Astrochronology and cyclostratigraphy revolutionize paleohydrologic studies
Mingsong Li, Peking University
Paris.
Orbital forcing imprints discernible signatures in sedimentary strata that are instrumental for elucidating climatic change mechanisms and the establishment of high-resolution astronomical time scales (ATS). Utilizing a stochastic sedimentation model, we show that the 405-kyr eccentricity cycle is often the most reliably preserved and sometimes even the sole trustworthy metronome in devising ATS. We also note that the observed frequency peak shift may bias results towards a larger orbital period (and a larger lunar semi-major axis).
We review the mechanism of sea level change caused by astronomically driven continental groundwater activities and propose a new Sponge Continent hypothesis: astronomical forcing drives climate change, causing the filling and discharge of continental aquifers (by analogy, a sponge), which may in turn impact large-scale changes in global sea levels and inland lake levels during the greenhouse period.
Paradifferential Calculus and its Application to Classical KAM Theory
Chengyang Shao, University of Chicago
Paris.
In this talk, we will give a brief introduction of paradifferential calculus and its application in the study of differential equations involving "loss of regularity".
The first part consists of a concise description of paradifferential calculus as a toolbox in Fourier analysis, including the definition of paraproduct, regularity of paraproduct operator, calculus of paradifferential operators, and Bony's paralinearization theorem. It is emphasized that paradifferential operators preserve the algebraic structure of ordinary (pseudo)differential operators while keep control of loss of regularity. This feature gives a rigorous, elegant justification of "formal computations".
The second part is devoted to a new proof of classical KAM type results avoiding the usual Nash-Moser/KAM iteration schemes. Following Hörmander's notion of "parainverse equation", it will be explained how the Newtonian step of solving homological equation may be replaced by its paradifferential counterpart, called the "para-homological equation". Being simpler than Newton type iteration, such a proof has the potential of extending to "realistic" threshold of perturbation. If time permits, various generalizations will also be briefly discussed, including applications to "KAM for PDEs".
Sur l'attraction des ellipsoïdes et les propriétés de l'attraction newtonienne
Alain Albouy, ASD
Paris.
Un théorème classique énonce que deux ellipsoïdes confocaux, tout deux remplis d'une matière de densité uniforme, exercent la même force newtonienne sur tout point extérieur s'ils ont la même masse totale. La première démonstration, par Laplace en 1782, est une longue vérification. De nombreuses simplifications successives ont été proposées. La démonstration la plus simple que je connaisse est fondée sur des résultats qui sont souvent attribués à Ivory en 1809, mais qui sont plus précisément dus à Chasles en 1838. Je vais expliquer cette démonstration, qui n'est disponible que dans l'article original, n'ayant apparemment jamais été reproduite (avec l'exception notable du travail d'histoire des mathématiques de Nicolas Michel en 2020).
Les résultats sur les attractions intérieure et extérieure s'étendent en dehors du contexte physique de l'espace Euclidien tridimensionnel. Par exemple, si le coefficient de la force centrale est défini par une autre norme que la norme Euclidienne, la force gravitationnelle à l'intérieur de l'ellipsoïde homogène est encore une fonction linéaire de la position. Les extensions plus classiques à des espaces de dimension différente et à des courbures constantes non nulles sont discutées depuis Killing en 1885. La propriété de divergence nulle du champ de force est toujours respectée. Izmestiev et Tabachnikov ont récemment présenté, à la suite de Kozlov, les résultats sur les homéoïdes (couches homothétiques des ellipsoïdes homogènes) et leurs relations avec la géométrie des quadriques. Je vais améliorer un peu leur résultat et simplifier leur démonstration.
D'après Newton, l'attraction de l'homéoïde sur un point intérieur est nulle, parce que les contributions opposées s'annulent. Je vais démontrer simplement que l'homéoïde est la seule distribution de masse pour laquelle les contributions opposées s'annulent. Ce résultat est équivalent à un résultat de Maxim Arnold et Serge Tabachnikov concernant l'intégrale première de Joachimsthal du billard ellipsoïdal.
Some variations on projective dynamics
Connor Jackman
Paris.
The orbits (unparametrized solutions) of a mechanical system q'' = f(q), where q is a point in an affine space, can be described in a 'projective' way viewing this affine space as homogeneous coordinates as has been developed in the works of Albouy. On the other hand, Kasner has given a number of curious geometric properties characterizing orbits of such mechanical systems, and in this talk we will examine some relations of these geometric properties to the structure of projective dynamics, as well as some analogous geometric properties for various types of projections of n-body systems.
The global dynamics of the N-body problem
Jinxin Xue, Université Tsinghua
Paris.
In this talk, we present our work on the existence of noncollision singularities and superhyperbolic orbits and explain the roles that they play in understanding the global dynamics of the N-body problem.
