,8	314	355							$2\ 23\ 53,7$	57	66
28	23 40 9,9	314	355							$2\ 23\ 23,7$	57	67
29	23 38 45,1	315	358							2 16 36,4	57	70
30	23 42 1,8	311	349							$2\ 32\ 15,8$	59	64
31	23 39 26,4	318	2							2 12 40,3	55	70
32	23 44 26,4	309	346							2 39 30,4	59	60
33	23 46 7,9	304	338							2 46 37,7	62	60
34	23 40 24,2	322	8							$2 \ 4 \ 19,3$	52	71
35	23 45 11,2	305	339							2 44 30,6	62	61
36	23 45 48,1	302	334							2 46 2,8	64	63
37	23 42 8,8	310	348							2 33 17,2	59	64
38	23 42 40,6	309	346							2 36 7,8	60	63
39	23 39 8,8	322	8							$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53	73
40	23 41 26,8	313	353							2 27 26,6	57	65
41	23 50 23,7	338	29							1 32 47,2	40	73
42	23 42 51,1	308	345							2 37 15,6	60	63
74	20 42 01,1	300	040							2 31 10,0	00	,

CIRCONSTANCES LOCALES POUR DES LIEUX GÉOGRAPHIQUES DONNÉS $_{\mbox{\sc Japon}}$

	Po	sition	Nome du lieu	Durée	Max	kimum (de l'éclip	ose	
\mathbf{n}°	Latitude	Longitude	Nom du lieu	de la phase centrale	UT	Obs.	g	h	a
	o /	0 /		m s	h m s	%		0	(
1	$+33 \ 15$	$-131\ 36$	Oita		0 49 14,8	20,3	0,322	24	322
2	+31 22	$-130\ 57$	Okasaki		$0\ 47\ 3,9$	16,6	0,280	25	321
3	$+34 \ 40$	$-133\ 54$	Okayama		0.54 - 9.8	24,4	0,366	24	326
4	$+34 \ 40$	$-135 \ 30$	Osaka		$0\ 57\ 7,4$	25,6	0,377	25	328
5	$+34 \ 35$	$-135\ 28$	Sakai		$0\ 57\ 0.8$	25,4	0,376	25	328
6	+38 55	-139 51	Sakata		1 8 2,8	35,3	$0,\!474$	24	335
7	+43 5	-141 21	Sapporo		1 13 27,9	42,3	0,539	21	339
8	$+33 \ 10$	$-129\ 42$	Sasebo		$0\ 46\ 0.7$	18,8	0,305	22	320
9	+31 50	-130 17	Sendai		0 46 11,4	16,9	0,284	24	320
10	+33 59	-13058	Shimonoseki		0 48 37,1	21,1	0,331	23	322
11	+34 59	-138 24	Shizuoka		$1 \ 2 \ 57,4$	28,0	0,402	27	332
12	+36 47	-137 0	Takaoka		1 1 13,5	30,1	0,424	25	330
13	+34 3	-134 34	Tokushima.		$0\ 55\ 1,4$	23,9	0,360	25	326
14	$+35 \ 40$	$-139\ 45$	Tokyo		1 6 3,5	29,9	0,422	27	334
15	$+36 \ 33$	$-139\ 52$	Utsunomiya		1 6 45,5	31,5	$0,\!437$	26	334
16	$+45\ 26$	$-141\ 43$	Wakkanai		1 15 36,5	45,7	0,570	19	340
17	$+35\ 28$	$-139\ 38$	Yokohama .		1 5 43,0	29,5	0,418	27	334
18	+39 20	$-140 \ 31$	Yokote		1 9 36,6	36,3	0,483	24	336