Total collision at degenerate central configurations
Rick Moeckel, Université du Minnesota
Paris.
Chazy showed that when a solution of the n-body problem tends to total collision then its normalized configuration converges to the set of normalized central configurations. In the planar problem, there are circles of rotationally equivalent central configurations. It's conceivable that by means of an "infinite spin", a total collision solution could converge to such a circle instead of to a particular point on it. Chazy proved that this is not possible if a certain nondegeneracy condition holds. I will discuss joint work with R. Montgomery, where we extended this to the degenerate case, at least if the limiting circle of central configurations is isolated from other circles of central configurations. (It is believed that all central configurations are isolated, even if they are degenerate, but this is not known in general.) Our proof relies on combining the center manifold theorem with the Łojasiewicz gradient inequality. The talk will also describe an explicit example of convergence to a degenerate central configuration of the planar four-body problem discovered by Palmore.
On the Sun-shadow dynamics
Giovanni Federico Gronchi, Université de Pise
Paris.
We are concerned with the possibility of modeling a given dynamical system by patching different dynamics, simpler than the given one. One interesting case is when the simpler dynamics correspond to integrable systems. We shall discuss the results of a recent work (Cavallari, Gronchi, Baù, Physica D 2022) about the case of the Sun-shadow dynamics, i.e. the planar motion of a mass particle in a force field defined by patching Kepler's and Stark's dynamics: this can be seen as a basic model for the motion of an Earth satellite perturbed by the solar radiation pressure and considering the Earth shadow effect.
The existence of periodic orbits of brake type is proved, and the Sun-shadow dynamics is investigated by means of a Poincaré-like map defined by a quantity that is not conserved along the flow. We also present the results of our numerical investigations on some properties of the map. Moreover, we construct the invariant manifolds of the hyperbolic fixed points related to the periodic orbits of brake type. The global picture of the map shows evidence of regular and chaotic behaviour.
Advancements in Viscoelastic Tidal Modeling: Bridging Multilayered and Homogeneous Rheological Approaches
Clodoaldo Ragazzo, IME USP São Paulo
Paris.
In this presentation, I will share a series of recent findings developed through collaborations with L. Ruiz, G. Gevorgyan, G. Boué, A. Correia, and I. Matsuyama. Initially, I will introduce the concept of Love numbers within the frequency domain to frame our discussion on tidal interactions. Subsequently, I will outline the time-domain mathematical model we have refined over several years, demonstrating its capability to capture the tidal response of multilayered planetary bodies. Through our model, I will highlight a range of phenomena critical to understanding real-world tidal interactions, although not currently encompassed by our framework. Lastly, I will outline a possible methodology for calibrating our model's parameters utilizing observational data, underscoring a potential key advantage of our approach.
Résonances spin-orbite et confinement d’anneaux autour de petits corps
Bruno Sicardy, IMCCE
Paris.
Les surprenantes découvertes d'anneaux autour de plusieurs petits corps du système solaire lointain ont ravivé l'étude de ces systèmes, jusqu'alors réservée aux planètes géantes.
L'irrégularité des petits corps crée de fortes Résonances Spin-Orbite (RSO, dites aussi tessérales) entre le corps central et les anneaux. Ces résonances n'existent quasiment pas dans le cas des planètes géantes, dont le potentiel est essentiellement axisymétrique. Les petits corps sont donc des laboratoires naturels qui permettent de tester la réponse de disques à des résonances de forte intensité, et ce à des ordres élevés.
Les RSO de premier ordre de type 1/2, 2/3,... (dites résonances de Lindblad) ont été largement étudiées dans les années 1960-80 dans le cadre de la dynamique galactique et des anneaux des planètes géantes. Ceci a permis la description mathématique des ondes spirales, et de leurs effets de confinement, voire de troncature avec bord net, du disque perturbé.
Les résonances d'ordre supérieur (comme la RSO 1/3 d'ordre deux) ont été peu étudiées. D'une part parce qu‘elles imposent des développements non-linéaires complexes des équations hydrodynamiques, et d'autre part et surtout, parce que toute orbite résonante périodique d'ordre supérieur à deux se croise elle-même, conduisant à des singularités des équations hydrodynamiques.
Dans ce contexte, il est intéressant de constater que les anneaux découverts autour de Chariklo, Hauméa et Quaoar sont tous proches de la résonance RSO 1/3. Nous présenterons des résultats de simulations N-corps qui explorent la réponse de disques collisionnels autour de cette résonance. Après une phase d'excitation qui conduit à l'auto-croisement des lignes de courant, l'anneau transfère l'énergie reçue de la RSO 1/3 vers des modes d’ordre un (1/2, 2/3, 3/4,...), ce qui conduit in fine à un fort confinement de l'anneau, via des mécanismes non linéaires qui restent à élucider.