	1^{er} co	ontact		2^e co	ntact		3^e co	ntact		4^e cor	ıtact	
\mathbf{n}°	UT	P	\overline{Z}	UT	P	\overline{Z}	UT	P	\overline{Z}	UT	P	\overline{Z}
	h m s	0	0	h m s	0	0	h m s	0	0	h m s	0	(
1	23 39 18,8	320	5							2 7 45,5	54	71
2	$23\ 40\ 50,3$	324	10							2 1 18,4	51	72
3	$23\ 39\ 35,0$	316	358							$2\ 17\ 40,6$	56	69
4	$23\ 40\ 36,4$	315	356							$2\ 22\ 32,5$	57	67
5	23 40 37,3	315	356							$2\ 22\ 18,1$	56	67
6	23 43 42,6	306	342							$2\ 40\ 26,3$	61	63
7	$23\ 46\ 31,5$	301	332							$2\ 47\ 22,2$	65	63
8	$23\ 38\ 44,4$	322	8							2 1 34,3	53	74
9	$23\ 40\ 9,2$	323	10							2 0 15,8	51	73
10	$23\ 38\ 32,7$	319	4							2 7 19,9	55	73
11	$23\ 42\ 46,5$	312	352							$2\ 31\ 43,7$	57	62
12	$23 \ 41 \ 7,3$	311	350							$2\ 30\ 7,7$	59	65
13	23 40 18,2	316	359							2 18 36,9	56	68
14	23 43 50,3	311	348							2 36 35,0	58	60
15	23 43 46,7	309	346							2 37 59,0	59	61
16	23 48 12,9	299	328							2 49 23,0	67	65
17	23 43 46,6	311	349							$2\ 35\ 59,5$	58	60
18	23 44 27,4	306	340							2 42 35,0	62	62

	Ро	sition	Nom du lieu	Durée de la phase	Max	ximum	de l'écli	pse	
\mathbf{n}°	Latitude	Longitude	Nom du neu	centrale	UT	Obs.	g	h	a
	o /	0 /		m s	h m s	%		0	0
1	+23 9	$-120 \ 11$	Chia-Li \dots						
2	$+25 \ 10$	$-121\ 43$	Chi-Lung		0 30 14,0	1,6	0,058	21	309
3	$+24\ 55$	-121 8	Chung-Li		$0\ 29\ 23,4$	1,2	0,047	20	308
4	$+24\ 48$	$-120\ 59$	Hsin-Chu		$0\ 29\ 9,4$	1,0	0,042	20	308
5	$+22\ 36$	$-120\ 17$	Kao-Hsiung						
6	$+22\ 40$	$-120 \ 30$	P'Ing-Tung.						
7	+24 9	$-120 \ 40$	T'Ai-Chung		0 28 31,5	0,4	0,024	20	308
8	+23 1	-120 14	T'Ai-Nan						
9	+25 5	$-121\ 32$	Taipei		0 29 57,9	1,5	0.055	20	309


\mathbf{n}°	1^{er} contact			2^e contact			3^e contact			4^e contact		
	$\overline{\mathrm{UT}}$	P	\overline{Z}	UT	\sim P	\overline{Z}	UT	\sim P	\overline{Z}	UT	P	\overline{Z}
	h m s	0	0	h m s	0	0	h m s	0	0	h m s	0	C
1												
2	23 59 28,4	350	44							1 2 44,3	30	74
3	0 1 54,8	352	47							0 58 11,1	28	73
4	0 2 56,6	353	47							0 56 32,1	27	73
5												
6												
7	0 8 38,4	357	52							$0\ 48\ 55,2$	23	71
8												
9	0 0 13,4	351	45							1 1 18,8	29	74

DESSINS ET CARTES

Les éclipses de Soleil

a : cas d'une éclipse totale.

b : cas d'une éclipse annulaire

Fig. 1. Les éclipses centrales de Soleil (les distances ne sont pas respectées).

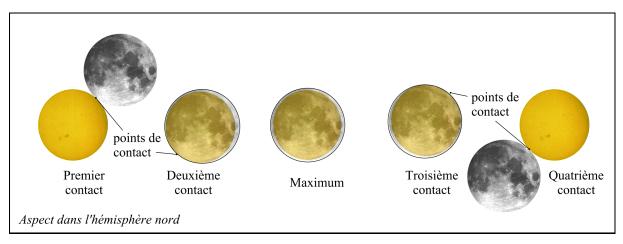


Fig.2. Phases locales d'une éclipse totale.

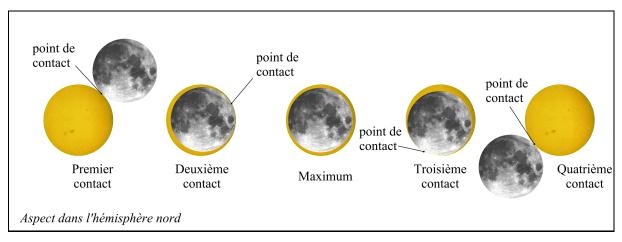


Fig.3. Phases locales d'une éclipse annulaire.

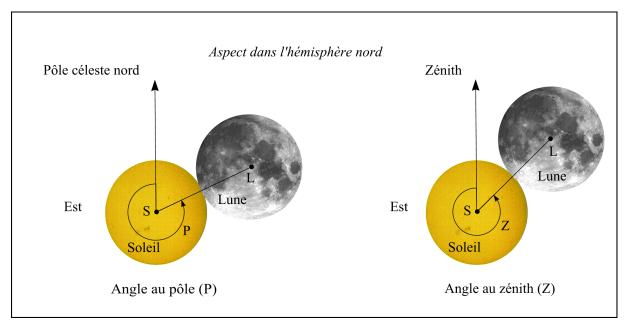


Fig.4 et Fig.5. Angle au pôle et angle au zénith.

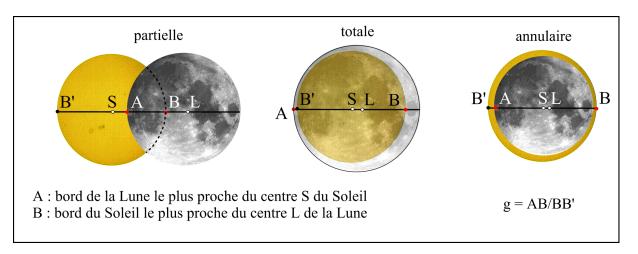


Fig. 6. Grandeur ou magnitude d'une éclipse de Soleil.

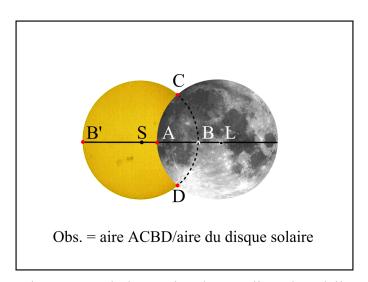
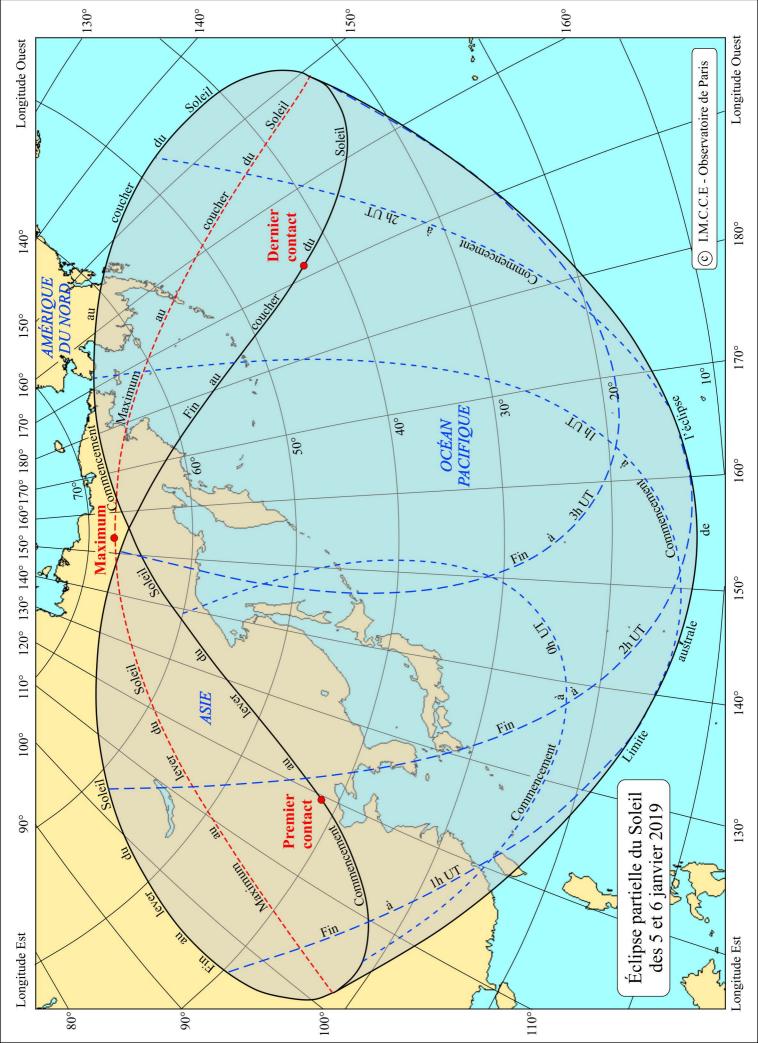



Fig.7. Degré d'obscuration d'une éclipse de Soleil.

Éclipse partielle du Soleil les 5 et 6 janvier 2019

